1
|
Mruc P, Olbrycht M, Korbetskyy M, Antos D. Altering the mobile phase composition to enhance self-disproportionation of enantiomers in achiral chromatography. J Chromatogr A 2024; 1715:464603. [PMID: 38168648 DOI: 10.1016/j.chroma.2023.464603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The influence of mobile phase composition on the efficiency of enantiomer separation by achiral chromatography (ACh) was investigated. The separation was induced by the phenomenon of self-disproportionation of enantiomers (SDE) triggered by their homo and hetero-chiral interactions in an achiral environment. Typically, SDE occurs in apolar mobile phases of weak elution strength, which causes the separation time to extend and the process productivity to deteriorate. To mitigate that effect, we altered the content of a strong solvent (modifier) in the mobile phase by use of a solvent gradient in which the target enantiomer was separated in the presence of the weak solvent, whereas the unresolved mixture of enantiomers was eluted by increasing the modifier content in the mobile phase. This enabled accelerating the solute elution while preserving the separation selectivity. The approach was examined for the separation of nonracemic mixtures of two structurally different compounds that exhibited the SDE effect in ACh, i.e., metalaxyl (MX) and methyl p-tolyl sulfoxide (MTSO). The target compound of the separation was the more abundant enantiomer in the enantiomeric mixture. The process realization was preceded by the determination of the effect of the modifier content on the separation yield for enantiomeric mixtures of MX and MTSO of different enantiomeric excess (ee). In the case of MX, yield of the pure target enantiomer varied from 2 %, for the maximum concentration of the modifier, to 45 % for the minimum modifier concentration and the largest ee used in the experiments. In the case of MTSO, the yield varied from minimum 40 % to maximum 66 %. To predict the process, we employed a dynamic model, in which underlying thermodynamic dependencies were implemented.
Collapse
Affiliation(s)
- Patrycja Mruc
- Doctoral School of the Rzeszów University of Technology/PL, Poland
| | - Maksymilian Olbrycht
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Rzeszów, Poland
| | - Markiian Korbetskyy
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Rzeszów, Poland.
| |
Collapse
|
2
|
Vera S, Landa A, Mielgo A, Ganboa I, Oiarbide M, Soloshonok V. Catalytic Asymmetric α-Functionalization of α-Branched Aldehydes. Molecules 2023; 28:molecules28062694. [PMID: 36985666 PMCID: PMC10056299 DOI: 10.3390/molecules28062694] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Aldehydes constitute a main class of organic compounds widely applied in synthesis. As such, catalyst-controlled enantioselective α-functionalization of aldehydes has attracted great interest over the years. In this context, α-branched aldehydes are especially challenging substrates because of reactivity and selectivity issues. Firstly, the transient trisubstituted enamines and enolates resulting upon treatment with an aminocatalyst or a base, respectively, would exhibit attenuated reactivity; secondly, mixtures of E- and Z-configured enamines/enolates may be formed; and third, effective face-discrimination on such trisubstituted sp2 carbon intermediates by the incoming electrophilic reagent is not trivial. Despite these issues, in the last 15 years, several catalytic approaches for the α-functionalization of prostereogenic α-branched aldehydes that proceed in useful yields and diastereo- and enantioselectivity have been uncovered. Developments include both organocatalytic and metal-catalyzed approaches as well as dual catalysis strategies for forging new carbon–carbon and carbon–heteroatom (C-O, N, S, F, Cl, Br, …) bond formation at Cα of the starting aldehyde. In this review, some key early contributions to the field are presented, but focus is on the most recent methods, mainly covering the literature from year 2014 onward.
Collapse
Affiliation(s)
- Silvia Vera
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Aitor Landa
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Antonia Mielgo
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Correspondence: (A.M.); (M.O.)
| | - Iñaki Ganboa
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mikel Oiarbide
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Correspondence: (A.M.); (M.O.)
| | - Vadim Soloshonok
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Manuel Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Liu J, Lin W, Sorochinsky AE, Butler G, Landa A, Han J, Soloshonok VA. Successful trifluoromethoxy-containing pharmaceuticals and agrochemicals. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Yu Y, Liu A, Dhawan G, Mei H, Zhang W, Izawa K, Soloshonok VA, Han J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Han J, Wzorek A, Klika KD, Soloshonok VA. Recommended Tests for the Self-Disproportionation of Enantiomers (SDE) to Ensure Accurate Reporting of the Stereochemical Outcome of Enantioselective Reactions. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092757. [PMID: 34067099 PMCID: PMC8124418 DOI: 10.3390/molecules26092757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight the necessity of conducting tests to gauge the magnitude of the self-disproportionation of enantiomers (SDE) phenomenon to ensure the veracity of reported enantiomeric excess (ee) values for scalemic samples obtained from enantioselective reactions, natural products isolation, etc. The SDE always occurs to some degree whenever any scalemic sample is subjected to physicochemical processes concomitant with the fractionation of the sample, thus leading to erroneous reporting of the true ee of the sample if due care is not taken to either preclude the effects of the SDE by measurement of the ee prior to the application of physicochemical processes, suppressing the SDE, or evaluating all obtained fractions of the sample. Or even avoiding fractionation altogether if possible. There is a clear necessity to conduct tests to assess the magnitude of the SDE for the processes applied to samples and the updated and improved recommendations described herein cover chromatography and processes involving gas-phase transformations such as evaporation or sublimation.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karel D. Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Correspondence: (K.D.K.); (V.A.S.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
- Correspondence: (K.D.K.); (V.A.S.)
| |
Collapse
|
6
|
The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Knowing the eutectic composition of the binary melting point phase diagrams of the diastereomeric salts formed during the given resolution, the achievable F (F = eeDia*Y) value can be calculated. The same value can also be calculated and predicted by knowing the eutectic compositions of the binary melting point phase diagrams of enantiomeric mixtures of the racemic compound or the resolving agent. An explanation was sought as to why and how the crystalline precipitated diastereomeric salt—formed in the solution between a racemic compound and the corresponding resolving agent—may be formed. According to our idea, the self-disproportionation of enantiomers (SDE) has a decisive role when the enantiomers form two nonequal ratios of conformers in solution. The self-organized enantiomers form supramolecular associations having M and P helicity, and double helices are formed. Between these double spirals, with the formation of new double spirals, a dynamic equilibrium is achieved and the salt crystallizes. During this process between acids and bases, chelate structures may also be formed. Acids appear to have a crucial impact on these structures. It is assumed that the behavior of each chiral molecule is determined by its own code. This code validates the combined effect of constituent atoms, bonds, spatial structure, charge distribution, flexibility and complementarity.
Collapse
|
7
|
Flurbiprofen: A Study of the Behavior of the Scalemate by Chromatography, Sublimation, and NMR. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2-(2-Fluoro-4-biphenyl) propionic acid (flurbiprofen), from the phenylalkanoic acid family of nonsteroidal anti-inflammatory drugs (NSAID’s), is currently on the pharmaceutical market as a racemate. This racemic compound was tested for its propensity to undergo the self-disproportionation of enantiomers (SDE) phenomenon by various forms of chromatography (SDEvC), such as routine gravity-driven column chromatography, medium-pressure liquid chromatography (MPLC), preparative thin-layer chromatography (PTLC), and size-exclusion chromatography (SEC), as well as by sublimation (SDEvS). Furthermore, examination by nuclear magnetic resonance (NMR) in various solvents found that flurbiprofen exhibited the phenomenon of self-induced diastereomeric anisochronism (SIDA). By measurement of the diffusion coefficient (D), the longitudinal relaxation time (T1), and the transverse relaxation time (T2) using NMR, as well as by electrospray ionization-mass spectrometry (ESI-MS) examinations, the preferred intermolecular association was found to be solvent dependent, e.g., heterochiral association was preferred in toluene, while homochiral association was preferred in more polar solvents. This study also attempted, unsuccessfully, to correlate the NMR measurements of flurbiprofen with chromatographic outcomes for the rationalization and prediction of chromatographic results based on NMR measurements. Because the intermolecular hydrogen bonding of the acid groups in flurbiprofen overwhelmingly predominates over other intermolecular interactions, flurbiprofen seemed to represent a good test case for this idea. The behavior of scalemic samples of flurbiprofen is important, as, although it is currently dispensed as a racemate, clinical applications of the R enantiomer have been investigated. SDEvC and SDEvS both have ramifications for the preparation, handling, and storage of enantioenriched flurbiprofen, and this concern applies to other chiral drugs as well.
Collapse
|
8
|
|
9
|
Liu J, Han J, Izawa K, Sato T, White S, Meanwell NA, Soloshonok VA. Cyclic tailor-made amino acids in the design of modern pharmaceuticals. Eur J Med Chem 2020; 208:112736. [PMID: 32966895 DOI: 10.1016/j.ejmech.2020.112736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Tailor-made AAs are indispensable components of modern medicinal chemistry and are becoming increasingly prominent in new drugs. In fact, about 30% of small-molecule pharmaceuticals contain residues of tailor-made AAs or structurally related diamines and amino-alcohols. Cyclic tailor-made AAs present a particular value to rational structural design by virtue of their local conformational constraints and are widely used in lead optimization programs. The present review article highlights 34 compounds, all of which are derived from cyclic AAs, representing recently-approved, small-molecule pharmaceuticals as well as promising drug candidates currently in various phases of clinical study. For each compound, the discussion includes the discovery, therapeutic profile and optimized synthesis, with a focus on the preparation of cyclic tailor-made AA as the principal structural feature. The present review article is intended to serve as a reference source for organic, medicinal and process chemists along with other professionals working in the fields of drug design and pharmaceutical discovery.
Collapse
Affiliation(s)
- Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Sarah White
- Oakwood Chemical, Inc, 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box, 4000, Princeton, NJ, 08543 4000, United States
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
10
|
Inutan ED, Meher AK, Karki S, Fischer JL, Imperial LF, Foley CD, Jarois DR, El-Baba TJ, Lutomski CA, Trimpin S. New mass spectrometry concepts for characterization of synthetic polymers and additives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8768. [PMID: 32107802 DOI: 10.1002/rcm.8768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE New ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives. METHODS Different mass spectrometers (Thermo Orbitrap (Q-)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub-atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum). RESULTS Astonishingly, using nothing more than a small molecule matrix compound (e.g., 2-methyl-2-nitropropane-1,3-diol or 3-nitrobenzonitrile) and a salt (e.g., mono- or divalent cation(s)), such samples upon exposure to sub-atmospheric pressure transfer nonvolatile polymers and nonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototype vacuum matrix-assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum. CONCLUSIONS Direct ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high-resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high-performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial- and temporal-resolution measurements are within reach if sensitivity is addressed for decreasing sample-size measurements.
Collapse
Affiliation(s)
- Ellen D Inutan
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| |
Collapse
|
11
|
Mei H, Han J, Takeda R, Sakamoto T, Miwa T, Minamitsuji Y, Moriwaki H, Abe H, Soloshonok VA. Practical Method for Preparation of ( S)-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. ACS OMEGA 2019; 4:11844-11851. [PMID: 31460294 PMCID: PMC6682081 DOI: 10.1021/acsomega.9b01537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
This work reports an operationally convenient ∼20 g scale synthesis of (S)-2-amino-5,5,5-trifluoropentanoic acid and its Fmoc-derivative via dynamic kinetic resolution of the corresponding racemate.
Collapse
Affiliation(s)
- Haibo Mei
- College
of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- College
of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Ryosuke Takeda
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián 20018, Spain
| | - Tsubasa Sakamoto
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Toshio Miwa
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Yutaka Minamitsuji
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián 20018, Spain
- IKERBASQUE—Basque
Foundation for Science, María
Díaz de Haro 3, Plaza Bizkaia, Bilbao 48013, Spain
| |
Collapse
|
12
|
The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. Amino Acids 2019; 51:865-889. [PMID: 30903285 DOI: 10.1007/s00726-019-02729-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
This review covers the phenomenon of the self-disproportionation of enantiomers (SDE) of amino acids and their derivatives in all its guises from phase transformations (recrystallization, sublimation, and distillation), to the application of force fields, through to chromatography including HPLC, MPLC, gravity-driven column chromatography, and SEC. The relevance of the SDE phenomenon to amino acid research and to marketed pharmaceuticals is clear given the potential for alteration of the enantiomeric excess of a portion of a scalemic sample. In addition, the possible contribution of the SDE phenomenon to the genesis of prebiotic homochirality is considered.
Collapse
|
13
|
Zhu Y, Ni Y, Soloshonok VA, Han J, Pan Y. Catalytic enantioselective Michael addition reactions between in situ detrifluoroacetylatively generated 3-fluorooxindole-derived enolates and 1-(1-(phenylsulfonyl)vinylsulfonyl)benzene. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Abe H, Soloshonok VA. Second-order asymmetric transformation and its application for the practical synthesis of α-amino acids. Org Biomol Chem 2019; 16:4968-4972. [PMID: 29947401 DOI: 10.1039/c8ob00963e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a discovery of a new rimantadine [1-(1-adamantyl)ethanamine]-derived chiral ligand and its application for the preparation of α-amino acids using the second-order asymmetric transformation approach. The operational ease of experimental procedures coupled with excellent chemical yields and stereochemical outcome suggests some potential synthetic generality of this approach.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari Chemicals Ltd, 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
He X, Ji Y, Peng C, Han B. Organocatalytic Asymmetric Synthesis of Cyclic Compounds Bearing a Trifluoromethylated Stereogenic Center: Recent Developments. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801647] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiang‐Hong He
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Yan‐Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| |
Collapse
|
16
|
Han J, Jean M, Roussel C, Moriwaki H, Soloshonok VA. Chromatographic approach to study the configurational stability of Ni(II) complexes of amino-acid Schiff bases possessing stereogenic nitrogen. Chirality 2019; 31:328-335. [PMID: 30702773 DOI: 10.1002/chir.23059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/17/2023]
Abstract
Herein, we disclose the design of a model Ni(II) complex of glycine Schiff base possessing single-nitrogen stereogenic center, which was successfully used for high-performance liquid chromatography (HPLC)-assisted assessment of its configurational stability. The major finding is that the configurational stability of the Ni(II)-coordinated nitrogen is profoundly dependent on the reaction conditions used, in particular the solvent, and can range from inconsequential (t½ less than 5 min) to virtually completely stable (t½ 90 y). The discovery reported in this study most likely to be of certain theoretical and synthetic value.
Collapse
Affiliation(s)
- Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Marion Jean
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Christian Roussel
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Han J, Wzorek A, Soloshonok VA, Klika KD. The self-disproportionation of enantiomers (SDE): The effect of scaling down, potential problems versus prospective applications, possible new occurrences, and unrealized opportunities? Electrophoresis 2019; 40:1869-1880. [PMID: 30653701 DOI: 10.1002/elps.201800414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 01/13/2019] [Indexed: 11/10/2022]
Abstract
This commentary discusses an important, though not widely appreciated, chiral phenomenon of molecular chirality that effectively always occurs whenever nonracemic samples are subjected to practically any physicochemical process (e.g., force field, recrystallization, sublimation, even distillation, etc.) under totally achiral conditions external to the sample itself. The phenomenon is termed as the self-disproportionation of enantiomers (SDE) and though ubiquitous, its presence may not always be readily apparent, or workers may be otherwise oblivious to its effects. In the particular case of chromatography, when the SDE is apparent, the enantiomeric excess (ee) of the chiral compound is observed to vary across an eluted peak, with anterior eluted portions either enantioenriched or enantiodepleted relative to the ee of the starting material, and conversely for the posterior eluted portions. Herein, we highlight various aspects of the SDE phenomenon as it pertains to chromatography and, in particular, the effect of scaling down chromatographic systems, the potential risk of problems that the SDE can cause, as well as opportunities for practical applications of the phenomenon, possible new occurrences of the SDE phenomenon to be searched for, and unrealized opportunities.
Collapse
Affiliation(s)
- Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland.,Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Takahashi M, Moriwaki H, Miwa T, Hoang B, Wang P, Soloshonok VA. Large Scale Synthesis of Chiral (3Z,5Z)-2,7-Dihydro-1H-azepine-Derived Hamari Ligand for General Asymmetric Synthesis of Tailor-Made Amino Acids. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Motohiro Takahashi
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Toshio Miwa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Brittanie Hoang
- Hamari Chemicals USA, San Diego Research Center, 11494 Sorrento Valley Road, San Diego, California 92121, United States
| | - Peng Wang
- Hamari Chemicals USA, San Diego Research Center, 11494 Sorrento Valley Road, San Diego, California 92121, United States
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
| |
Collapse
|
19
|
Mei H, Hiramatsu T, Takeda R, Moriwaki H, Abe H, Han J, Soloshonok VA. Expedient Asymmetric Synthesis of (S)-2-Amino-4,4,4-trifluorobutanoic Acid via Alkylation of Chiral Nucleophilic Glycine Equivalent. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Takahiro Hiramatsu
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Ryosuke Takeda
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
| |
Collapse
|
20
|
Mei H, Liu J, Fustero S, Román R, Ruzziconi R, Soloshonok VA, Han J. Chemistry of detrifluoroacetylativelyin situgenerated fluoro-enolates. Org Biomol Chem 2019; 17:762-775. [DOI: 10.1039/c8ob02843e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review article provides a summary of the detrifluoroacetylativein situgeneration of fluorine-containing enolates and their related reactions.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Jiang Liu
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Santos Fustero
- Departamento de Química Orgánica
- Universidad de Valencia
- 46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Raquel Román
- Departamento de Química Orgánica
- Universidad de Valencia
- 46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Renzo Ruzziconi
- Department of Chemistry
- Biology and Biotechnologies
- 06123 Perugia
- Italy
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of the Basque Country UPV/EHU
- 20018 San Sebastián
- Spain
| | - Jianlin Han
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|
21
|
Understanding the Thalidomide Chirality in Biological Processes by the Self-disproportionation of Enantiomers. Sci Rep 2018; 8:17131. [PMID: 30459439 PMCID: PMC6244226 DOI: 10.1038/s41598-018-35457-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Twenty years after the thalidomide disaster in the late 1950s, Blaschke et al. reported that only the (S)-enantiomer of thalidomide is teratogenic. However, other work has shown that the enantiomers of thalidomide interconvert in vivo, which begs the question: why is teratogen activity not observed in animal experiments that use (R)-thalidomide given the ready in vivo racemization (“thalidomide paradox”)? Herein, we disclose a hypothesis to explain this “thalidomide paradox” through the in-vivo self-disproportionation of enantiomers. Upon stirring a 20% ee solution of thalidomide in a given solvent, significant enantiomeric enrichment of up to 98% ee was observed reproducibly in solution. We hypothesize that a fraction of thalidomide enantiomers epimerizes in vivo, followed by precipitation of racemic thalidomide in (R/S)-heterodimeric form. Thus, racemic thalidomide is most likely removed from biological processes upon racemic precipitation in (R/S)-heterodimeric form. On the other hand, enantiomerically pure thalidomide remains in solution, affording the observed biological experimental results: the (S)-enantiomer is teratogenic, while the (R)-enantiomer is not.
Collapse
|
22
|
Hosaka T, Imai T, Wzorek A, Marcinkowska M, Kolbus A, Kitagawa O, Soloshonok VA, Klika KD. The self-disproportionation of enantiomers (SDE) of α-amino acid derivatives: facets of steric and electronic properties. Amino Acids 2018; 51:283-294. [PMID: 30311082 DOI: 10.1007/s00726-018-2664-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
α-Amino acids (α-AAs) are in extremely high demand in nearly every sector of the food and health-related chemical industries and continue to be the subject of intense multidisciplinary research. The self-disproportionation of enantiomers (SDE) is an emerging and one of the least studied areas of α-AA or enantiomeric properties, critically important for their production and application. In the present work, we report a detailed study of the SDE via achiral, gravity-driven column chromatography for a set of N-acylated, N-carbonylated, N-fluoroacylated, and N-thioacylated α-amino acid esters. As well as thioacylation, attention was paid to the effect of altering the R group of the ester functionality, the side chain, or that of the acyl group attached to the amide nitrogen, whereby it was found that electron-withdrawing groups in the latter moiety had a pronounced effect on the magnitude and behavior of the resulting SDE phenomenon. Intriguingly, in the case of N-fluoroacylated derivatives, by favoring the formation of dimeric associates and effecting a strong bias toward homochiral associates over heterochiral associates, the SDE magnitude was greatly reduced contrary to intuitive expectations. Energy estimates resulted from DFT calculations.
Collapse
Affiliation(s)
- Takuma Hosaka
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Tomomi Imai
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland. .,Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.
| | - Magdalena Marcinkowska
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland
| | - Anna Kolbus
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland
| | - Osamu Kitagawa
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain. .,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3. Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Takeda R, Kawashima A, Yamamoto J, Sato T, Moriwaki H, Izawa K, Abe H, Soloshonok VA. Tandem Alkylation-Second-Order Asymmetric Transformation Protocol for the Preparation of Phenylalanine-Type Tailor-Made α-Amino Acids. ACS OMEGA 2018; 3:9729-9737. [PMID: 31459102 PMCID: PMC6644829 DOI: 10.1021/acsomega.8b01424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 05/02/2023]
Abstract
In this work, we disclose an advanced general process for the synthesis of tailor-made α-amino acids (α-AAs) via tandem alkylation-second-order asymmetric transformation. The first step is the alkylation of the chiral Ni(II) complex of glycine Schiff base, which is conducted under mild phase-transfer conditions allowing the structural construction of target α-AAs. The second step is based on the methodologically rare second-order asymmetric transformation, resulting in nearly complete precipitation of the corresponding (SC,RN,RC)-configured diastereomer, which can be collected by a simple filtration. The operational convenience and potential scalability of all experimental procedures, coupled with excellent stereochemical outcome, render this method of high synthetic value for the preparation of various tailor-made α-AAs.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- E-mail: (R.T.)
| | - Aki Kawashima
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Junya Yamamoto
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Tatsunori Sato
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Kunisuke Izawa
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
- E-mail: (V.A.S.)
| |
Collapse
|
24
|
Enantioselective permeations of amino acids through l-proline-modified gold nanochannel membrane: an experimental and theoretical study. Amino Acids 2018; 50:1549-1556. [DOI: 10.1007/s00726-018-2629-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/24/2018] [Indexed: 01/29/2023]
|
25
|
Zhu Y, Mao Y, Mei H, Pan Y, Han J, Soloshonok VA, Hayashi T. Palladium-Catalyzed Asymmetric Allylic Alkylations of Colby Pro-Enolates with MBH Carbonates: Enantioselective Access to Quaternary C-F Oxindoles. Chemistry 2018; 24:8994-8998. [PMID: 29683211 DOI: 10.1002/chem.201801670] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Owing to the innovative applications of fluorinated compounds in many areas of technology and medicine, methods for the preparation of C-F quaternary fluorine containing compounds are in extremely high demand. Here, we report the discovery of a general procedure for an SN 2 reaction catalyzed by Pd/Ding-SKP-type ligands, and that occurs between Colby pro-enolates with MBH carbonates to afford the corresponding products featuring two consecutive stereogenic carbons, including a C-F quaternary stereogenic center. The reactions readily occur at ambient temperatures with high chemical yields and in excellent chemo-, diastereo- and enantioselective manners. This practically attractive stereochemical outcome, coupled with the operational simplicity and structural generality, bodes well for the synthetic application of this process in the preparation of a novel class of biologically relevant fluorine-containing compounds.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210093, China
| | - Yu Mao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210093, China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210093, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210093, China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210093, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| | - Tamio Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
26
|
Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem Rev 2018; 118:3887-3964. [PMID: 29608052 DOI: 10.1021/acs.chemrev.7b00778] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jiandong Wang
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory , RIKEN, and RIKEN Center for Sustainable Resourse Science , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry , University of the Basque Country UPV/EHU , 20018 San Sebastian , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Jaime A S Coelho
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
27
|
Zhang L, Zhang W, Mei H, Han J, Soloshonok VA, Pan Y. Catalytic asymmetric aldol addition reactions of 3-fluoro-indolinone derived enolates. Org Biomol Chem 2018; 15:311-315. [PMID: 27910989 DOI: 10.1039/c6ob02454h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a Cu(i)/bisoxazoline ligand-catalyzed aldol reaction of unprotected tertiary enolates generated in situ from 3-(1,1-dihydroxy-2,2,2-trifluoroethyl)-substituted derivatives of 3-fluoro-2-oxindoles. A range of α-fluoro-β-aryl/hetaryl/alkyl-β-hydroxy-indolin-2-ones containing C-F quaternary stereogenic centers of high pharmaceutical importance were furnished in good yields and satisfactory diastereo- and enantioselectivities. The reactions were conducted under operationally convenient conditions and displayed wide substrate/functional group generality including unprotected N-H on the tertiary enolates, and aromatic, hetero-aromatic and aliphatic aldehydes.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Wenzhong Zhang
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Haibo Mei
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science Department, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Yi Pan
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
28
|
Sha W, Zhang L, Zhang W, Mei H, Soloshonok VA, Han J, Pan Y. Catalytic cascade aldol-cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C-F quaternary stereogenic center. Org Biomol Chem 2018; 14:7295-303. [PMID: 27397559 DOI: 10.1039/c6ob01152g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first asymmetric catalytic aldol-cyclization reaction of detrifluoroacetylatively in situ generated enolates with methyl 2-formylbenzoate is reported. This reaction tolerates a wide range of substrates, affording fluorinated quaternary stereogenic α,α-dialkyl/cyclo-alkyl-β-ketoesters with good yields, high diastereo- (94% de) and enantioselectivity (96% ee) at room temperature.
Collapse
Affiliation(s)
- Wanxing Sha
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Lijun Zhang
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Wenzhong Zhang
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Haibo Mei
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| | - Yi Pan
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
29
|
Han J, Kitagawa O, Wzorek A, Klika KD, Soloshonok VA. The self-disproportionation of enantiomers (SDE): a menace or an opportunity? Chem Sci 2018; 9:1718-1739. [PMID: 29675218 PMCID: PMC5892310 DOI: 10.1039/c7sc05138g] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023] Open
Abstract
Herein we report on the well-documented, yet not widely known, phenomenon of the self-disproportionation of enantiomers (SDE): the spontaneous fractionation of scalemic material into enantioenriched and -depleted fractions when any physicochemical process is applied.
Herein we report on the well-documented, yet not widely known, phenomenon of the self-disproportionation of enantiomers (SDE): the spontaneous fractionation of scalemic material into enantioenriched and -depleted fractions when any physicochemical process is applied. The SDE has implications ranging from the origins of prebiotic homochirality to unconventional enantiopurification methods, though the risks of altering the enantiomeric excess (ee) unintentionally, regrettably, remain greatly unappreciated. While recrystallization is well known as an SDE process, occurrences of the SDE in other processes are much less recognized, e.g. sublimation and even distillation. But the most common process that many workers seem to be completely ignorant of is SDE via chromatography and reports have included all manner of structures, all types of interactions, and all forms of chromatography, including GC. The SDE can be either a blessing – as a means to obtain enantiopure samples from scalemates – or a curse, as unwitting alteration of the ee leads to errors in the reporting of results and/or misinterpretation of the system under study. Thus the ramifications of the SDE are relevant to any area involving chirality – natural products, asymmetric synthesis, etc. Moreover, there is grave concern regarding errors in the literature, in addition to the possible occurrence of valid results which may have been overlooked and thus remain unreported, as well as the potential for the SDE to alter the ee, particularly via chromatography, and the following concepts will be conveyed: (1) the SDE occurs under totally achiral conditions of (a) precipitation, (b) centrifugation, (c) evaporation, (d) distillation, (e) crystallization, (f) sublimation, and (g) achiral chromatography (e.g. column, flash, MPLC, HPLC, SEC, GC, etc.). (2) The SDE cannot be controlled simply by experimental accuracy and ignorance of the SDE unavoidably leads to mistakes in the recorded and reported stereochemical outcome of enantioselective transformations. (3) The magnitude of the SDE (the difference between the extremes of enantioenrichment and -depletion) can be controlled and used to: (a) minimize mistakes in the recorded experimental values and (b) to develop unconventional and preparatively superior methods for enantiopurification. (4) The magnitude of the SDE cannot be predicted but can be expected for compounds possessing SDE-phoric groups or which have a general tendency for strong hydrogen or halogen bonds or dipole–dipole or aromatic π–π interactions. (5) An SDE test and the rigorous reporting and description of applied physicochemical processes should become part of standard experimental practice to prevent the erroneous reporting of the stereochemical outcome of enantioselective catalytic reactions and the chirooptical properties of scalemates. New directions in the study of the SDE, including halogen bonding-based interactions and novel, unconventional enantiopurification methods such as pseudo-SDE (chiral selector-assisted SDE resolution of racemates), are also reported.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering , State Key Laboratory of Coordination Chemistry , Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China .
| | - Osamu Kitagawa
- Department of Applied Chemistry , Shibaura Institute of Technology , 3-7-5 Toyosu, Kohto-ku , Tokyo 135-8548 , Japan
| | - Alicja Wzorek
- Institute of Chemistry , Jan Kochanowski University in Kielce , Świętokrzyska 15G , 25-406 Kielce , Poland.,Department of Organic Chemistry I , Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3 , 20018 San Sebastián , Spain .
| | - Karel D Klika
- Molecular Structure Analysis , German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280 , D-69009 Heidelberg , Germany .
| | - Vadim A Soloshonok
- Department of Organic Chemistry I , Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3 , 20018 San Sebastián , Spain . .,IKERBASQUE, Basque Foundation for Science , Alameda Urquijo 36-5, Plaza, Bizkaia , 48011 Bilbao , Spain
| |
Collapse
|
30
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
31
|
Terada S, Hirai M, Honzawa A, Kitagawa O, Kamizela A, Wzorek A, Soloshonok VA. Possible Case of Halogen Bond-Driven Self-Disproportionation of Enantiomers (SDE) via Achiral Chromatography. Chemistry 2017; 23:14631-14638. [PMID: 28783208 DOI: 10.1002/chem.201703308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 11/12/2022]
Abstract
The major breakthrough reported in this work is the discovery of likely halogen bond-driven self-disproportionation of enantiomers (SDE). Taking into account that the halogen-bonding interactions can be rationally designed and can match, or even exceed, the strength of the more familiar hydrogen bond, this discovery clearly opens an unexpected new direction of research in the areas of molecular chirality and the SDE phenomenon.
Collapse
Affiliation(s)
- Shumpei Terada
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Motohiro Hirai
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Ayaka Honzawa
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Osamu Kitagawa
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| | - Angelika Kamizela
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland.,Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,JKERBASQUE, Basque Foundation for Science, University of the Basque Country UPV/EHU, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
32
|
Reyes-Rangel G, Vargas-Caporali J, Juaristi E. Asymmetric Michael addition reaction organocatalyzed by stereoisomeric pyrrolidine sulfinamides under neat conditions. A brief study of self-disproportionation of enantiomers. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Biological evaluation of both enantiomers of fluoro-thalidomide using human myeloma cell line H929 and others. PLoS One 2017; 12:e0182152. [PMID: 28763493 PMCID: PMC5538663 DOI: 10.1371/journal.pone.0182152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Over the last few years, thalidomide has become one of the most important anti-tumour drugs for the treatment of relapsed-refractory multiple myeloma. However, besides its undesirable teratogenic side effect, its configurational instability critically limits any further therapeutic improvements of this drug. In 1999, we developed fluoro-thalidomide which is a bioisostere of thalidomide, but, in sharp contrast to the latter, it is configurationally stable and readily available in both enantiomeric forms. The biological activity of fluoro-thalidomide however, still remains virtually unstudied, with the exception that fluoro-thalidomide is not teratogenic. Herein, we report the first biological evaluation of fluoro-thalidomide in racemic and in both (R)- and (S)-enantiomerically pure forms against (in vitro) H929 cells of multiple myeloma (MM) using an annexin V assay. We demonstrate that all fluoro-thalidomides inhibited the growth of H929 MM cells without any in-vivo activation. Furthermore, we report that the enantiomeric forms of fluoro-thalidomide display different anti-tumour activities, with the (S)-enantiomer being noticeably more potent. The angiogenesis of fluoro-thalidomides is also investigated and compared to thalidomide. The data obtained in this study paves the way towards novel pharmaceutical research on fluoro-thalidomides.
Collapse
|
34
|
Zhu Y, Zhang W, Mei H, Han J, Soloshonok VA, Pan Y. Catalytic Enantioselective Michael Addition Reactions of Tertiary Enolates Generated by Detrifluoroacetylation. Chemistry 2017. [PMID: 28639718 DOI: 10.1002/chem.201702091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work describes, for the first time, Michael addition reactions of tertiary fluoro-enolates in situ generated by detrifluoroacetylation with 1-(1-(phenylsulfonyl) vinylsulfonyl)benzene. Excellent enantioselectivity and chemical yields were achieved with application of catalysts (10 mol %) derived from Cu(OTf)2 and (1S,2S)-1,2-diphenylethane-1,2-diamine. These reactions show a considerable degree of structural generality and allow the preparation of new types of biologically relevant molecules that contain quaternary C-F stereogenic carbon atoms and feature five-, six-, or seven-membered rings as well as heterocyclic 3-fluoro-2,3-dihydrochromen-4-one moieties.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Wenzhong Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Spain
| | - Yi Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| |
Collapse
|
35
|
Zhang L, Zhang W, Sha W, Mei H, Han J, Soloshonok VA. Detrifluoroacetylative generation and chemistry of fluorine containing tertiary enolates. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Sha W, Zhang L, Wu X, Mei H, Han J, Soloshonok VA, Pan Y. Detrifluoroacetylative cascade reactions of bicyclic fluoro-enolates with ortho -phthalaldehyde: Aspects of reactivity, diastereo- and enantioselectivity. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Wzorek A, Kamizela A, Sato A, Soloshonok VA. Self-Disproportionation of Enantiomers (SDE) via achiral gravity-driven column chromatography of N -fluoroacyl-1-phenylethylamines. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Sha W, Zhu Y, Mei H, Han J, Soloshonok VA, Pan Y. Catalytic Enantioselective Cyano-Trifluoromethylation of Styrenes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wanxing Sha
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Yi Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science; Alameda Urquijo 36-5, Plaza Bizkaia 48011 Bilbao Spain
| | - Yi Pan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
39
|
Wzorek A, Sato A, Drabowicz J, Soloshonok VA. Self-disproportionation of Enantiomers (SDE) of Chiral Nonracemic Amides via Achiral Chromatography. Isr J Chem 2016. [DOI: 10.1002/ijch.201600077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alicja Wzorek
- Institute of Chemistry; Jan Kochanowski University in Kielce; Świętokrzyska 15G 25-406 Kielce Poland
- Department of Organic Chemistry I; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Azusa Sato
- Department of Organic Chemistry I; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- Department of Chemistry; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku 162-8666 Tokyo Japan
| | - Józef Drabowicz
- Department of Heteroorganic Chemistry; Center of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza112 90-363 Łódź Poland
- Institute of Chemistry; Environmental Protection and Biotechnology; Jan Długosz University in Częstochowa; Armii Krajowej 13/15 42-201 Częstochowa Poland
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Alameda Urquijo 36-5, Plaza Bizkaia 48011 Bilbao Spain
| |
Collapse
|
40
|
Xie C, Zhang L, Sha W, Soloshonok VA, Han J, Pan Y. Detrifluoroacetylative in Situ Generation of Free 3-Fluoroindolin-2-one-Derived Tertiary Enolates: Design, Synthesis, and Assessment of Reactivity toward Asymmetric Mannich Reactions. Org Lett 2016; 18:3270-3. [PMID: 27305459 DOI: 10.1021/acs.orglett.6b01516] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discovery of detrifluoroacetylative in situ generation of a new type of fluorinated amide enolates derived from 3-fluoroindolin-2-one and their asymmetric Mannich additions with sulfinylaldimines bearing fluoroalkyl groups is reported, which afforded α-fluoro-β-(fluoroalkyl)-β-aminoindolin-2-ones containing C-F quaternary stereogenic centers with excellent yields and high diastereoselectivities.
Collapse
Affiliation(s)
- Chen Xie
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University , Nanjing 210093, China
| | - Lijun Zhang
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University , Nanjing 210093, China
| | - Wanxing Sha
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University , Nanjing 210093, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University , Nanjing 210093, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Nanjing University , Nanjing 210093, China
| |
Collapse
|
41
|
Wzorek A, Sato A, Drabowicz J, Soloshonok VA. Self-disproportionation of enantiomers via achiral gravity-driven column chromatography: A case study of N-acyl-α-phenylethylamines. J Chromatogr A 2016; 1467:270-278. [PMID: 27240946 DOI: 10.1016/j.chroma.2016.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022]
Abstract
Herein we report a study of the self-disproportionation of enantiomers (SDE) via gravity-driven achiral column chromatography of a series of amides derived from 1-phenylethylamine. We demonstrated that structural and electronic factors of the substituents play an important role in the observed magnitude of the SDE. For the first time, the SDE phenomenon of amides with that of thioamides was compared. We demonstrate that, in sharp contrast to amides, the substitution of the sulphur atom for the oxygen in the acyl group, strongly reduced the observed magnitude of the SDE. These results clearly indicate the importance of the hydrogen bonding for the formation of homo/hetero-chiral association responsible for manifestation of the SDE phenomenon.
Collapse
Affiliation(s)
- Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406 Kielce, Poland; Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.
| | - Azusa Sato
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain; Department of Chemistry, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666 Tokyo, Japan
| | - Józef Drabowicz
- Department of Heteroorganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain.
| |
Collapse
|
42
|
Goto M, Tateishi K, Ebine K, Soloshonok VA, Roussel C, Kitagawa O. Chiral additive induced self-disproportionation of enantiomers under MPLC conditions: preparation of enantiomerically pure samples of 1-(aryl)ethylamines from racemates. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Organocatalytic Enantioselective Nucleophilic Alkynylation of Allyl Fluorides Affording Chiral Skipped Ene‐ynes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satoshi Okusu
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Hiroki Okazaki
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country UPV/EHU 20018 San Sebastián Spain
- IKERBASQUE Basque Foundation for Science Alameda Urquijo 36-5, Plaza Bizkaia 48011 Bilbao Spain
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
44
|
Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Organocatalytic Enantioselective Nucleophilic Alkynylation of Allyl Fluorides Affording Chiral Skipped Ene‐ynes. Angew Chem Int Ed Engl 2016; 55:6744-8. [DOI: 10.1002/anie.201601928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/26/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Satoshi Okusu
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Hiroki Okazaki
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country UPV/EHU 20018 San Sebastián Spain
- IKERBASQUE Basque Foundation for Science Alameda Urquijo 36-5, Plaza Bizkaia 48011 Bilbao Spain
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
45
|
Sato T, Izawa K, Aceña JL, Liu H, Soloshonok VA. Tailor-Made α-Amino Acids in the Pharmaceutical Industry: Synthetic Approaches to (1R,2S)-1-Amino-2-vinylcyclopropane-1-carboxylic Acid (Vinyl-ACCA). European J Org Chem 2016. [DOI: 10.1002/ejoc.201600112] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tatsunori Sato
- Hamari Chemicals, Ltd.; 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - Kunisuke Izawa
- Hamari Chemicals, Ltd.; 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - José Luis Aceña
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- Department of Organic Chemistry; Autónoma University of Madrid; Cantoblanco 28049 Madrid Spain
| | - Hong Liu
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road 201203 Shanghai P. R. China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Alameda Urquijo 36-5, Plaza Bizkaia 48011 Bilbao Spain
| |
Collapse
|
46
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1806] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
47
|
Wzorek A, Sato A, Drabowicz J, Soloshonok VA, Klika KD. Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters. Amino Acids 2015; 48:605-13. [PMID: 26704565 DOI: 10.1007/s00726-015-2152-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
Abstract
We report the best performance yet for the self-disproportionation of enantiomers (SDE) via achiral chromatography as typically used in laboratories for the isolated yield of the excess enantiomer using N-acetyl β-amino acid ethyl esters. The results are the most convincing ever demonstration of the capability of the SDE for practical-scale enantiopurification as comparable, or even superior for some systems, to that of recrystallization. For example, from a sample of 94.4 % ee, a yield of 71 % of enantiopure material was isolated in a single chromatographic run. Moreover, the lack of an esoteric structural entity, e.g. strongly polarizing groups, such as, for instance CF3, highlights the fact that the phenomenon is not dependent on the presence of such and thus the process is relevant to any usual-type structure. In contrast to recrystallization, the procedure is predictable, general, and dependable, boding well for its widespread application in routine laboratory settings.
Collapse
Affiliation(s)
- Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Świętokrzyska 15G, 25-406, Kielce, Poland. .,Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.
| | - Azusa Sato
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,Department of Chemistry, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Józef Drabowicz
- Department of Heteroorganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.,Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-201, Częstochowa, Poland
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain. .,IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Spain.
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69009, Heidelberg, Germany.
| |
Collapse
|
48
|
Shibatomi K, Kawasaki Y, Iwasa S. Organocatalytic enantioselective Diels–Alder reaction of 4,4,4-trifluorocrotonaldehyde. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Wzorek A, Klika KD, Drabowicz J, Sato A, Aceña JL, Soloshonok VA. The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. Org Biomol Chem 2015; 12:4738-46. [PMID: 24873904 DOI: 10.1039/c4ob00831f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work explores the self-disproportionation of enantiomers (SDE) of chiral sulfoxides via achiral, gravity-driven column chromatography using methyl n-pentyl sulfoxide as a case study. A major finding of this work is the remarkable persistence and high magnitude of the SDE for the analyte. Thus, it is the first case where SDE is observed even in the presence of MeOH in the mobile phase. The study demonstrated the practical preparation, in line with theory, of enantiomerically pure (>99.9% ee) samples of methyl n-pentyl sulfoxide starting from a sample of only modest ee (<35%). Remarkably, it was found that the order of elution was inverted, i.e. enantiomerically depleted fractions preceded later eluting enantiomerically enriched ones, when the stationary phase was changed from silica gel to aluminum oxide. To the best of our knowledge, this is the first occurrence of inverted SDE behavior due solely to a change in the stationary phase. Aberrant SDE behavior was observed in that the ee did not always fall continuously during the progression of the chromatography, and this was attributed to the complexity of the system at hand which cannot be described in simple terms such as the formation only of homo- and heterochiral dimers based on a single interaction. The results nevertheless suggest that all compounds with a chiral sulfoxide moiety in their structure are likely to exhibit the SDE phenomenon and thus this work constitutes the first example of SDE predictability. Moreover, it could well be that optical purification based on the SDE phenomenon is a simple, convenient, and inexpensive method for the optical purification of this class of compounds with a high degree of proficiency.
Collapse
Affiliation(s)
- Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland
| | | | | | | | | | | |
Collapse
|
50
|
Mei H, Xie C, Aceña JL, Soloshonok VA, Röschenthaler GV, Han J. Recent Progress in the in situ Detrifluoroacetylative Generation of Fluoro Enolates and Their Reactions with Electrophiles. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500787] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|