1
|
Kim B, Lee H, Song I, Lee SY. Diastereodivergence in catalytic asymmetric conjugate addition of carbon nucleophiles. Chem Soc Rev 2025; 54:715-741. [PMID: 39661066 DOI: 10.1039/d4cs00485j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Catalytic asymmetric conjugate additions of carbon nucleophiles have emerged as a potent tool for constructing multi-stereogenic molecules with precise stereochemical control. This review explores the concept of diastereodivergence in such reactions, focusing on strategies to achieve selective access to diverse diastereomeric products upon carbon-carbon bond formation. Drawing from a rich array of examples, we delve into key approaches for controlling the stereochemical outcome of these transformations, including alteration of alkene geometry, fine-tuning of reaction parameters, synergistic catalysis, and isomerization of conjugate adducts. Additionally, we highlight the iterative strategies for conjugate additions, showcasing their potential for diastereodivergent synthesis of methyl-branched stereocenters in 1,3-relationships. By presenting a concentrated overview of this significant topic, this review aims to provide valuable insights into the design and execution of stereodivergent catalytic conjugate additions, offering new avenues for advancing stereoselective synthesis and structural diversity in organic synthesis.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Ilwoo Song
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
2
|
Li WF, Xu QH, Miao QY, Xiao B. Dual Photoredox/Nickel Catalysis Enables Diastereoselective Synthesis of Multisubstituted γ-Lactams Using Alkyl-GeMe 3 as Radical Precursors. J Org Chem 2024; 89:16269-16281. [PMID: 38323758 DOI: 10.1021/acs.joc.3c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein, we report a single-step, multicomponent approach to versatile γ-lactams through dual photoredox/nickel-catalyzed dicarbofunctionalization of α,β-unsaturated γ-butyrolactam. This reaction utilized alkyl trimethylgermanium as a radical precursor and acyl chloride as the electrophile, demonstrating remarkable functional group compatibility.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Hao Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Yue Miao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Sun C, Qi T, Rahman FU, Hayashi T, Ming J. Ligand-controlled regiodivergent arylation of aryl(alkyl)alkynes and asymmetric synthesis of axially chiral 9-alkylidene-9,10-dihydroanthracenes. Nat Commun 2024; 15:9307. [PMID: 39468097 PMCID: PMC11519556 DOI: 10.1038/s41467-024-53767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Transition metal-catalyzed addition of organometallics to aryl(alkyl)alkynes has been well known to proceed with the regioselectivity in forming a carbon-carbon bond at the alkyl-substituted carbon (β-addition). Herein, the reverse regiochemistry with high selectivity in giving 1,1-diarylalkenes (α-addition) was realized in the reaction of arylboronic acids with aryl(alkyl)alkynes by use of a rhodium catalyst coordinated with a chiral diene ligand, whereas the arylation of the same alkynes proceeded with the usual regioselectivity (β-addition) in the presence of a rhodium/DM-BINAP catalyst. The regioselectivity can be switched by the choice of ligands on the rhodium catalysts. This reverse regioselectivity also enabled the catalytic asymmetric synthesis of phoenix-like axially chiral alkylidene dihydroanthracenes with high enantioselectivity through an α-addition/1,4-migration/cyclization sequence.
Collapse
Affiliation(s)
- Chao Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Ting Qi
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Faiz-Ur Rahman
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
| |
Collapse
|
4
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
5
|
Li WC, Meng H, Ming J, Chen S. Rhodium-Catalyzed Asymmetric Addition to 4- or 5-Carbonyl-cycloenones through Dynamic Kinetic Resolution: Enantioselective Synthesis of (-)-Cannabidiol. Org Lett 2024; 26:1364-1369. [PMID: 38358273 DOI: 10.1021/acs.orglett.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The reaction of 4/5-carbonyl-cycloalkenone 1 or its achiral isomer 1' with organoboronic acid 2 in the presence of a chiral diene (S,S)-Fc-tfb-rhodium catalyst gave disubstituted trans-cycloalkanone 3 with high diastereo- and enantioselectivity. This highly efficient dynamic kinetic resolution is achieved by fast racemization of 1 through the formation of a dienolate followed by kinetic resolution with the chiral catalyst. The utility is demonstrated by the synthesis of key intermediates en route to (-)-cannabidiol.
Collapse
Affiliation(s)
- Wen-Cong Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
6
|
Huang R, Yang S, Hu Z, Peng B, Zhu Y, Cheng T, Liu G. Bridging the incompatibility gap in dual asymmetric catalysis over a thermoresponsive hydrogel-supported catalyst. Commun Chem 2024; 7:2. [PMID: 38172516 PMCID: PMC10764871 DOI: 10.1038/s42004-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The integration of dual asymmetric catalysis is highly beneficial for the synthesis of organic molecules with multiple stereocenters. However, two major issues that need to be addressed are the intrinsic deactivation of dual-species and the extrinsic conflict of reaction conditions. To overcome these concerns, we have utilized the compartmental and thermoresponsive properties of poly(N-isopropylacrylamide) (PNIPAM) to develop a cross-linked PNIPAM-hydrogel-supported bifunctional catalyst. This catalyst is designed with Rh(diene) species situated on the outer surface and Ru(diamine) species positioned within the interior of the hydrogel. The compartmental function of PNIPAM in the middle overcomes intrinsic mutual deactivations between the dual-species. The thermoresponsive nature of PNIPAM allows for precise control of catalytic pathways in resolving external conflicts by controlling the reaction switching between an Rh-catalyzed enantioselective 1,4-addition at 50°C and a Ru-catalyzed asymmetric transfer hydrogenation (ATH) at 25°C. As we envisioned, this sequential 1,4-addition/reduction dual enantioselective cascade reaction achieves a transformation from incompatibility to compatibility, resulting in direct access to γ-substituted cyclic alcohols with dual stereocenters in high yields and enantio/diastereoselectivities. Mechanistic investigation reveals a reversible temperature transition between 50°C and 25°C, ensuring a cascade process comprising a 1,4-addition followed by the ATH process.
Collapse
Affiliation(s)
- Renfu Huang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Shoujin Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Zhipeng Hu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Bangtai Peng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Yuanli Zhu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China.
| |
Collapse
|
7
|
Bhawar R, Saini S, Patil KS, Nagaraju DH, Bose SK. Synthesis of Alkyl and Aryl Boronate Esters via CeO 2-Catalyzed Borylation of Alkyl and Aryl Electrophiles Including Alkyl Chlorides. J Org Chem 2023; 88:16270-16279. [PMID: 37957832 DOI: 10.1021/acs.joc.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A recyclable protocol using a CeO2-nanorod catalyst for borylation of alkyl halides with B2pin2 (pin = OCMe2CMe2O) is reported. A wide range of synthetically useful alkyl boronate esters are readily obtained from primary and secondary alkyl electrophiles, including unactivated alkyl chlorides, demonstrating broad utility and functional group tolerance. Preliminary investigation revealed an involvement of in situ formed catalytically active boryl species. The catalyst can be reused for up to six runs without appreciable loss in activity. In addition, we have demonstrated the use of this recyclable catalyst for the borylation of aryl halides with B2pin2, providing valuable aryl boronate esters under neat conditions.
Collapse
Affiliation(s)
- Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - Suresh Saini
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - Kiran S Patil
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore, 560064, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
8
|
Wu C, Chang Z, Peng C, Bai C, Xing J, Dou X. Catalytic asymmetric indolization by a desymmetrizing [3 + 2] annulation strategy. Chem Sci 2023; 14:7980-7987. [PMID: 37502333 PMCID: PMC10370590 DOI: 10.1039/d3sc02474a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
A new catalytic asymmetric indolization reaction by a desymmetrizing [3 + 2] annulation strategy is developed. The reaction proceeds via a rhodium-catalyzed enantioposition-selective addition/5-exo-trig cyclization/dehydration cascade between ortho-amino arylboronic acids and 2,2-disubstituted cyclopentene-1,3-diones to produce N-unprotected cyclopenta[b]indoles bearing an all-carbon quaternary stereocenter in high yields with good enantioselectivities. A quantitative structure-selectivity relationship (QSSR) model was established to identify the optimal chiral ligand, which effectively controlled the formation of the stereocenter away from the reaction site. Density functional theory (DFT) calculations, non-covalent interaction analysis, and Eyring analysis were performed to understand the key reaction step and the function of the ligand.
Collapse
Affiliation(s)
- Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiqian Chang
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chuanyong Peng
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chen Bai
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
9
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
10
|
Angyal P, Kotschy AM, Dudás Á, Varga S, Soós T. Intertwining Olefin Thianthrenation with Kornblum/Ganem Oxidations: Ene-type Oxidation to Furnish α,β-Unsaturated Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202214096. [PMID: 36408745 PMCID: PMC10108043 DOI: 10.1002/anie.202214096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/22/2022]
Abstract
A widely applicable, practical, and scalable synthetic method for efficient ene-type double oxidation of alkenes is reported via a two-step alkenyl thianthrenium umpolung/Kornblum-Ganem oxidation strategy. This chemo- and stereoselective procedure allows easy access to various α,β-unsaturated carbonyls that may be otherwise difficult or cumbersome to synthesize by conventional methods. For α-olefins, this metal-free transformation can be tuned according to synthetic needs to produce either the elusive (Z)-unsaturated aldehydes or their (E) counterparts. Moreover, this strategy has enabled streamlined synthesis of distinct butadienyl pheromones and kairomones.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - András M Kotschy
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
11
|
Milovanovic M, Tabakoglu F, Saki F, Pohlkoetter E, Buga D, Brandt V, Tiller JC. Organic-inorganic double networks as highly permeable separation membranes with a chiral selector for organic solvents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
13
|
Zheng K, Liu M, Meng Z, Xiao Z, Zhong F, Wang W, Qin C. Copper Foam as Active Catalysts for the Borylation of α, β-Unsaturated Compounds. Int J Mol Sci 2022; 23:ijms23158403. [PMID: 35955537 PMCID: PMC9368805 DOI: 10.3390/ijms23158403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The use of simple, inexpensive, and efficient methods to construct carbon–boron and carbon–oxygen bonds has been a hot research topic in organic synthesis. We demonstrated that the desired β-boronic acid products can be obtained under mild conditions using copper foam as an efficient heterogeneous catalyst. The structure of copper foam before and after the reaction was investigated by polarized light microscopy (PM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the results have shown that the structure of the catalyst copper foam remained unchanged before and after the reaction. The XPS test results showed that the Cu(0) content increased after the reaction, indicating that copper may be involved in the boron addition reaction. The specific optimization conditions were as follows: CH3COCH3 and H2O were used as mixed solvents, 4-methoxychalcone was used as the raw material, 8 mg of catalyst was used and the reaction was carried out at room temperature and under air for 10 h. The yield of the product obtained was up to 92%, and the catalytic efficiency of the catalytic material remained largely unchanged after five cycles of use.
Collapse
Affiliation(s)
- Kewang Zheng
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
- Hubei Key Laboratory of Biological Resources and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Miao Liu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| | - Zhifei Meng
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| | - Zufeng Xiao
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| | - Fei Zhong
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
- Correspondence: (F.Z.); (W.W.)
| | - Wei Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
- Correspondence: (F.Z.); (W.W.)
| | - Caiqin Qin
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (K.Z.); (M.L.); (Z.M.); (Z.X.); (C.Q.)
| |
Collapse
|
14
|
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Li J, Sun J, Ren W, Lei J, Shen R, Huang Y. Rhodium/Chiral-Diene-Catalyzed Switchable Asymmetric Divergent Arylation of Enone-Diones. Org Lett 2022; 24:2420-2424. [DOI: 10.1021/acs.orglett.2c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junbao Li
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenzhu Ren
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jinhua Lei
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Sakamoto S, Taniguchi T, Sakata Y, Akine S, Nishimura T, Maeda K. Synthesis of Pentaarylcyclobutenylrhodium(I) Complexes and Their Reactivity and Initiation Mechanism in Polymerization of Monosubstituted Acetylenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shiori Sakamoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
17
|
Qiao Y, Bai S, Wu XF, Yang Y, Meng H, Ming J. Rhodium-Catalyzed Desymmetric Arylation of γ,γ-Disubsituted Cyclohexadienones: Asymmetric Synthesis of Chiral All-Carbon Quaternary Centers. Org Lett 2022; 24:1556-1560. [PMID: 35142218 DOI: 10.1021/acs.orglett.2c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The desymmetric arylation of prochiral cyclohexadienones with ArZnCl in the presence of an (R)-segphos-rhodium catalyst gave high yields of the corresponding cyclohexenones, which contain a chiral arylated carbon center at the β-position and a chiral all-carbon quaternary center at the γ-position, with high diastereo- and enantioselectivities. This catalytic system was also applied to the arylation of spirocarbocyclic cyclohexadienones and afforded the corresponding cyclohexenones bearing a chiral spiro quaternary carbon with high dr and ee.
Collapse
Affiliation(s)
- Yu Qiao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shiming Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Xiao-Feng Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Ying Yang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
18
|
Wen M, Erb W, Mongin F, Blot M, Roisnel T. Enantiopure ferrocene-1,2-disulfoxides: synthesis and reactivity. Chem Commun (Camb) 2022; 58:2002-2005. [PMID: 35048926 DOI: 10.1039/d1cc07085a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rational use of directed deprotometallation, sulfur oxidation and sulfoxide/lithium exchange allowed the synthesis of enantiopure ferrocene-1,2-disulfoxide derivatives. Not only do they represent the first members of this original family, but some of them have shown promise as ligands in rhodium-catalysed conjugate addition.
Collapse
Affiliation(s)
- Min Wen
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - William Erb
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Florence Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Marielle Blot
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
19
|
Ye B, Yao J, Wu C, Zhu H, Yao W, Jin L, Dou X. Rhodium-Catalyzed Asymmetric Conjugate Pyridylation with Pyridylboronic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bihai Ye
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Yao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Huilong Zhu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lili Jin
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
20
|
Tao JJ, Tang JD, Hong T, Ye JW, Chen JY, Xie C, Zhang Z, Li S. Crown Ether-Derived Chiral BINOL: Enantioselective Michael Addition of Alkenyl Boronic Acids to α,β-Unsaturated Ketones. ACS OMEGA 2021; 6:35093-35103. [PMID: 34963990 PMCID: PMC8697596 DOI: 10.1021/acsomega.1c05875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A new class of aza-crown ether-derived chiral BINOL catalysts were designed, synthesized, and applied in the asymmetric Michael addition of alkenylboronic acids to α,β-unsaturated ketones. It was found that introducing aza-crown ethers to the BINOL catalyst could achieve apparently higher enantioselectivity than a similar BINOL catalyst without aza-crown ethers did, although the host-guest complexation of alkali ions by the aza-crown ethers could not further improve the catalysis effectiveness. Under mediation of the aza-crown ether-derived chiral BINOL and in the presence of a magnesium salt, an array of chiral γ,δ-unsaturated ketones were furnished in good enantioselectivities (81-95% ees).
Collapse
|
21
|
Hu Y, Wang C, Zhu H, Xing J, Dou X. Rhodium‐Catalysed Asymmetric Arylation of Pyridylimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yan Hu
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Chenhong Wang
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Huilong Zhu
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Junhao Xing
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Xiaowei Dou
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| |
Collapse
|
22
|
Ng JS, Hayashi T. Asymmetric Synthesis of Fluorinated Allenes by Rhodium‐Catalyzed Enantioselective Alkylation/Defluorination of Propargyl Difluorides with Alkylzincs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jia Sheng Ng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
23
|
Sun C, Meng H, Chen C, Wei H, Ming J, Hayashi T. Asymmetric Synthesis of Chiral Bicyclo[2.2.1]hepta-2,5-diene Ligands through Rhodium-Catalyzed Asymmetric Arylative Bis-cyclization of a 1,6-Enyne. Org Lett 2021; 23:6311-6315. [PMID: 34374556 DOI: 10.1021/acs.orglett.1c02088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of novel chiral diene ligands (1R,4S)-L1, which are based on the bicyclo[2.2.1]heptadiene skeleton and are substituted with methyl and an ester group at the bridgehead carbons, were synthesized through rhodium-catalyzed asymmetric arylative bis-cyclization of 1,6-enyne 1 as a key step. The rhodium catalyst with one of the (1R,4S)-L1 ligands was used for the asymmetric bis-cyclization of 1 giving bicyclic product (1S,4R)-2 of 99% ee, which is a synthetic precursor of (1S,4R)-L1 ligands.
Collapse
Affiliation(s)
- Chao Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Chen Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Haili Wei
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsin-chu 30013, Taiwan
| |
Collapse
|
24
|
Gao C, Blum SA. Main-group metalated heterocycles through Lewis acid cyclization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Ng JS, Hayashi T. Asymmetric Synthesis of Fluorinated Allenes by Rhodium-Catalyzed Enantioselective Alkylation/Defluorination of Propargyl Difluorides with Alkylzincs. Angew Chem Int Ed Engl 2021; 60:20771-20775. [PMID: 34310834 DOI: 10.1002/anie.202109290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/08/2022]
Abstract
The reaction of propargyl difluorides R1 CF2 C≡CR2 with alkylzincs R3 ZnCl giving axially chiral fluorinated allenes R1 FC=C=CR2 R3 with high enantioselectivity (up to 99 % ee) was found to be catalyzed by a chiral diene/rhodium complex. A key step in the catalytic cycle is selective elimination of one of the enantiotopic fluorides at the β-position of an alkenyl-Rh intermediate, which is generated by regioselective addition of R3 -Rh onto the triple bond of the starting difluorides.
Collapse
Affiliation(s)
- Jia Sheng Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tamio Hayashi
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
26
|
Ankudinov NM, Chusov DA, Nelyubina YV, Perekalin DS. Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E-H Bonds. Angew Chem Int Ed Engl 2021; 60:18712-18720. [PMID: 34057807 DOI: 10.1002/anie.202105179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Indexed: 12/22/2022]
Abstract
A new method for the synthesis of chiral diene rhodium catalysts is introduced. The readily available racemic tetrafluorobenzobarrelene complexes [(R2 -TFB)RhCl]2 were separated into two enantiomers via selective coordination of one of them with the auxiliary S-salicyl-oxazoline ligand. One of the resulting chiral complexes with an exceptionally bulky diene ligand [(R,R-iPr2 -TFB)RhCl]2 was an efficient catalyst for the asymmetric insertion of diazoesters into B-H and Si-H bonds giving the functionalized organoboranes and silanes with high yields (79-97 %) and enantiomeric purity (87-98 % ee). The stereoselectivity of separation via auxiliary ligand and that of the catalytic reaction was predicted by DFT calculations.
Collapse
Affiliation(s)
- Nikita M Ankudinov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Denis A Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Dmitry S Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| |
Collapse
|
27
|
Ankudinov NM, Chusov DA, Nelyubina YV, Perekalin DS. Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E−H Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nikita M. Ankudinov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| | - Denis A. Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| | - Dmitry S. Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilova str. Moscow Russia
| |
Collapse
|
28
|
Gao TT, Lu HX, Gao PC, Li BJ. Enantioselective synthesis of tertiary boronic esters through catalytic asymmetric reversed hydroboration. Nat Commun 2021; 12:3776. [PMID: 34145273 PMCID: PMC8213697 DOI: 10.1038/s41467-021-24012-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Chiral tertiary boronic esters are important precursors to bioactive compounds and versatile synthetic intermediates to molecules containing quaternary stereocenters. The development of conjugate boryl addition to α,β-unsaturated amide has been hampered by the intrinsic low electrophilicity of the amide group. Here we show the catalytic asymmetric synthesis of enantioenriched tertiary boronic esters through hydroboration of β,β-disubstituted α,β-unsaturated amides. The Rh-catalyzed hydroboration occurs with previously unattainable selectivity to provide tertiary boronic esters in high enantioselectivity. This strategy opens a door for the hydroboration of inert Michael acceptors with high stereocontrol and may provide future applications in the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Peng-Chao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Tang WY, Chen L, Zheng M, Zhan LW, Hou J, Li BD. Photoinduced Oxidative Alkoxycarbonylation of Alkenes with Alkyl Formates. Org Lett 2021; 23:3939-3943. [PMID: 33974437 DOI: 10.1021/acs.orglett.1c01096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoinduced oxidative alkoxycarbonylation of alkenes initiated by intermolecular addition of alkoxycarbonyl radicals has been demonstrated. Employing alkyl formates as alkoxycarbonyl radical sources, a range of α,β-unsaturated esters were obtained with good regioselectivity and E selectivity under ambient conditions.
Collapse
Affiliation(s)
- Wan-Ying Tang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Chen
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ming Zheng
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
30
|
Affiliation(s)
- Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Zhaungzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
31
|
Bagheri I, Mohammadi L, Zadsirjan V, Heravi MM. Organocatalyzed Asymmetric Mannich Reaction: An Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202003034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ilnaz Bagheri
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Leila Mohammadi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
32
|
Kolos AV, Perekalin DS. Synthesis of catalytically active diene and cyclopentadienyl rhodium halide complexes. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Edelstein EK, Rankic DA, Dudley CC, McMinn SE, Adpressa DA. Synthesis of Proline Analogues via Rh-Catalyzed Asymmetric Conjugate Addition. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Emma K. Edelstein
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Danica A. Rankic
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Caroline C. Dudley
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Spencer E. McMinn
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Donovon A. Adpressa
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Umeda M, Noguchi H, Nishimura T. Enantioselective Synthesis of Chiral Indane Derivatives by Rhodium-Catalyzed Addition of Arylboron Reagents to Substituted Indenes. Org Lett 2020; 22:9597-9602. [PMID: 33296599 DOI: 10.1021/acs.orglett.0c03651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodium-catalyzed asymmetric addition of arylboron reagents to indene derivatives proceeded to give 2-arylindanes in good yields with high enantioselectivity. Deuterium-labeling experiments indicated that the present reaction involved a 1,4-Rh shift from an initially formed benzylrhodium to an arylrhodium intermediate before protonation leading to the corresponding addition product. The asymmetric addition was also successful for acenaphthylene, which has a similar skeleton to indene, where it was found that the benzylrhodium intermediate underwent direct protonation without the 1,4-Rh shift.
Collapse
Affiliation(s)
- Moeko Umeda
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Hikaru Noguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
35
|
Korenaga T, Kori H, Asai S, Kowata R, Shirai M. Organic Solvent‐free Asymmetric 1,4‐Addition in Liquid‐ or Solid‐State using Conventional Stirring Catalyzed by a Chiral Rhodium Complex Developed as a Homogeneous Catalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
- Soft-Path Engineering Research Center (SPERC) Iwate University Ueda Morioka 020-8551 Japan
| | - Hiroto Kori
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
| | - Shota Asai
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
- Soft-Path Engineering Research Center (SPERC) Iwate University Ueda Morioka 020-8551 Japan
| | - Ryo Kowata
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
| | - Masayuki Shirai
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering Iwate University Ueda Morioka 020-8551 Japan
- Soft-Path Engineering Research Center (SPERC) Iwate University Ueda Morioka 020-8551 Japan
| |
Collapse
|
36
|
Pan Y, Lu X, Qiu H, Tamio Hayashi, Huang Y. Highly Enantioselective Synthesis of Monofluoroalkenes by Rhodium-Catalyzed Asymmetric Arylation/Defluorination of Allyl Difluorides. Org Lett 2020; 22:8413-8418. [DOI: 10.1021/acs.orglett.0c03044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhang Pan
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaosa Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
37
|
Némethová I, Šebesta R. Are Organozirconium Reagents Applicable in Current Organic Synthesis? SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe search for mild, user-friendly, easily accessible, and robust organometallic reagents is an important feature of organometallic chemistry. Ideally, new methodologies employing organometallics should be developed with respect to practical applications in syntheses of target compounds. In this short review, we investigate if organozirconium reagents can fulfill these criteria. Organozirconium compounds are typically generated via in situ hydrozirconation of alkenes or alkynes with the Schwartz reagent. Alkyl and alkenylzirconium reagents have proven to be convenient in conjugate additions, allylic substitutions, cross-coupling reactions, and additions to carbonyls or imines. Furthermore, the Schwartz reagent itself is a useful reducing agent for polar functional groups.1 Introduction2 Synthesis and Generation of the Schwartz Reagent3 Structure and Properties of Cp2Zr(H)Cl4 Reactivity of Organozirconium Reagents4.1 Asymmetric Conjugate Addition4.2 Asymmetric Allylic Alkylations4.3 Desymmetrization Reactions4.4 Cross-Coupling Reactions4.5 1,2-Additions5 Conclusions
Collapse
Affiliation(s)
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry
| |
Collapse
|
38
|
9-(Diphenylphosphino)anthracene-based phosphapalladacycle catalyzed conjugate addition of arylboronic acids to electron-deficient alkenes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Ochi S, Xia Y, Dong G. Asymmetric Synthesis of 1-Tetralones Bearing A Remote Quaternary Stereocenter through Rh-Catalyzed C-C Activation of Cyclopentanones. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020; 93:1213-1217. [PMID: 34675442 PMCID: PMC8528243 DOI: 10.1246/bcsj.20200147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we describe the preparation of 1-tetralones bearing a remote quaternary stereocenter in a highly enantioselective manner. A sequence of Pd-catalyzed asymmetric 1,4-addition and Rh-catalyzed enantiospecific C-C/C-H activation delivers diverse 1-tetralones with a C4 quaternary stereocenter, which are prepared in good overall yields and high enantioselectivity.
Collapse
Affiliation(s)
- Shusuke Ochi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ying Xia
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Takei D, Yatabe T, Jin X, Yabe T, Mizuno N, Yamaguchi K. CeO2-Supported Pd(II)-on-Au Nanoparticle Catalyst for Aerobic Selective α,β-Desaturation of Carbonyl Compounds Applicable to Cyclohexanones. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daisuke Takei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
41
|
Zhu H, Yin L, Chang Z, Wang Y, Dou X. Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Carbonyl-Activated Alkenyl Azaarenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huilong Zhu
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Long Yin
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Zhiqian Chang
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Yuhan Wang
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Xiaowei Dou
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| |
Collapse
|
42
|
Verma PK, Prasad KS, Varghese D, Geetharani K. Cobalt(I)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides. Org Lett 2020; 22:1431-1436. [DOI: 10.1021/acs.orglett.0c00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Sujit Prasad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Dominic Varghese
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
43
|
Matsuda T, Izutsu T, Hashimoto M. Rhodium(I)-Catalyzed Arylative Annulation of β-Alkynyl Ketones for Preparation of Fused Aromatics. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takanori Matsuda
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka, Shinjuku-ku 162-8601 Tokyo Japan
| | - Takashi Izutsu
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka, Shinjuku-ku 162-8601 Tokyo Japan
| | - Masaru Hashimoto
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka, Shinjuku-ku 162-8601 Tokyo Japan
| |
Collapse
|
44
|
Zeng YL, Chen B, Wang YT, He CY, Mu ZY, Du JY, He L, Chu WD, Liu QZ. Copper-catalyzed asymmetric silyl addition to alkenyl-substituted N-heteroarenes. Chem Commun (Camb) 2020; 56:1693-1696. [PMID: 31939945 DOI: 10.1039/c9cc08910a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asymmetric conjugate addition of PhMe2SiBPin to a wide range of N-heteroaryl alkenes proceeded in the presence of a copper catalyst coordinated with a chiral phosphoramidite ligand to afford useful β-silyl N-heteroarenes in high yields and ees.
Collapse
Affiliation(s)
- Ya-Li Zeng
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Bo Chen
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Ya-Ting Wang
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Zi-Yuan Mu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Long He
- College of Chemistry and Materials Engineering
- Guiyang University
- Guiyang 550005
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| |
Collapse
|
45
|
Fan C, Wu Q, Zhu C, Wu X, Li Y, Luo Y, He JB. Enantioselective Conjugate Addition of Aryl Halides and Triflates to Electron-Deficient Olefins via Nickel- and Rhodium-Catalyzed Sequential Relay Reactions. Org Lett 2019; 21:8888-8892. [PMID: 31592667 DOI: 10.1021/acs.orglett.9b02940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric conjugate addition of aryl halides or aryl triflates to electron-deficient olefins was realized by sequential Miyaura borylation and Hayashi-Miyaura conjugate addition in one pot. A nickel-catalyzed borylation of aryl halides or triflates and a rhodium-chiral diene complex catalyzed enantioselective conjugate addition was executed as a pair of relay reactions as a more efficient and greener protocol.
Collapse
Affiliation(s)
- Chenrui Fan
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Qixu Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Chengfeng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yougui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yunfei Luo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Jian-Bo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , China
| |
Collapse
|
46
|
González J, Schäfer P, Fletcher SP. Highly Enantioselective Hiyama Cross-Coupling via Rh-Catalyzed Allylic Arylation of Racemic Allyl Chlorides. Organometallics 2019; 38:3991-3995. [PMID: 32055086 PMCID: PMC7009026 DOI: 10.1021/acs.organomet.9b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 01/17/2023]
Abstract
Highly enantioselective Hiyama cross-coupling reactions have been achieved through rhodium(I)-catalyzed dynamic kinetic asymmetric transformations between aryl siloxanes and cyclic racemic allyl halides. This process affords valuable enantiomerically enriched aryl-substituted cyclic allyl products and is compatible with heterocyclic allyl chloride electrophiles.
Collapse
Affiliation(s)
- Jesús González
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Philipp Schäfer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen P. Fletcher
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
47
|
Betori RC, Scheidt KA. Reductive Arylation of Arylidene Malonates Using Photoredox Catalysis. ACS Catal 2019; 9:10350-10357. [DOI: 10.1021/acscatal.9b03608] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rick C. Betori
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A. Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
González J, van Dijk L, Goetzke FW, Fletcher SP. Highly enantioselective rhodium-catalyzed cross-coupling of boronic acids and racemic allyl halides. Nat Protoc 2019; 14:2972-2985. [PMID: 31541227 DOI: 10.1038/s41596-019-0209-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 11/09/2022]
Abstract
Although Csp2-Csp2 Suzuki-Miyaura couplings (SMCs) are widely used in small-molecule synthesis, related methods that allow the incorporation of Csp3-hybridized coupling partners, particularly in an asymmetric manner, are less developed. This protocol describes catalytic asymmetric SMC reactions that provide access to enantiomerically enriched cyclic allylic products. The method couples racemic allyl halide starting materials with sp2-hybridized boronic acid derivatives and is compatible with heterocyclic coupling partners. These reactions are catalyzed by a rhodium-ligand complex and typically display very high levels of enantioselectivity (>95% enantiomeric excess (ee)). In this protocol, we detail a procedure using a dihydropyridine-derived allyl chloride for the synthesis of (-)-(S)-tert-butyl-3-(4-bromophenyl)-3,6-dihydropyridine-1(2H)-carboxylate, an intermediate in the synthesis of the anticancer drug niraparib. This procedure affords 1.17 g (86% yield) of the coupling product with 96% ee. The initial experimental setup of the reaction takes 45-50 min, and the reaction is complete within 4-5 h.
Collapse
Affiliation(s)
- Jesús González
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Lucy van Dijk
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - F Wieland Goetzke
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Stephen P Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Ramasamy B, Prakasham AP, Gangwar MK, Ghosh P. 1,4‐Conjugate Addition of Aryl boronic Acids on Cyclohexenone as Catalyzed by Rhodium(I) Complexes of
C
2
‐Symmetric Bioxazoline Fused N‐heterocyclic Carbenes. ChemistrySelect 2019. [DOI: 10.1002/slct.201902408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Balasubramaniyam Ramasamy
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400 076
- BASF Chemicals India Pvt. LtdInnovation Campus Navi Mumbai 400 705
| | - A. P. Prakasham
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400 076
| | - Manoj Kumar Gangwar
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400 076
| | - Prasenjit Ghosh
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400 076
| |
Collapse
|
50
|
Wang Z, Xue F, Hayashi T. Synthesis of Arylacetaldehydes by Iridium‐Catalyzed Arylation of Vinylene Carbonate with Arylboronic Acids. Angew Chem Int Ed Engl 2019; 58:11054-11057. [DOI: 10.1002/anie.201906148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Zhe Wang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Fei Xue
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|