1
|
Han Q, Brown SJ, Drummond CJ, Greaves TL. Protein aggregation and crystallization with ionic liquids: Insights into the influence of solvent properties. J Colloid Interface Sci 2022; 608:1173-1190. [PMID: 34735853 DOI: 10.1016/j.jcis.2021.10.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Ionic liquids (ILs) have been used in solvents for proteins in many applications, including biotechnology, pharmaceutics, and medicine due to their tunable physicochemical and biological properties. Protein aggregation is often undesirable, and predominantly occurs during bioprocesses, while the aggregation process can be reversible or irreversible and the aggregates formed can be native/non-native and soluble/insoluble. Recent studies have clearly identified key properties of ILs and IL-water mixtures related to protein performance, suggesting the use of the tailorable properties of ILs to inhibit protein aggregation, to promote protein crystallization, and to control protein aggregation pathways. This review discusses the critical properties of IL and IL-water mixtures and presents the latest understanding of the protein aggregation pathways and the development of IL systems that affect or control the protein aggregation process. Through this feature article, we hope to inspire further advances in understanding and new approaches to controlling protein behavior to optimize bioprocesses.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Stuart J Brown
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Anselmi S, Aggarwal N, Moody TS, Castagnolo D. Unconventional Biocatalytic Approaches to the Synthesis of Chiral Sulfoxides. Chembiochem 2021; 22:298-307. [PMID: 32735057 PMCID: PMC7891444 DOI: 10.1002/cbic.202000430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Indexed: 01/25/2023]
Abstract
Sulfoxides are a class of organic compounds that find wide application in medicinal and organic chemistry. Several biocatalytic approaches have been developed to synthesise enantioenriched sulfoxides, mainly by exploiting oxidative enzymes. Recently, the use of reductive enzymes such as Msr and Dms has emerged as a new, alternative method to obtain enantiopure sulfoxides from racemic mixtures. In parallel, novel oxidative approaches, employing nonclassical solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs), have been developed as greener and more sustainable biocatalytic synthetic pathways. This minireview aims highlights the recent advances made in the biocatalytic synthesis of enantioenriched sulfoxides by employing such unconventional approaches.
Collapse
Affiliation(s)
- Silvia Anselmi
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Nandini Aggarwal
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Thomas S. Moody
- Almac Sciences20 Seagoe Industrial EstateCraigavonBT63 5QDUK
- Arran Chemical Company LimitedUnit 1 Monksland Industrial Estate, Athlone, Co.RoscommonN37 DN24Ireland
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| |
Collapse
|
3
|
Ghafuri H, Kazemnezhad Leili M, Esmaili Zand HR. Copper‐immobilized ionic liquid as an alternative to organic solvents in the one‐pot synthesis of bioactive dihydropyrano[
2,3‐c
]pyrazole derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and Technology P.O. Box 16846‐13114 Tehran I.R. Iran
| | - Maede Kazemnezhad Leili
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and Technology P.O. Box 16846‐13114 Tehran I.R. Iran
| | - Hamid Reza Esmaili Zand
- Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and Technology P.O. Box 16846‐13114 Tehran I.R. Iran
| |
Collapse
|
4
|
Vanda H, Dai Y, Wilson EG, Verpoorte R, Choi YH. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.04.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Han Q, Wang X, Byrne N. A Simple Approach to Achieve Self‐Buffering Protic Ionic Liquid‐Water Mixtures. ChemistrySelect 2017. [DOI: 10.1002/slct.201700651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qi Han
- Institute for Frontier Materials Deakin University Pigdons Road Waurn Ponds Victoria 3217 Australia
| | - Xungai Wang
- Institute for Frontier Materials Deakin University Pigdons Road Waurn Ponds Victoria 3217 Australia
| | - Nolene Byrne
- Institute for Frontier Materials Deakin University Pigdons Road Waurn Ponds Victoria 3217 Australia
| |
Collapse
|
6
|
Kumar A, Bisht M, Venkatesu P. Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. Int J Biol Macromol 2017; 96:611-651. [DOI: 10.1016/j.ijbiomac.2016.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
7
|
Sehata S, Nakagawa Y, Genjima R, Koumoto K. Quick Activation/Stabilization of a α-Glucosidase-catalyzed Hydrolysis Reaction by Addition of a Betaine-type Metabolite Analogue. CHEM LETT 2016. [DOI: 10.1246/cl.160567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Han Q, Wang X, Byrne N. Understanding the Influence of Key Ionic Liquid Properties on the Hydrolytic Activity of
Thermomyces lanuginosus
Lipase. ChemCatChem 2016. [DOI: 10.1002/cctc.201600014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Han
- Institute for Frontier Materials Deakin University Pigdons Road Waurn Ponds Victoria 3217 Australia
| | - Xungai Wang
- Institute for Frontier Materials Deakin University Pigdons Road Waurn Ponds Victoria 3217 Australia
| | - Nolene Byrne
- Institute for Frontier Materials Deakin University Pigdons Road Waurn Ponds Victoria 3217 Australia
| |
Collapse
|
9
|
Wei T, Jia W, Yu X, Mao D. Enhancement of enzymatic synthesis of sucrose 6-acetate with Aspergillus oryzae fructosyltransferase using ionic liquid as a cosolvent. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Nakagawa Y, Takagi K, Genjima R, Koumoto K. Significance of anionic functional group in betaine-type metabolite analogs on the facilitation of enzyme reactions. Bioprocess Biosyst Eng 2015; 38:1811-7. [PMID: 26025639 DOI: 10.1007/s00449-015-1422-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Using synthetic sulfobetaine library, the enzyme activation behavior has been investigated. Comparison of enzyme activation behavior revealed that sulfobetaines equally facilitate enzyme reactions, being consistent with that of carboxybetaines. The subsequent kinetic and solution property analyses clarified that both the kinetic parameter and hydration property changes are identical with those of carboxybetaines, indicating that the difference in the anionic functional group of the betaine structure scarcely affects the enzyme activation. On the other hand, comparison of carboxy- or sulfo-betaines with tetraalkylammonium salts, whose counteranion binds to the ammonium cation intermolecularly, revealed that the activation ability for enzymes of tetraalkylammonium salts is considerably smaller than that of carboxy- or sulfo-betaines. These findings give us a hint to design the useful betaine-type enzyme activators.
Collapse
Affiliation(s)
- Yuichi Nakagawa
- Department of Nanobiochemistry, FIRST (Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | | | | | |
Collapse
|
12
|
Bormann S, Gomez Baraibar A, Ni Y, Holtmann D, Hollmann F. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01477d] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peroxygenases are promising oxyfunctionalisation catalysts for organic synthesis.
Collapse
Affiliation(s)
| | - Alvaro Gomez Baraibar
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| | - Yan Ni
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| | - Dirk Holtmann
- DECHEMA Research Institute
- 60486 Frankfurt am Main
- Germany
| | - Frank Hollmann
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| |
Collapse
|
13
|
Nakagawa Y, Sehata S, Fujii S, Yamamoto H, Tsuda A, Koumoto K. Mechanistic study on the facilitation of enzymatic hydrolysis by α-glucosidase in the presence of betaine-type metabolite analogs. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Modulating enzyme activity using ionic liquids or surfactants. Appl Microbiol Biotechnol 2013; 98:545-54. [DOI: 10.1007/s00253-013-5395-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
|
15
|
Deng G, Li X, Guo Y, Liu S, Lu Z, Guo Y. Orientation and Structure of Ionic Liquid Cation at Air/[bmim][BF4] Aqueous Solution Interface. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/05/569-575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Abe Y, Yagi Y, Hayase S, Kawatsura M, Itoh T. Ionic Liquid Engineering for Lipase-Mediated Optical Resolution of Secondary Alcohols: Design of Ionic Liquids Applicable to Ionic Liquid Coated-Lipase Catalyzed Reaction. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202740u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshikazu Abe
- Department of Chemistry and Biotechnology,
Graduate
School of Engineering, Tottori University, Japan 680-8552
| | - Yusuke Yagi
- Department of Chemistry and Biotechnology,
Graduate
School of Engineering, Tottori University, Japan 680-8552
| | - Shuichi Hayase
- Department of Chemistry and Biotechnology,
Graduate
School of Engineering, Tottori University, Japan 680-8552
| | - Motoi Kawatsura
- Department of Chemistry and Biotechnology,
Graduate
School of Engineering, Tottori University, Japan 680-8552
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology,
Graduate
School of Engineering, Tottori University, Japan 680-8552
| |
Collapse
|
17
|
Bekhouche M, Blum LJ, Doumèche B. Contribution of Dynamic and Static Quenchers for the Study of Protein Conformation in Ionic Liquids by Steady-State Fluorescence Spectroscopy. J Phys Chem B 2011; 116:413-23. [DOI: 10.1021/jp205094c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mourad Bekhouche
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246, Université Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne F-69622, France
| | - Loïc J. Blum
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246, Université Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne F-69622, France
| | - Bastien Doumèche
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246, Université Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne F-69622, France
| |
Collapse
|
18
|
Kohlmann C, Robertz N, Leuchs S, Dogan Z, Lütz S, Bitzer K, Na’amnieh S, Greiner L. Ionic liquid facilitates biocatalytic conversion of hardly water soluble ketones. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Wojaczyńska E, Wojaczyński J. Enantioselective synthesis of sulfoxides: 2000-2009. Chem Rev 2010; 110:4303-56. [PMID: 20415478 DOI: 10.1021/cr900147h] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elzbieta Wojaczyńska
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | | |
Collapse
|
20
|
Wang Y, Wu J, Ru X, Jiang Y, Hu M, Li S, Zhai Q. Catalytic performance and thermostability of chloroperoxidase in reverse micelle: achievement of a catalytically favorable enzyme conformation. J Ind Microbiol Biotechnol 2010; 38:717-24. [DOI: 10.1007/s10295-010-0852-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 08/17/2010] [Indexed: 11/25/2022]
|
21
|
Gorke J, Srienc F, Kazlauskas R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. BIOTECHNOL BIOPROC E 2010; 15:40-53. [PMID: 34290544 DOI: 10.1007/s12257-009-3079-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ionic liquids, also called molten salts, are mixtures of cations and anions that melt below 100 °C. Typical ionic liquids are dialkylimidazolium cations with weakly coordinating anions such as [MeOSO3] or [PF6]. Advanced ionic liquids such as choline citrate have biodegradable, less expensive and less toxic anions and cations. Deep eutectic solvents are also included in the advanced ionic liquids. Deep eutectic solvents are mixtures of salts such as choline chloride and uncharged hydrogen bond donors such as urea, oxalic acid, or glycerol. For example, a mixture of choline chloride and urea in 1:2 molar ratio liquifies to form a deep eutectic solvent. Their properties are similar to those of ionic liquids. Water-miscible ionic liquids as cosolvents with water enhance the solubility of substrates or products. Although traditional water-miscible organic solvents also enhance solubility, they often inactivate enzymes, while ionic liquids do not. The enhanced solubility of substrates can increase the rate of reaction and often increases the regio- or enantioselectivity. Ionic liquids can also be solvents for non-aqueous reactions. In these cases, they are especially suited to dissolve polar substrates. Polar organic solvent alternatives inactivate enzymes, but ionic liquids do not even when they have similar polarities. Besides their solubility properties, ionic liquids and deep eutectic solvents may be greener than organic solvents because ionic liquids are non-volatile and can be made from non-toxic components. This review covers selected examples of enzyme catalyzed reaction ionic liquids that demonstrate their advantages and unique properties and point out opportunities for new applications. Most examples involve hydrolases, but oxidoreductases and even whole cell reactions have been reported in ionic liquids.
Collapse
Affiliation(s)
- Johnathan Gorke
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave., Saint Paul, MN 55108, USA.,BioTechnology Institute, 240 Gortner Laboratory, University of Minnesota, 1479 Gortner Ave., Saint Paul, MN 55108, USA.,Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | - Friedrich Srienc
- BioTechnology Institute, 240 Gortner Laboratory, University of Minnesota, 1479 Gortner Ave., Saint Paul, MN 55108, USA.,Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | - Romas Kazlauskas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave., Saint Paul, MN 55108, USA.,BioTechnology Institute, 240 Gortner Laboratory, University of Minnesota, 1479 Gortner Ave., Saint Paul, MN 55108, USA
| |
Collapse
|
22
|
Wu J, Liu C, Jiang Y, Hu M, Li S, Zhai Q. Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. CATAL COMMUN 2010. [DOI: 10.1016/j.catcom.2010.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
|
24
|
Kohlmann C, Greiner L, Leitner W, Wandrey C, Lütz S. Ionic liquids as performance additives for electroenzymatic syntheses. Chemistry 2010; 15:11692-700. [PMID: 19777513 DOI: 10.1002/chem.200901046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electroenzymatic syntheses combine oxidoreductase-catalysed reactions with electrochemical reactant supply. The use of ionic liquids as performance additives can contribute to overcoming existing limitations of these syntheses. Here, we report on the influence of different water-miscible ionic liquids on critical parameters such as conductivity, biocatalyst activity and stability or substrate solubility for three typical electroenzymatic syntheses. In these investigations promising ionic liquids were identified and have been used as additives for batch electrolyses on preparative scale for the three electroenzymatic systems. It was possible to improve the space-time-yield for the electrochemical regeneration of NADPH by a factor of three. For an amino acid oxidase catalysed resolution of a methionine racemate with ferrocene-mediated electrochemical regeneration of the enzyme-bound cofactor FAD a 50% increase in space time yield and 140% increase in catalyst utilisation (TTN) were achieved. Furthermore, for the chloroperoxidase-catalysed synthesis of (R)-phenylmethylsulfoxide with electrochemical generation of the required cosubstrate H2O2 the space time yield and the catalyst utilisation were improved by a factor of up to 4.2 depending on the ionic liquids used.
Collapse
Affiliation(s)
- Christina Kohlmann
- Institute of Biotechnology 2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
25
|
Podgoršek A, Zupan M, Iskra J. Oxidative Halogenierungen mit umweltschonenden Oxidationsmitteln: Sauerstoff und Wasserstoffperoxid. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901223] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Podgoršek A, Zupan M, Iskra J. Oxidative Halogenation with “Green” Oxidants: Oxygen and Hydrogen Peroxide. Angew Chem Int Ed Engl 2009; 48:8424-50. [DOI: 10.1002/anie.200901223] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Perez D, van Rantwijk F, Sheldon R. Cross-Linked Enzyme Aggregates of Chloroperoxidase: Synthesis, Optimization and Characterization. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900303] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P. Biocatalysts for selective introduction of oxygen. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802393519] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Pavlinac J, Zupan M, Laali KK, Stavber S. Halogenation of organic compounds in ionic liquids. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.04.092] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Lichtenecker RJ, Schmid W. Application of various ionic liquids as cosolvents for chloroperoxidase-catalysed biotransformations. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-008-0081-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Abe Y, Kude K, Hayase S, Kawatsura M, Tsunashima K, Itoh T. Design of phosphonium ionic liquids for lipase-catalyzed transesterification. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Tzialla A, Kalogeris E, Gournis D, Sanakis Y, Stamatis H. Enhanced catalytic performance and stability of chloroperoxidase from Caldariomyces fumago in surfactant free ternary water–organic solvent systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Affiliation(s)
- Fred van Rantwijk
- Laboratory of Biocatalysis and Organic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
| | | |
Collapse
|
34
|
|
35
|
Affiliation(s)
- Giovanni Imperato
- Institut für Organische Chemie, Universität Regensburg, 93040 Regensburg, Germany, Fax: +49‐941‐9431717
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, 93040 Regensburg, Germany, Fax: +49‐941‐9431717
| | - Cinzia Chiappe
- Dip. Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy, Fax: +39‐050‐2219660
| |
Collapse
|
36
|
Chiappe C, Leandri E, Hammock BD, Morisseau C. Effect of ionic liquids on epoxide hydrolase-catalyzed synthesis of chiral 1,2-diols. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2007; 2007:162-168. [PMID: 18160974 PMCID: PMC2153531 DOI: 10.1039/b612106c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ionic liquids (ILs) offer new possibilities for epoxide hydrolase (EH) catalyzed resolution of epoxides and for synthesis of chiral 1,2-diols. Soluble EHs from cress and mouse (csEH and msEH) and microsomal EH from rat (rmEH) were tested in several ILs. For all the enzymes tested, higher enantioselectivities were obtained in [bmim][N(Tf)(2)] and [bmim][PF(6)]. The optimized amount of water for EH activity in these ILs was established. Classical problems arising from low solubility of epoxides in water or from the high tendency of the oxirane ring to undergo chemical hydrolysis were avoided using these new media.
Collapse
Affiliation(s)
- Cinzia Chiappe
- Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126, Pisa, Italy. E-mail: ; Fax: +39 50 2219660; Tel: +39 50 2219669
| | - Elsa Leandri
- Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126, Pisa, Italy. E-mail: ; Fax: +39 50 2219660; Tel: +39 50 2219669
| | - Bruce D. Hammock
- Department of Entomology & Cancer Research Center, University of California, Davis, CA, 95616, USA. E-mail:
| | - Christophe Morisseau
- Department of Entomology & Cancer Research Center, University of California, Davis, CA, 95616, USA. E-mail:
| |
Collapse
|