1
|
Rivero-Barbarroja G, Carmen Padilla-Pérez M, Maisonneuve S, Isabel García-Moreno M, Tiet B, Vocadlo DJ, Xie J, García Fernández JM, Ortiz Mellet C. sp 2-Iminosugar azobenzene O-glycosides: Light-sensitive glycosidase inhibitors with unprecedented tunability and switching factors. Bioorg Chem 2024; 150:107555. [PMID: 38885548 DOI: 10.1016/j.bioorg.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and β-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human β-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and β-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - M Carmen Padilla-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Ben Tiet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Juan Xie
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
Chen S, Wei F, Cheng X, Luo Y, Meng F, Zhang Y, Huang W, Lv J, Pan H, Wu Q, Zhao G. Regioselective Deacetylation of Peracetylated Deoxy- C-glycopyranosides by Boron Trichloride (BCl 3). J Org Chem 2024; 89:4802-4817. [PMID: 38477972 DOI: 10.1021/acs.joc.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A general approach for regioselective deacetylation at sugar 3-OH of peracetylated 6-deoxy-C-glucopyranosides mediated by BCl3 was developed. The approach could be extended to other sugar-derived 6-deoxy-C-glycopyranosides, such as those derived from mannose, galactose, and rhamnose, with deacetylation occurring at varied sugar hydroxyl groups, and further extended to 4-deoxy-C-glucopyranosides with deacetylation occurring at sugar 3-OH. The approach would enable access to synthetically challenging carbohydrate derivatives. A possible mechanism of the regioselectivity was proposed.
Collapse
Affiliation(s)
- Shuangyuan Chen
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Feifei Wei
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xinqiang Cheng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ying Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fancui Meng
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Yuanwen Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenqian Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Lv
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- School of Intelligent Medical Technology, Dazhou Vocational and Technical College, Dazhou 635001, China
| | - Qingqing Wu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Guilong Zhao
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Chi Y, Zhou H, He HW, Ma YD, Li B, Xu D, Gao JM, Xu G. Total Synthesis and Anti-Tobacco Mosaic Virus Activity of the Furofuran Lignan (±)-Phrymarolin II and Its Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2937-2944. [PMID: 34730370 DOI: 10.1021/acs.jnatprod.1c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.
Collapse
Affiliation(s)
- Yuan Chi
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Huan Zhou
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Hong-Wei He
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yi-Dan Ma
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Bo Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Chen WJ, Han SB, Xie ZB, Huang HS, Jiang DH, Gong SS, Sun Q. Efficient Synthesis of UDP-Furanoses via 4,5-Dicyanoimidazole(DCI)-Promoted Coupling of Furanosyl-1-Phosphates with Uridine Phosphoropiperidate. Molecules 2019; 24:molecules24040655. [PMID: 30781738 PMCID: PMC6412210 DOI: 10.3390/molecules24040655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
A P(V)-N activation method based on nucleoside phosphoropiperidate/DCI system has been developed for improved synthesis of diverse UDP-furanoses. The reaction conditions including temperature, amount of activator, and reaction time were optimized to alleviate the degradation of UDP-furanoses to cyclic phosphates. In addition, an efficient and facile phosphoramidite route was employed for the preparation of furanosyl-1-phosphates.
Collapse
Affiliation(s)
- Wei-Jie Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Shuai-Bo Han
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Zhen-Biao Xie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Hua-Shan Huang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Duo-Hua Jiang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Shan-Shan Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| |
Collapse
|
5
|
Wang R, Chen JZ, Zheng XA, Kong R, Gong SS, Sun Q. Hafnium(IV) triflate as a potent catalyst for selective 1-O-deacetylation of peracetylated saccharides. Carbohydr Res 2018; 455:114-118. [DOI: 10.1016/j.carres.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|
6
|
Yan YL, Guo JR, Liang CF. Sequential Dy(OTf) 3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates. Chem Asian J 2017; 12:2471-2479. [PMID: 28688169 DOI: 10.1002/asia.201700867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/04/2017] [Indexed: 11/06/2022]
Abstract
Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf)3 -catalyzed glycosylation.
Collapse
Affiliation(s)
- Yi-Ling Yan
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Jiun-Rung Guo
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan
| |
Collapse
|
7
|
Ueda T, Hayashi M, Ikeuchi Y, Nakajima T, Numagami E, Kobayashi S. Synthesis of an α-Amylase Inhibitor: Highly Stereoselective Glycosidation and Regioselective Manipulations of Hydroxyl Groups in Carbohydrate Derivatives. Org Process Res Dev 2014. [DOI: 10.1021/op500306p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tsuyoshi Ueda
- Process Technology Research
Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Masaki Hayashi
- Process Technology Research
Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Yutaka Ikeuchi
- Process Technology Research
Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Takumi Nakajima
- Process Technology Research
Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Eiji Numagami
- Process Technology Research
Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Satoshi Kobayashi
- Process Technology Research
Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| |
Collapse
|
8
|
Veisi H, Maleki B, Eshbala FH, Veisi H, Masti R, Ashrafi SS, Baghayeri M. In situ generation of Iron(iii) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bis-indolyl, tris-indolyl, Di(bis-indolyl), Tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water. RSC Adv 2014. [DOI: 10.1039/c4ra03194f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Garifullin BF, Sharipova RR, Strobykina IY, Babaev VM, Kataev VE. Synthetic glycosides containing two isosteviol fragments functionalized with D-glucopyranose. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s107042801404006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Microwave-Assisted FeCl 3·6H 2O-Catalyzed Regioselective Deprotection of Pyranose Anomeric O-Acetyl Group. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.830.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of peracetylated pyranoses with FeCl3·6H2O in acetonitrile under microwave conditions provides an efficient and mild method for regioselective deprotection of anomeric O-acetyl group. The experimental results indicated that the employment of microwave could notably improve the reaction efficacy compared with the conventional heating condition.
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Weng SS, Li CL, Liao CS, Chen TA, Huang CC, Hung KT. Facile Preparation of α-Glycosyl Iodides by In Situ Generated Aluminum Iodide: Straightforward Synthesis of Thio-, Seleno-, and O-glycosides from Unprotected Reducing Sugars. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.565894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shiue-Shien Weng
- a Department of Chemistry , ROC Military Academy , Kaohsiung, Taiwan, ROC
| | - Chia-Ling Li
- a Department of Chemistry , ROC Military Academy , Kaohsiung, Taiwan, ROC
| | - Chun-Sheng Liao
- a Department of Chemistry , ROC Military Academy , Kaohsiung, Taiwan, ROC
| | - Ting-An Chen
- a Department of Chemistry , ROC Military Academy , Kaohsiung, Taiwan, ROC
| | - Chao-Cheih Huang
- a Department of Chemistry , ROC Military Academy , Kaohsiung, Taiwan, ROC
| | - Kuo-Tung Hung
- a Department of Chemistry , ROC Military Academy , Kaohsiung, Taiwan, ROC
| |
Collapse
|
13
|
Bourdreux Y, Lemétais A, Urban D, Beau JM. Iron(III) chloride-tandem catalysis for a one-pot regioselective protection of glycopyranosides. Chem Commun (Camb) 2011; 47:2146-8. [PMID: 21206947 DOI: 10.1039/c0cc04398b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem catalysis by using iron(III) chloride hexahydrate leads to carbohydrate building blocks displaying an orthogonal protecting group pattern as illustrated by the regioselective protection of trehalose and maltose disaccharides.
Collapse
Affiliation(s)
- Yann Bourdreux
- Université Paris-Sud, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux d'Orsay, F-91405 Orsay, France
| | | | | | | |
Collapse
|