1
|
Scherrer KH, Eans SO, Medina JM, Senadheera SN, Khaliq T, Murray TF, McLaughlin JP, Aldrich JV. Tryptophan Substitution in CJ-15,208 ( cyclo[Phe-D-Pro-Phe-Trp]) Introduces δ-Opioid Receptor Antagonism, Preventing Antinociceptive Tolerance and Stress-Induced Reinstatement of Extinguished Cocaine-Conditioned Place Preference. Pharmaceuticals (Basel) 2023; 16:1218. [PMID: 37765026 PMCID: PMC10535824 DOI: 10.3390/ph16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The macrocyclic tetrapeptide CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) and its D-Trp isomer exhibit kappa opioid receptor (KOR) antagonism which prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference. Here, we evaluated the effects of substitution of Trp and D-Trp on the peptides' opioid activity, antinociceptive tolerance, and the ability to prevent relapse to extinguished drug-CPP. Six analogs were synthesized using a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, efficacy in the [35S]GTPγS assay, metabolic stability in mouse liver microsomes, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance, and conditioned place preference (CPP) were also assessed in vivo, and the ameliorating effect of analogs on the reinstatement of extinguished cocaine-place preference was assessed. Substitutions of other D-amino acids for D-Trp did not affect (or in one case increased) KOR affinity, while two of the three substitutions of an L-amino acid for Trp decreased KOR affinity. In contrast, all but one substitution increased mu opioid receptor (MOR) affinity in vitro. The metabolic stabilities of the analogs were similar to those of their respective parent peptides, with analogs containing a D-amino acid being much more rapidly metabolized than those containing an L-amino acid in this position. In vivo, CJ-15,208 analogs demonstrated antinociception, although potencies varied over an 80-fold range and the mediating opioid receptors differed by substitution. KOR antagonism was lost for all but the D-benzothienylalanine analog, and the 2'-naphthylalanine analog instead demonstrated significant delta opioid receptor (DOR) antagonism. Introduction of DOR antagonism coincided with reduced acute opioid antinociceptive tolerance and prevented stress-induced reinstatement of extinguished cocaine-CPP.
Collapse
Affiliation(s)
- Kristen H. Scherrer
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Shainnel O. Eans
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Jessica M. Medina
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Sanjeewa N. Senadheera
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
| | - Tanvir Khaliq
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA;
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (K.H.S.); (S.O.E.); (J.M.M.)
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.N.S.); (T.K.)
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
3
|
Brice-Tutt AC, Eans SO, Yakovlev D, Aldrich JV, McLaughlin JP. An analog of [d-Trp]CJ-15,208 exhibits kappa opioid receptor antagonism following oral administration and prevents stress-induced reinstatement of extinguished morphine conditioned place preference. Pharmacol Biochem Behav 2022; 217:173405. [PMID: 35584724 DOI: 10.1016/j.pbb.2022.173405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/26/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Opioid use disorder (OUD) relapse rates are discouragingly high, underscoring the need for new treatment options. The macrocyclic tetrapeptide natural product CJ-15,208 and its stereoisomer [d-Trp]CJ-15,208 demonstrate kappa opioid receptor (KOR) antagonist activity upon oral administration which prevents stress-induced reinstatement of cocaine-seeking behavior. In order to further explore the structure-activity relationships and expand the potential therapeutic applications of KOR antagonism for the treatment of OUD, we screened a series of 24 analogs of [d-Trp]CJ-15,208 with the goal of enhancing KOR antagonist activity. From this screening, analog 22 arose as a compound of interest, demonstrating dose-dependent KOR antagonism after central and oral administration lasting at least 2.5 h. In further oral testing, analog 22 lacked respiratory, locomotor, or reinforcing effects, consistent with the absence of opioid agonism. Pretreatment with analog 22 (30 mg/kg, p.o.) prevented stress-induced reinstatement of extinguished morphine conditioned place preference and reduced some signs of naloxone-precipitated withdrawal in mice physically dependent on morphine. Collectively, these data support the therapeutic potential of KOR antagonists to support abstinence in OUD and ameliorate opioid withdrawal.
Collapse
Affiliation(s)
- Ariana C Brice-Tutt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Dmitry Yakovlev
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
4
|
Aldrich JV, McLaughlin JP. Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handb Exp Pharmacol 2022; 271:197-220. [PMID: 34463847 DOI: 10.1007/164_2021_519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
6
|
Brice-Tutt AC, Senadheera SN, Ganno ML, Eans SO, Khaliq T, Murray TF, McLaughlin JP, Aldrich JV. Phenylalanine Stereoisomers of CJ-15,208 and [d-Trp]CJ-15,208 Exhibit Distinctly Different Opioid Activity Profiles. Molecules 2020; 25:molecules25173999. [PMID: 32887303 PMCID: PMC7504817 DOI: 10.3390/molecules25173999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The macrocyclic tetrapeptide cyclo[Phe-d-Pro-Phe-Trp] (CJ-15,208) and its stereoisomer cyclo[Phe-d-Pro-Phe-d-Trp] exhibit different opioid activity profiles in vivo. The present study evaluated the influence of the Phe residues’ stereochemistry on the peptides’ opioid activity. Five stereoisomers were synthesized by a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance development, and place conditioning were also assessed in vivo. All of the stereoisomers exhibited antinociception following either intracerebroventricular or oral administration differentially mediated by multiple opioid receptors, with kappa opioid receptor (KOR) activity contributing for all of the peptides. However, unlike the parent peptides, KOR antagonism was exhibited by only one stereoisomer, while another isomer produced DOR antagonism. The stereoisomers of CJ-15,208 lacked significant respiratory effects, while the [d-Trp]CJ-15,208 stereoisomers did not elicit antinociceptive tolerance. Two isomers, cyclo[d-Phe-d-Pro-d-Phe-Trp] (3) and cyclo[Phe-d-Pro-d-Phe-d-Trp] (5), did not elicit either preference or aversion in a conditioned place preference assay. Collectively, these stereoisomers represent new lead compounds for further investigation in the development of safer opioid analgesics.
Collapse
Affiliation(s)
- Ariana C. Brice-Tutt
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
| | | | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA;
| | - Shainnel O. Eans
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
| | - Tanvir Khaliq
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA;
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
- Correspondence: (J.P.M.); (J.V.A.); Tel.: +1-352-273-7207 (J.P.M.); +1-352-273-8708 (J.V.A.)
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA;
- Correspondence: (J.P.M.); (J.V.A.); Tel.: +1-352-273-7207 (J.P.M.); +1-352-273-8708 (J.V.A.)
| |
Collapse
|
7
|
Ferracane MJ, Brice-Tutt AC, Coleman JS, Simpson GG, Wilson LL, Eans SO, Stacy HM, Murray TF, McLaughlin JP, Aldrich JV. Design, Synthesis, and Characterization of the Macrocyclic Tetrapeptide cyclo[Pro-Sar-Phe-d-Phe]: A Mixed Opioid Receptor Agonist-Antagonist Following Oral Administration. ACS Chem Neurosci 2020; 11:1324-1336. [PMID: 32251585 DOI: 10.1021/acschemneuro.0c00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Substance abuse remains a serious public health crisis, affecting millions of people worldwide. Macrocyclic tetrapeptides like CJ-15,208 and [d-Trp]CJ-15,208 demonstrate opioid activity shown to attenuate the rewarding effects of cocaine in conditioned place preference assays in mice, making them promising lead compounds for treating substance abuse. In the present study, we report the rational design, synthesis, conformational analysis, and continued pharmacological evaluation of the novel macrocyclic tetrapeptide cyclo[Pro-Sar-Phe-d-Phe] to further explore this unique molecular scaffold. This peptide was rationally designed based on X-ray and NMR structures of related macrocyclic tetrapeptides. Following synthesis, its solution-phase conformations were determined by NMR and molecular modeling. The peptide adopted multiple conformations in polar solvents, but a single conformation in chloroform that is stabilized by intramolecular hydrogen bonding. The peptide is orally bioavailable, producing antinociception and antagonism of kappa opioid receptor (KOR) stimulation following oral administration in a mouse 55 °C warm-water tail-withdrawal assay. Notably, cyclo[Pro-Sar-Phe-d-Phe] blocked both stress- and drug-induced reinstatement of cocaine and morphine conditioned place preference in mice following oral administration, and displayed a decreased side-effect profile compared to morphine. Thus, cyclo[Pro-Sar-Phe-d-Phe] is a promising lead compound for the treatment of substance abuse.
Collapse
Affiliation(s)
- Michael J. Ferracane
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Chemistry, University of Redlands, Redlands, California 92373, United States
| | - Ariana C. Brice-Tutt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Jeremy S. Coleman
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Grant G. Simpson
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Lisa L. Wilson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Thomas F. Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
8
|
Gisemba SA, Aldrich JV. Optimized Ring Closing Metathesis Reaction Conditions To Suppress Desallyl Side Products in the Solid-Phase Synthesis of Cyclic Peptides Involving Tyrosine( O-allyl). J Org Chem 2020; 85:1407-1415. [PMID: 31880448 PMCID: PMC8018726 DOI: 10.1021/acs.joc.9b02345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We are exploring constraining aromatic residues in the kappa opioid receptor selective antagonist arodyn (Ac[Phe1,2,3,Arg4,d-Ala8]dynorphin A(1-11)-NH2) by ring closing metathesis (RCM) involving tyrosine(O-allyl) (Tyr(All)), but desallyl products limited the yields of the desired cyclic peptide. The model dipeptide Fmoc-Tyr(All)-Tyr(All) was used to explore different reaction conditions, including the use of isomerization suppressants, to minimize formation of the desallyl products and enhance formation of the desired RCM product. Reaction conditions were identified that enhanced the RCM product yield while suppressing desallyl products using both second-generation Grubbs and second-generation Hoveyda-Grubbs catalysts. These optimized reaction conditions were then applied to the cyclization of a tripeptide and an arodyn analog resulting in ≥70% conversion to the desired cyclic peptides. These strategies should be applicable to RCM involving Tyr(All) and similar residues in peptide and peptidomimetic cyclizations performed on solid phase.
Collapse
Affiliation(s)
- Solomon A. Gisemba
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
| |
Collapse
|
9
|
Davison EK, Cameron AJ, Harris PWR, Brimble MA. Synthesis of endolides A and B: naturally occurring N-methylated cyclic tetrapeptides. MEDCHEMCOMM 2019; 10:693-698. [PMID: 31191859 DOI: 10.1039/c9md00050j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 01/16/2023]
Abstract
Endolides A and B are naturally occurring, N-methylated, cyclic tetrapeptides possessing an unusual 3-(3-furyl)alanine amino acid and outstanding biological profiles. 1-Propanephosphonic anhydride (T3P) was used to mediate a solution-phase cyclisation reaction of the linear tetrapeptides, thus achieving the first syntheses of both endolides A and B. The stereoselectivity of the tetrapeptide cyclisation reactions was found to be reagent-controlled, and was independent of the C-terminal configuration of the linear peptide starting materials.
Collapse
Affiliation(s)
- Emma K Davison
- School of Chemical Sciences , University of Auckland , 23 Symonds St. , Auckland , 1010 , New Zealand . .,School of Biological Sciences , University of Auckland , 3 Symonds St. , Auckland , 1010 , New Zealand
| | - Alan J Cameron
- School of Chemical Sciences , University of Auckland , 23 Symonds St. , Auckland , 1010 , New Zealand . .,School of Biological Sciences , University of Auckland , 3 Symonds St. , Auckland , 1010 , New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland , 1010 , New Zealand
| | - Paul W R Harris
- School of Chemical Sciences , University of Auckland , 23 Symonds St. , Auckland , 1010 , New Zealand . .,School of Biological Sciences , University of Auckland , 3 Symonds St. , Auckland , 1010 , New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland , 1010 , New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences , University of Auckland , 23 Symonds St. , Auckland , 1010 , New Zealand . .,School of Biological Sciences , University of Auckland , 3 Symonds St. , Auckland , 1010 , New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland , 1010 , New Zealand
| |
Collapse
|
10
|
Investigation for the cyclization efficiency of linear tetrapeptides: Synthesis of tentoxin B and dihydrotentoxin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Mukhopadhyay A, Hanold LE, Thayele Purayil H, Gisemba SA, Senadheera SN, Aldrich JV. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth. Cancer Biol Ther 2017; 18:571-583. [PMID: 28692379 PMCID: PMC5652972 DOI: 10.1080/15384047.2017.1345384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/26/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022] Open
Abstract
The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.
Collapse
Affiliation(s)
- Archana Mukhopadhyay
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, USA
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | - Laura E. Hanold
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | - Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA
| | - Solomon A. Gisemba
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, USA
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| | | | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, USA
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Khaliq T, Williams TD, Senadheera SN, Aldrich JV. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:11-15. [PMID: 27318293 DOI: 10.1016/j.jchromb.2016.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-d-Pro-Phe-d-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1→217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2→232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5-500ng/mL with a mean r(2)=0.9987. The mean inter-day accuracy and precision for all calibration standards were 93-118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5ng/mL using a sample volume of 20μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice.
Collapse
Affiliation(s)
- Tanvir Khaliq
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Todd D Williams
- Mass Spectrometry and Analytical Proteomics Laboratory, the University of Kansas, Lawrence, KS 66045, USA
| | - Sanjeewa N Senadheera
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA
| | - Jane V Aldrich
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
13
|
Remesic M, Lee YS, Hruby VJ. Cyclic Opioid Peptides. Curr Med Chem 2016; 23:1288-303. [PMID: 27117332 PMCID: PMC5693220 DOI: 10.2174/0929867323666160427123005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 11/22/2022]
Abstract
For decades the opioid receptors have been an attractive therapeutic target for the treatment of pain. Since the first discovery of enkephalin, approximately a dozen endogenous opioid peptides have been known to produce opioid activity and analgesia, but their therapeutics have been limited mainly due to low blood brain barrier penetration and poor resistance to proteolytic degradation. One versatile approach to overcome these drawbacks is the cyclization of linear peptides to cyclic peptides with constrained topographical structure. Compared to their linear parents, cyclic analogs exhibit better metabolic stability, lower offtarget toxicity, and improved bioavailability. Extensive structure-activity relationship studies have uncovered promising compounds for the treatment of pain as well as further elucidate structural elements required for selective opioid receptor activity. The benefits that come with employing cyclization can be further enhanced through the generation of polycyclic derivatives. Opioid ligands generally have a short peptide chain and thus the realm of polycyclic peptides has yet to be explored. In this review, a brief history of designing ligands for the opioid receptors, including classic linear and cyclic ligands, is discussed along with recent approaches and successes of cyclic peptide ligands for the receptors. Various scaffolds and approaches to improve bioavailability are elaborated and concluded with a discourse towards polycyclic peptides.
Collapse
Affiliation(s)
| | - Yeon Sun Lee
- Department of Chemistry and Biochemistry, 1306 E. University, P.O. Box 210041, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
14
|
Aldrich JV, Senadheera SN, Ross NC, Reilley KA, Ganno ML, Eans SE, Murray TF, McLaughlin JP. Alanine analogues of [D-Trp]CJ-15,208: novel opioid activity profiles and prevention of drug- and stress-induced reinstatement of cocaine-seeking behaviour. Br J Pharmacol 2015; 171:3212-22. [PMID: 24588614 DOI: 10.1111/bph.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/30/2014] [Accepted: 02/24/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The novel macrocyclic peptide cyclo[Phe-D-Pro-Phe-D-Trp] ([D-Trp]CJ-15,208) exhibits κ opioid (KOP) receptor antagonist activity in both in vitro and in vivo assays. The four alanine analogues of this peptide were synthesized and characterized both in vitro and in vivo to assess the contribution of different amino acid residues to the activity of [D-Trp]CJ-15,208. EXPERIMENTAL APPROACH The peptides were synthesized by a combination of solid phase peptide synthesis and cyclization in solution. The analogues were evaluated in vitro in receptor binding and functional assays, and in vivo with mice using a tail-withdrawal assay for antinociceptive and opioid antagonist activity. Mice demonstrating extinction of cocaine conditioned-place preference (CPP) were pretreated with selected analogues to evaluate prevention of stress or cocaine-induced reinstatement of CPP. KEY RESULTS The alanine analogues displayed pharmacological profiles in vivo distinctly different from [D-Trp]CJ-15,208. While the analogues exhibited varying opioid receptor affinities and κ and μ opioid receptor antagonist activity in vitro, they produced potent opioid receptor-mediated antinociception (ED50 = 0.28-4.19 nmol, i.c.v.) in vivo. Three of the analogues also displayed KOP receptor antagonist activity in vivo. Pretreatment with an analogue exhibiting both KOP receptor agonist and antagonist activity in vivo prevented both cocaine- and stress-induced reinstatement of cocaine-seeking behaviour in the CPP assay in a time-dependent manner. CONCLUSIONS AND IMPLICATIONS These unusual macrocyclic peptides exhibit in vivo opioid activity profiles different from the parent compound and represent novel compounds for potential development as therapeutics for drug abuse and possibly as analgesics.
Collapse
Affiliation(s)
- J V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Eans SO, Ganno ML, Reilley KJ, Patkar KA, Senadheera SN, Aldrich JV, McLaughlin JP. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration. Br J Pharmacol 2014; 169:426-36. [PMID: 23425081 DOI: 10.1111/bph.12132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. EXPERIMENTAL APPROACH C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. KEY RESULTS Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. CONCLUSIONS AND IMPLICATIONS The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood-brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful therapeutics.
Collapse
Affiliation(s)
- Shainnel O Eans
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Weltrowska G, Lemieux C, Chung NN, Guo JJ, Wilkes BC, Schiller PW. 'Carba'-carfentanil (trans isomer): a μ opioid receptor (MOR) partial agonist with a distinct binding mode. Bioorg Med Chem 2014; 22:4581-6. [PMID: 25129170 DOI: 10.1016/j.bmc.2014.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/15/2014] [Accepted: 07/19/2014] [Indexed: 11/16/2022]
Abstract
There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized 'carba'-analogues of the highly potent μ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Ki(μ)=95.2nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A re-evaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in μ opioid analgesics reduces MOR binding affinity by 2-3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile.
Collapse
Affiliation(s)
- Grazyna Weltrowska
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Carole Lemieux
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Nga N Chung
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jason J Guo
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Brian C Wilkes
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Pharmacology, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
17
|
Bidlack JM. Mixed κ/μ partial opioid agonists as potential treatments for cocaine dependence. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:387-418. [PMID: 24484983 DOI: 10.1016/b978-0-12-420118-7.00010-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cocaine use activates the dopamine reward pathway, leading to the reinforcing effects of dopamine. There is no FDA-approved medication for treating cocaine dependence. Opioid agonists and antagonists have been approved for treating opioid and alcohol dependence. Agonists that activate the μ opioid receptor increase dopamine levels in the nucleus accumbens, while μ receptor antagonists decrease dopamine levels by blocking the effects of endogenous opioid peptides. Activation of the κ opioid receptor decreases dopamine levels and leads to dysphoria. In contrast, inhibition of the κ opioid receptor decreases dopamine levels in the nucleus accumbens. Antagonists acting at the κ receptor reduce stress-mediated behaviors and anxiety. Mixed partial μ/κ agonists have the potential of striking a balance between dopamine levels and attenuating relapse to cocaine. The pharmacological properties of mixed μ/κ opioid receptor agonists will be discussed and results from clinical and preclinical studies will be presented. Results from studies with some of the classical benzomorphans and morphinans will be presented as they lay the foundation for structure-activity relationships. Recent results with other partial opioid agonists, including buprenorphine derivatives and the mixed μ/κ peptide CJ-15,208, will be discussed. The behavioral effects of the mixed μ/κ MCL-741, an aminothiazolomorphinan, in attenuating cocaine-induced locomotor activity will be presented. While not a mixed μ/κ opioid, results obtained with GSK1521498, a μ receptor inverse agonist, will be discussed. Preclinical strategies and successes will lay the groundwork for the further development of mixed μ/κ opioid receptor agonists to treat cocaine dependence.
Collapse
Affiliation(s)
- Jean M Bidlack
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
18
|
Traoré M, Mietton F, Maubon D, Peuchmaur M, Francisco Hilário F, Pereira de Freitas R, Bougdour A, Curt A, Maynadier M, Vial H, Pelloux H, Hakimi MA, Wong YS. Flexible Synthesis and Evaluation of Diverse Anti-Apicomplexa Cyclic Peptides. J Org Chem 2013; 78:3655-75. [DOI: 10.1021/jo4001492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mariam Traoré
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| | - Flore Mietton
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Danièle Maubon
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Marine Peuchmaur
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| | - Flaviane Francisco Hilário
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
- Departamento de Quı́mica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais,
Brasil
- CAPES Foundation, Ministry of Education of Brazil, Brasilia DF 70040-020, Brazil
| | | | - Alexandre Bougdour
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Aurélie Curt
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Marjorie Maynadier
- Dynamique
des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2,
CNRS UMR 5235, CP 107, Place E. Bataillon, F-34095 Montpellier Cedex
5, France
| | - Henri Vial
- Dynamique
des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2,
CNRS UMR 5235, CP 107, Place E. Bataillon, F-34095 Montpellier Cedex
5, France
| | - Hervé Pelloux
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Mohamed-Ali Hakimi
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Yung-Sing Wong
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
19
|
Aldrich JV, Senadheera SN, Ross NC, Ganno ML, Eans SO, McLaughlin JP. The macrocyclic peptide natural product CJ-15,208 is orally active and prevents reinstatement of extinguished cocaine-seeking behavior. JOURNAL OF NATURAL PRODUCTS 2013; 76:433-438. [PMID: 23327691 PMCID: PMC3879116 DOI: 10.1021/np300697k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Exploring Solution-Phase Cyclization and Sulfamyl Safety-Catch Resin Strategies for the Total Synthesis of the Marine Antimicrobial Cyclic Tetrapeptide Cyclo(GSPE). Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9323-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Ross NC, Reilley KJ, Murray TF, Aldrich JV, McLaughlin JP. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism. Br J Pharmacol 2012; 165:1097-108. [PMID: 21671905 DOI: 10.1111/j.1476-5381.2011.01544.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. EXPERIMENTAL APPROACH Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). KEY RESULTS The two isomers showed similar affinity and selectivity for κ receptors (K(i) 30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. CONCLUSIONS AND IMPLICATIONS The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse.
Collapse
Affiliation(s)
- Nicolette C Ross
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL 34987, USA
| | | | | | | | | |
Collapse
|
22
|
Aldrich JV, McLaughlin JP. Opioid Peptides: Potential for Drug Development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 23316256 DOI: 10.1016/j.ddtec.2011.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Opioid receptors are important targets for the treatment of pain and potentially for other disease states (e.g. mood disorders and drug abuse) as well. Significant recent advances have been made in identifying opioid peptide analogs that exhibit promising in vivo activity for treatment of these maladies. This review focuses on the development and evaluation of opioid peptide analogs demonstrating activity after systemic administration, and recent clinical evaluations of opioid peptides for possible therapeutic use.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
| | | |
Collapse
|
23
|
Aldrich JV, Kulkarni SS, Senadheera SN, Ross NC, Reilley KJ, Eans SO, Ganno ML, Murray TF, McLaughlin JP. Unexpected opioid activity profiles of analogues of the novel peptide kappa opioid receptor ligand CJ-15,208. ChemMedChem 2011; 6:1739-45. [PMID: 21761566 DOI: 10.1002/cmdc.201100113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/07/2011] [Indexed: 11/09/2022]
Abstract
An alanine scan was performed on the novel κ opioid receptor (KOR) peptide ligand CJ-15,208 to determine which residues contribute to the potent in vivo agonist activity observed for the parent peptide. These cyclic tetrapeptides were synthesized by a combination of solid-phase peptide synthesis of the linear precursors, followed by cyclization in solution. Like the parent peptide, each of the analogues exhibited agonist activity and KOR antagonist activity in an antinociceptive assay in vivo. Unlike the parent peptide, the agonist activity of the potent analogues was mediated predominantly, if not exclusively, by μ opioid receptors (MOR). Thus analogues 2 and 4, in which one of the phenylalanine residues was replaced by alanine, exhibited both potent MOR agonist activity and KOR antagonist activity in vivo. These peptides represent novel lead compounds for the development of peptide-based opioid analgesics.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|