1
|
de Amorim MR, Schoellhorn SM, Barbosa CDS, Mendes GR, Macedo KDL, Ferreira AG, Venâncio T, Guido RVC, Batista ANL, Batista JM, Skellam E, Berlinck RGS. Structure and Biosynthesis of Perochalasins A-C, Open-Chain Merocytochalasans Produced by the Marine-Derived Fungus Peroneutypa sp. M16. JOURNAL OF NATURAL PRODUCTS 2024; 87:2204-2215. [PMID: 39150723 PMCID: PMC11443529 DOI: 10.1021/acs.jnatprod.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Novel open-chain merocytochalasans, perochalasins A-C (1-3), containing an unusual N-O six-membered heterocyclic moiety, were isolated from cultures of the marine-derived Peroneutypa sp. M16 fungus, along with cytochalasin Z27 (4), cytochalasin Z28 (5), [12]-cytochalasin (6), and phenochalasin B (7). The structures of compounds 1-3 were established by analysis of the spectroscopic data. Full genome sequencing of Peroneutypa sp. M16 enabled the identification of a cytochalasan biosynthetic gene cluster and a proposal for the biosynthetic assembly of perochalasins. The proposal is supported by the nonenzymatic conversion of phenochalasin B (7) into 1-3, based on isotope-labeled hydroxylamine (15NH2OH and ND2OD) feeding studies in vivo and in vitro. In contrast to other merocytochalasans, these are the first cytochalasans confirmed to arise via nucleophilic addition and at a distinct location from the reactive macrocycle olefin, potentially expanding further the range of merocytochalasans to be discovered or engineered. Cytochalasin Z27 (4) exhibited antiplasmodial activities in the low micromolar range against the chloroquine-sensitive Plasmodium falciparum 3D7 strain as well as against resistant strains of the parasite (Dd2, TM90C6B, and 3D7r_MMV848).
Collapse
Affiliation(s)
- Marcelo R. de Amorim
- Instituto
de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Sydney M. Schoellhorn
- Department
of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Camila de S. Barbosa
- Instituto
de Física de São Carlos, Universidade
de São Paulo, CEP
13563-120, São Carlos, SP Brazil
| | - Giovana R. Mendes
- Instituto
de Física de São Carlos, Universidade
de São Paulo, CEP
13563-120, São Carlos, SP Brazil
| | - Kamila de L. Macedo
- Instituto
de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Antonio G. Ferreira
- Departamento
de Química, Universidade Federal
de São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Tiago Venâncio
- Departamento
de Química, Universidade Federal
de São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| | - Rafael V. C. Guido
- Instituto
de Física de São Carlos, Universidade
de São Paulo, CEP
13563-120, São Carlos, SP Brazil
| | - Andrea N. L. Batista
- Universidade
Federal Fluminense, Instituto de Química, Outeiro de São João
Batista s/n, Niterói, RJ, 24020-141, Brazil
| | - João M. Batista
- Universidade
Federal de São Paulo. Instituto de
Ciência e Tecnologia, R. Talim 330, São José dos Campos, SP 12231-280, Brazil
| | - Elizabeth Skellam
- Department
of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Roberto G. S. Berlinck
- Instituto
de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
2
|
Heinemann H, Zhang H, Cox RJ. Reductive Release from a Hybrid PKS-NRPS during the Biosynthesis of Pyrichalasin H. Chemistry 2024; 30:e202302590. [PMID: 37926691 DOI: 10.1002/chem.202302590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Three central steps during the biosynthesis of cytochalasan precursors, including reductive release, Knoevenagel cyclisation and Diels Alder cyclisation are not yet understood at a detailed molecular level. In this work we investigated the reductive release step catalysed by a hybrid polyketide synthase non-ribosomal peptide synthetase (PKS-NRPS) from the pyrichalasin H pathway. Synthetic thiolesters were used as substrate mimics for in vitro studies with the isolated reduction (R) and holo-thiolation (T) domains of the PKS-NRPS hybrid PyiS. These assays demonstrate that the PyiS R-domain mainly catalyses an NADPH-dependent reductive release of an aldehyde intermediate that quickly undergoes spontaneous Knoevenagel cyclisation. The R-domain can only process substrates that are covalently bound to the phosphopantetheine thiol of the upstream T-domain, but it shows little selectivity for the polyketide.
Collapse
Affiliation(s)
- Henrike Heinemann
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Haili Zhang
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
3
|
Yang Z, Liu H, Su Z, Xu H, Yuan Z, Rao Y. Enhanced production of aspochalasin D through genetic engineering of Aspergillus flavipes. Appl Microbiol Biotechnol 2023; 107:2911-2920. [PMID: 37004567 DOI: 10.1007/s00253-023-12501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Aspochalasin D (AD) belongs to the polyketide-amino acid hybrid natural products with anti-cancer, anti-bacterial, and anti-fouling bioactivities. However, the low production limits its further application. In this study, AD was separated and identified from Aspergillus flavipes 3.17641. Next, besides the optimization of culture conditions using a single-factor experiment and response surface methodology, metabolic engineering was employed to increase the AD production. It shows that the deletion of the shunt gene aspoA and overexpression of the pathway-specific regulator aspoG significantly improve the AD production. Its production reached to 812.1 mg/L under the optimized conditions, with 18.5-fold increase. Therefore, this study not only provides a general method for improving the production of similar natural products in other fungi, but also enables the further biological function development of AD in agriculture and pharmaceutical. KEY POINTS: • The Aspochalasin D (AD) production was improved by optimizing culture conditions. • The deletion of the shunt gene aspoA increased the AD production. • Overexpression of the pathway regulator aspoG further improved the AD production.
Collapse
Affiliation(s)
- Zhaopeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
6
|
Zhang JM, Liu X, Wei Q, Ma C, Li D, Zou Y. Berberine bridge enzyme-like oxidase-catalysed double bond isomerization acts as the pathway switch in cytochalasin synthesis. Nat Commun 2022; 13:225. [PMID: 35017571 PMCID: PMC8752850 DOI: 10.1038/s41467-021-27931-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Cytochalasans (CYTs), as well as their polycyclic (pcCYTs) and polymerized (meCYTs) derivatives, constitute one of the largest families of fungal polyketide-nonribosomal peptide (PK-NRP) hybrid natural products. However, the mechanism of chemical conversion from mono-CYTs (moCYTs) to both pcCYTs and meCYTs remains unknown. Here, we show the first successful example of the reconstitution of the CYT core backbone as well as the whole pathway in a heterologous host. Importantly, we also describe the berberine bridge enzyme (BBE)-like oxidase AspoA, which uses Glu538 as a general acid biocatalyst to catalyse an unusual protonation-driven double bond isomerization reaction and acts as a switch to alter the native (for moCYTs) and nonenzymatic (for pcCYTs and meCYTs) pathways to synthesize aspochalasin family compounds. Our results present an unprecedented function of BBE-like enzymes and highly suggest that the isolated pcCYTs and meCYTs are most likely artificially derived products.
Collapse
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xuan Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qian Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Gayraud O, Laroche B, Casaretto N, Nay B. Synthesis of a Biomimetic Tetracyclic Precursor of Aspochalasins and Formal Synthesis of Trichoderone A. Org Lett 2021; 23:5755-5760. [PMID: 34291937 DOI: 10.1021/acs.orglett.1c01922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspochalasins are leucine-derived cytochalasins. Their complexity is associated with a high degree of biosynthetic oxidation, herein inspiring a two-phase strategy in total synthesis. We thus describe the synthesis of a putative biomimetic tetracyclic intermediate. The constructive steps are an intramolecular Diels-Alder reaction to install the isoindolone core of cytochalasins, whose branched precursor was obtained from a stereoselective Ireland-Claisen rearrangement performed from a highly unsaturated substrate. This also constitutes a formal synthesis of trichoderone A.
Collapse
Affiliation(s)
- Oscar Gayraud
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Benjamin Laroche
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS, Paris 75005, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau 91128, France.,Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS, Paris 75005, France
| |
Collapse
|
8
|
Progress in the Chemistry of Cytochalasans. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 114:1-134. [PMID: 33792860 DOI: 10.1007/978-3-030-59444-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochalasans are a group of fungal-derived natural products characterized by a perhydro-isoindolone core fused with a macrocyclic ring, and they exhibit a high structural diversity and a broad spectrum of bioactivities. Cytochalasans have attracted significant attention from the chemical and pharmacological communities and have been reviewed previously from various perspectives in recent years. However, continued interest in the cytochalasans and the number of laboratory investigations on these compounds are both growing rapidly. This contribution provides a general overview of the isolation, structural determination, biological activities, biosynthesis, and total synthesis of cytochalasans. In total, 477 cytochalasans are covered, including "merocytochalasans" that arise by the dimerization or polymerization of one or more cytochalasan molecules with one or more other natural product units. This contribution provides a comprehensive treatment of the cytochalasans, and it is hoped that it may stimulate further work on these interesting natural products.
Collapse
|
9
|
Kahlert L, Schotte C, Cox RJ. Total Mycosynthesis: Rational Bioconstruction and Bioengineering of Fungal Natural Products. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1401-2716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractTotal biosynthesis in fungi is beginning to compete with traditional chemical total synthesis campaigns. Herein, the advantages, disadvantages and future opportunities are discussed within the scope of several recent examples.1 Introduction2 Synthetic Examples2.1 2-Pyridones2.2 Cytochalasans2.3 Sorbicillinoids2.4 Decalins: Solanapyrone2.5 α-Pyrone Polyenes: Citreoviridin and Aurovertin2.6 Anditomin and Related Meroterpenoids2.7 Tropolone Sesquiterpenoids3 Conclusion
Collapse
|
10
|
Zhang H, Hantke V, Bruhnke P, Skellam EJ, Cox RJ. Chemical and Genetic Studies on the Formation of Pyrrolones During the Biosynthesis of Cytochalasans. Chemistry 2021; 27:3106-3113. [PMID: 33146923 PMCID: PMC7898483 DOI: 10.1002/chem.202004444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/17/2023]
Abstract
A key step during the biosynthesis of cytochalasans is a proposed Knoevenagel condensation to form the pyrrolone core, enabling the subsequent 4+2 cycloaddition reaction that results in the characteristic octahydroisoindolone motif of all cytochalasans. In this work, we investigate the role of the highly conserved α,β-hydrolase enzymes PyiE and ORFZ during the biosynthesis of pyrichalasin H and the ACE1 metabolite, respectively, using gene knockout and complementation techniques. Using synthetic aldehyde models we demonstrate that the Knoevenagel condensation proceeds spontaneously but results in the 1,3-dihydro-2H-pyrrol-2-one tautomer, rather than the required 1,5-dihydro-2H-pyrrol-2-one tautomer. Taken together our results suggest that the α,β-hydrolase enzymes are essential for first ring cyclisation, but the precise nature of the intermediates remains to be determined.
Collapse
Affiliation(s)
- Haili Zhang
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Verena Hantke
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Pia Bruhnke
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Elizabeth J. Skellam
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current Address: Department of ChemistryUniversity of North Texas1508 W Mulberry30167DentonTexasUSA
| | - Russell J. Cox
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
11
|
Minami A, Ugai T, Ozaki T, Oikawa H. Predicting the chemical space of fungal polyketides by phylogeny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. Sci Rep 2020; 10:13556. [PMID: 32782278 PMCID: PMC7421883 DOI: 10.1038/s41598-020-70177-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/24/2020] [Indexed: 11/10/2022] Open
Abstract
Fungal polyketide synthase (PKS)–nonribosomal peptide synthetase (NRPS) hybrids are key enzymes for synthesizing structurally diverse hybrid natural products (NPs) with characteristic biological activities. Predicting their chemical space is of particular importance in the field of natural product chemistry. However, the unexplored programming rule of the PKS module has prevented prediction of its chemical structure based on amino acid sequences. Here, we conducted a phylogenetic analysis of 884 PKS–NRPS hybrids and a modification enzyme analysis of the corresponding biosynthetic gene cluster, revealing a hidden relationship between its genealogy and core structures. This unexpected result allowed us to predict 18 biosynthetic gene cluster (BGC) groups producing known carbon skeletons (number of BGCs; 489) and 11 uncharacterized BGC groups (171). The limited number of carbon skeletons suggests that fungi tend to select PK skeletons for survival during their evolution. The possible involvement of a horizontal gene transfer event leading to the diverse distribution of PKS–NRPS genes among fungal species is also proposed. This study provides insight into the chemical space of fungal PKs and the distribution of their biosynthetic gene clusters.
Collapse
Affiliation(s)
- Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Takahiro Ugai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
12
|
Trenti F, Lebe KE, Adelin E, Ouazzani J, Schotte C, Cox RJ. Investigating the biosynthesis of Sch-642305 in the fungus Phomopsis sp. CMU-LMA. RSC Adv 2020; 10:27369-27376. [PMID: 35516937 PMCID: PMC9055631 DOI: 10.1039/d0ra05311b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
Sch-642305 is an unusual bicyclic 10-membered macrolide produced by the filamentous fungus Phomopsis sp. CMU-LMA for which no biosynthetic evidence exists. Here, we generate a draft genome sequence of the producing organism and discover the biosynthetic gene cluster responsible for formation of Sch-642305. Targeted gene disruptions together with reconstitution of the pathway in the heterologous host Aspergillus oryzae dissect key chemical steps and shed light on a series of oxidoreductions occuring in the pathway.
Collapse
Affiliation(s)
- Francesco Trenti
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Karen E Lebe
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Emilie Adelin
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN Gif-sur-Yvette France
| | - Jamal Ouazzani
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN Gif-sur-Yvette France
| | - Carsten Schotte
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
13
|
Li H, Wei H, Hu J, Lacey E, Sobolev AN, Stubbs KA, Solomon PS, Chooi YH. Genomics-Driven Discovery of Phytotoxic Cytochalasans Involved in the Virulence of the Wheat Pathogen Parastagonospora nodorum. ACS Chem Biol 2020; 15:226-233. [PMID: 31815421 DOI: 10.1021/acschembio.9b00791] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The etiology of fungal pathogenesis of grains is critical to global food security. The large number of orphan biosynthetic gene clusters uncovered in fungal plant pathogen genome sequencing projects suggests that we have a significant knowledge gap about the secondary metabolite repertoires of these pathogens and their roles in plant pathogenesis. Cytochalasans are a family of natural products of significant interest due to their ability to bind to actin and interfere with cellular processes that involved actin polymerization; however, our understanding of their biosynthesis and biological roles remains incomplete. Here, we identified a putative polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene cluster (phm) that was upregulated in the pathogen Parastagonospora nodorum during its infection on wheat. Overexpression of the transcription factor gene phmR encoded in the phm gene cluster resulted in the production of two leucine-derived cytochalasans, phomacins D and E (1 and 2, respectively), and an acetonyl adduct phomacin F. Heterologous expression of the PKS-NRPS gene phmA and the trans-enoyl reductase (ER) gene phmE in Aspergillus nidulans resulted in the production of a novel 2-pyrrolidone precursor prephomacin. Reverse genetics and wheat seedling infection assays showed that ΔphmA mutants exhibited significantly reduced virulence compared to the wild type. We further demonstrated that both 1 and 2 showed potent actin polymerization-inhibitory activities and exhibited potentially monocot-specific antigerminative activities. The findings from this study have advanced our knowledge based on the biosynthesis and biological roles of cytochalasans, the latter of which could have significant implications for our understanding of the molecular mechanisms of fungus-plant interactions.
Collapse
Affiliation(s)
| | - Haochen Wei
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd., Smithfield, New South Wales 2164, Australia
| | | | | | - Peter S. Solomon
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | |
Collapse
|
14
|
Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus. Appl Microbiol Biotechnol 2020; 104:1545-1553. [PMID: 31897521 DOI: 10.1007/s00253-019-10308-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023]
Abstract
Increasing attention has recently been focused on complex symbiotic associations, for instance coral and its symbionts. Sea cucumber, harboring diverse fungi, has also attracted more and more attention for their functional diversity. Here, secondary metabolites produced by Chaetomium globosum associated with sea cucumber, Apostichopus japonicus, were investigated using gene mining with third-generation sequencing technology (PacBio SMRT). Nine compounds, including one new compound cytoglobosin X (1), were isolated from cultures of Chaetomium globosum. Compound 1 was identified based on NMR data, HRESIMS, and ECD, and the absolute configurations were identified as 3S, 4R, 7S, 8R, 9R, 16S, 19S, 20S, and 23S. In an antimicrobial assay, compound 4 showed moderate activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with MICs of 47.3 and 94.6 μM, respectively. Our results suggest that the microbiomes associated with sea cucumber could be an important resource for biodiversity and structural novelty, and the bioactive compounds may protect the host from pathogen microbial.
Collapse
|
15
|
OIKAWA H. Heterologous production of fungal natural products: Reconstitution of biosynthetic gene clusters in model host Aspergillus oryzae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:420-430. [PMID: 33177296 PMCID: PMC7725655 DOI: 10.2183/pjab.96.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While exploring phytotoxic metabolites from phytopathogenic fungi in the 1970s, we became interested in biosynthetic enzymes that catalyze Diels-Alder reactions involving biosynthesis of several phytotoxins that we isolated. Target enzymes were successfully characterized, and this triggered the identification of various Diels-Alderases in a recent decade. Through our Diels-Alderase project in 1990s, we recognized a highly efficient expression system of various biosynthetic genes with Aspergillus oryzae as a host. With the development of tools such as genomic data and bioinformatics analysis to identify biosynthetic gene clusters for natural products, we developed a highly reliable methodology such as hot spot knock-in to elucidate the biosynthetic pathways of representative fungal metabolites including phytotoxic substances. This methodology allows total biosynthesis of natural products and genome mining using silent biosynthetic gene clusters to obtain novel bioactive metabolites. Further applications of this technology are discussed.
Collapse
Affiliation(s)
- Hideaki OIKAWA
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Correspondence should be addressed: H. Oikawa, Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Jo Nishi 8-Chome, Kita-ku, Sapporo 060-0810, Japan (e-mail: )
| |
Collapse
|
16
|
Xu J, Lin B, Jiang X, Jia Z, Wu J, Dai WM. Intramolecular Diels–Alder Cycloaddition Approach toward the cis-Fused Δ5,6-Hexahydroisoindol-1-one Core of Cytochalasins. Org Lett 2019; 21:830-834. [DOI: 10.1021/acs.orglett.8b04129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingjing Xu
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, Hangzhou Medical College, Hangzhou 310053, P. R. China
| | - Benguo Lin
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiuqing Jiang
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zejun Jia
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jinlong Wu
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei-Min Dai
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
17
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
18
|
Sato M, Dander JE, Sato C, Hung YS, Gao SS, Tang MC, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. Collaborative Biosynthesis of Maleimide- and Succinimide-Containing Natural Products by Fungal Polyketide Megasynthases. J Am Chem Soc 2017; 139:5317-5320. [PMID: 28365998 DOI: 10.1021/jacs.7b02432] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal polyketide synthases (PKSs) can function collaboratively to synthesize natural products of significant structural diversity. Here we present a new mode of collaboration between a highly reducing PKS (HRPKS) and a PKS-nonribosomal peptide synthetase (PKS-NRPS) in the synthesis of oxaleimides from the Penicillium species. The HRPKS is recruited in the synthesis of an olefin-containing free amino acid, which is activated and incorporated by the adenylation domain of the PKS-NRPS. The precisely positioned olefin from the unnatural amino acid is proposed to facilitate a scaffold rearrangement of the PKS-NRPS product to forge the maleimide and succinimide cores of oxaleimides.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | - Jaclyn M Winter
- Medicinal Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | |
Collapse
|
19
|
Amaral LS, Fill TP, Santos LFA, Rodrigues-Filho E. Biosynthesis and mass spectral fragmentation pathways of (13)C and (15)N labeled cytochalasin D produced by Xylaria arbuscula. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:239-247. [PMID: 28220590 DOI: 10.1002/jms.3922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/29/2017] [Accepted: 02/14/2017] [Indexed: 05/21/2023]
Abstract
The fungus Xylaria arbuscula was isolated as an endophyte from Cupressus lusitanica and has shown to be a prominent producer of cytochalasins, mainly cytochalasins C, D and Q. Cytochalasins comprise an important class of fungal secondary metabolites that have aroused attention due to their uncommon molecular structures and pronounced biological activities. Due to the few published studies on the ESI-MS/MS fragmentation of this important class of secondary metabolites, in the first part of our work, we studied the cytochalasin D fragmentation pathways by using an ESI-Q-ToF mass spectrometer coupled with liquid chromatography. We verified that the main fragmentation routes were generated by hydrogen and McLafferty rearrangements which provided more ions than just the ones related to the losses of H2 O and CO as reported in previous studies. We also confirmed the diagnostic ions at m/z 146 and 120 as direct precursor derived from phenylalanine. The present work also aimed the production of structurally diverse cytochalasins by varying the culture conditions used to grow the fungus X. arbuscula and further insights into the biosynthesis of cytochalasins. HPLC-MS analysis revealed no significant changes in the metabolic profile of the microorganism with the supplementation of different nitrogen sources but indicated the ability of X. arbuscula to have access to inorganic and organic nitrogen, such as nitrate, ammonium and amino acids as a primary source of nitrogen. The administration of 2-13 C-glycine showed the direct correlation of this amino acid catabolism and the biosynthesis of cytochalasin D by X. arbuscula, due to the incorporation of three labeled carbons in cytochalasin chemical structure. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- L S Amaral
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13.565-905, São Carlos, São Paulo, Brazil
| | - T P Fill
- Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970, Campinas, São Paulo, Brazil
| | - L F A Santos
- Bruker do Brasil, Rod. D. Pedro I, Km 87.5, CEP 12954-260, Atibaia, São Paulo, Brazil
| | - E Rodrigues-Filho
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13.565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
20
|
Abstract
This highlight summarises the recent advances in elucidating and engineering the biosynthesis of cytochalasan natural products.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Biomolekulares Wirkstoffzentrum (BMWZ)
- Leibniz Universität Hannover
- Hannover
- Germany
| |
Collapse
|
21
|
Abstract
[4 + 2]-Cycloadditions are increasingly being recognized in the biosynthetic pathways of many structurally complex natural products. A relatively small collection of enzymes from these pathways have been demonstrated to increase rates of cyclization and impose stereochemical constraints on the reactions. While mechanistic investigation of these enzymes is just beginning, recent studies have provided new insights with implications for understanding their biosynthetic roles, mechanisms of catalysis, and evolutionary origin.
Collapse
Affiliation(s)
- Byung-Sun Jeon
- Department of Chemistry and ‡Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin , Austin, Texas 78712, United States
| | - Shao-An Wang
- Department of Chemistry and ‡Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin , Austin, Texas 78712, United States
| | - Mark W Ruszczycky
- Department of Chemistry and ‡Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin , Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry and ‡Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
22
|
Hashimoto T, Kuzuyama T. Mechanistic insights into Diels-Alder reactions in natural product biosynthesis. Curr Opin Chem Biol 2016; 35:117-123. [DOI: 10.1016/j.cbpa.2016.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 10/20/2022]
|
23
|
Li L, Yu P, Tang MC, Zou Y, Gao SS, Hung YS, Zhao M, Watanabe K, Houk KN, Tang Y. Biochemical Characterization of a Eukaryotic Decalin-Forming Diels-Alderase. J Am Chem Soc 2016; 138:15837-15840. [PMID: 27960349 DOI: 10.1021/jacs.6b10452] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The trans-decalin structure formed by intramolecular Diels-Alder cycloaddition is widely present among bioactive natural products isolated from fungi. We elucidated the concise three-enzyme biosynthetic pathway of the cytotoxic myceliothermophin and biochemically characterized the Diels-Alderase that catalyzes the formation of trans-decalin from an acyclic substrate. Computational studies of the reaction mechanism rationalize both the substrate and stereoselectivity of the enzyme.
Collapse
Affiliation(s)
- Li Li
- Engineering Research Center of Industrial Microbiology (Ministry of Education) and College of Life Sciences, Fujian Normal University , Fuzhou 350117, P. R. China
| | | | | | | | | | | | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
24
|
Zaghouani M, Kunz C, Guédon L, Blanchard F, Nay B. First Total Synthesis, Structure Revision, and Natural History of the Smallest Cytochalasin: (+)-Periconiasin G. Chemistry 2016; 22:15257-15260. [PMID: 27556729 DOI: 10.1002/chem.201603734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 12/29/2022]
Abstract
The total synthesis of the smallest cytochalasin isolated so far, periconiasin G, which bears a seven-membered ring in lieu of the usual macrocycle, has been performed from both enantiomers of citronellal, relying on an intramolecular Diels-Alder reaction in favor of the natural endo stereochemistry. We show that, among the four synthesized stereoisomers, including the exo isomers, the one matching the NMR data of the natural product was not that assigned in the original report, imposing structure revision. The natural product, previously isolated from a plant-mutualistic fungus, was biologically investigated taking into account its natural history, showing significant effects against the phytopathogenic fungus Botrytis cinerea and thus opening new opportunities in combating this pest.
Collapse
Affiliation(s)
- Mehdi Zaghouani
- Muséum National d'Histoire Naturelle, CNRS (UMR 7245), Sorbonne Universités, 57 rue Cuvier (CP 54), 75005, Paris, France
| | - Caroline Kunz
- Muséum National d'Histoire Naturelle, CNRS (UMR 7245), Sorbonne Universités, 57 rue Cuvier (CP 54), 75005, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, UFR 927, Paris, France
| | - Laura Guédon
- Muséum National d'Histoire Naturelle, CNRS (UMR 7245), Sorbonne Universités, 57 rue Cuvier (CP 54), 75005, Paris, France
| | - Florent Blanchard
- Institut de Chimie des Substances Naturelles (ICSN-CNRS), 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Bastien Nay
- Muséum National d'Histoire Naturelle, CNRS (UMR 7245), Sorbonne Universités, 57 rue Cuvier (CP 54), 75005, Paris, France.
| |
Collapse
|
25
|
Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering. PLoS One 2016; 11:e0161199. [PMID: 27551732 PMCID: PMC4994942 DOI: 10.1371/journal.pone.0161199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives is desirable for the purpose of incorporating new functionalities into pre-existing molecules, or for optimization of known bioactivities. We sought to expand the range of natural product diversity by combining modules of PKS-NRPS hybrids from different hosts, hereby producing novel synthetic natural products. We succeeded in the construction of a functional cross-species chimeric PKS-NRPS expressed in Aspergillus nidulans. Module swapping of the two PKS-NRPS natural hybrids CcsA from Aspergillus clavatus involved in the biosynthesis of cytochalasin E and related Syn2 from rice plant pathogen Magnaporthe oryzae lead to production of novel hybrid products, demonstrating that the rational re-design of these fungal natural product enzymes is feasible. We also report the structure of four novel pseudo pre-cytochalasin intermediates, niduclavin and niduporthin along with the chimeric compounds niduchimaeralin A and B, all indicating that PKS-NRPS activity alone is insufficient for proper assembly of the cytochalasin core structure. Future success in the field of biocombinatorial synthesis of hybrid polyketide-nonribosomal peptides relies on the understanding of the fundamental mechanisms of inter-modular polyketide chain transfer. Therefore, we expressed several PKS-NRPS linker-modified variants. Intriguingly, the linker anatomy is less complex than expected, as these variants displayed great tolerance with regards to content and length, showing a hitherto unreported flexibility in PKS-NRPS hybrids, with great potential for synthetic biology-driven biocombinatorial chemistry.
Collapse
|
26
|
Fujii R, Ugai T, Ichinose H, Hatakeyama M, Kosaki T, Gomi K, Fujii I, Minami A, Oikawa H. Reconstitution of biosynthetic machinery of fungal polyketides: unexpected oxidations of biosynthetic intermediates by expression host. Biosci Biotechnol Biochem 2016; 80:426-31. [DOI: 10.1080/09168451.2015.1104234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Reconstitution of whole biosynthetic genes in Aspergillus oryzae has successfully applied for total biosynthesis of various fungal natural products. Heterologous production of fungal metabolites sometimes suffers unexpected side reactions by host enzymes. In the studies on fungal polyketides solanapyrone and cytochalasin, unexpected oxidations of terminal olefin of biosynthetic intermediates were found to give one and four by-products by host enzymes of the transformants harboring biosynthetic genes. In this paper, we reported structure determination of by-products and described a simple solution to avoid the undesired reaction by introducing the downstream gene in the heterologous production of solanapyrone C.
Collapse
Affiliation(s)
- Ryuya Fujii
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Ugai
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | - Takuto Kosaki
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Katsuya Gomi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, Yahaba, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Trendowski M, Zoino JN, Christen TD, Acquafondata C, Fondy TP. Preparation, In Vivo Administration, Dose-Limiting Toxicities, and Antineoplastic Activity of Cytochalasin B. Transl Oncol 2015; 8:308-17. [PMID: 26310377 PMCID: PMC4562975 DOI: 10.1016/j.tranon.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 01/07/2023] Open
Abstract
An effective and inexpensive protocol for producing cytochalasins A and B is being disclosed to propose a viable method by which to examine the in vivo antineoplastic activity of these congeners in preclinical tumor-bearing mammalian models. In addition, we determine the maximum tolerated doses of cytochalasin B using multiple routes and formulations, characterize the tissue distribution of intravenous bolus cytochalasin B, and assess the in vivo antineoplastic activity of cytochalasin B in comparison in doxorubicin in Balb/c mice challenged intradermally with M109 murine lung carcinoma. We also examine the effects of cytochalasin B against several other murine neoplastic cell lines (Lewis lung, LA4, B16F10, and M5076). Finally, we examine a potential mechanism of the antimetastatic activity of cytochalasin B by observing the effects of the agent on the secretion of N-acetylglucosaminidase (GlcNACase) by B16BL6 and B16F10 murine melanomas in vitro. The results of the study can be summarized as follows: 1) Cytochalasin B can be safely administered intravenously, intraperitoneally, and subcutaneously in murine models, with the maximum tolerated dose of all routes of administration being increased by liposome encapsulation. 2) Cytochalasin B can significantly inhibit the growth of tumors in mice challenged with M109, Lewis lung, LA4, B16F10, or M5076, producing long-term survival against lung carcinomas and adenocarcinomas (M109, Lewis lung, and LA4) and B16F10 melanoma, but not M5076 sarcoma. These effects were comparable to intraperitoneally administered doxorubicin. 4) Low concentrations of cytochalasin B inhibit the secretion of GlcNACase, indicating that cytochalasin B may inhibit metastatic progression by mechanisms not directly associated with its influence on cell adhesion and motility.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| | - Joseph N Zoino
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Timothy D Christen
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | | | - Thomas P Fondy
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
28
|
Song Z, Bakeer W, Marshall JW, Yakasai AA, Khalid RM, Collemare J, Skellam E, Tharreau D, Lebrun MH, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ. Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chem Sci 2015; 6:4837-4845. [PMID: 29142718 PMCID: PMC5667575 DOI: 10.1039/c4sc03707c] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/01/2015] [Indexed: 01/07/2023] Open
Abstract
The ACE1 and RAP1 genes from the avirulence signalling gene cluster of the rice blast fungus Magnaporthe oryzae were expressed in Aspergillus oryzae and M. oryzae itself. Expression of ACE1 alone produced a polyenyl pyrone (magnaporthepyrone), which is regioselectively epoxidised and hydrolysed to give different diols, 6 and 7, in the two host organisms. Analysis of the three introns present in ACE1 determined that A. oryzae does not process intron 2 correctly, while M. oryzae processes all introns correctly in both appressoria and mycelia. Co-expression of ACE1 and RAP1 in A. oryzae produced an amide 8 which is similar to the PKS-NRPS derived backbone of the cytochalasans. Biological testing on rice leaves showed that neither the diols 6 and 7, nor amide 8 was responsible for the observed ACE1 mediated avirulence, however, gene cluster analysis suggests that the true avirulence signalling compound may be a tyrosine-derived cytochalasan compound.
Collapse
Affiliation(s)
- Zhongshu Song
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Walid Bakeer
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK.,Microbiology Department , Faculty of Pharmacy , Beni Suef University , Egypt
| | - James W Marshall
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Ahmed A Yakasai
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Rozida Mohd Khalid
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | | | - Elizabeth Skellam
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany .
| | - Didier Tharreau
- UMR BGPI , CIRAD , Campus International de Baillarguet , 34398 Montpellier Cedex 5 , France
| | - Marc-Henri Lebrun
- UR 1290 BIOGER-CPP , INRA , Campus AgroParisTech , 78850 Thiverval-Grignon , France.,UMR 5240 MAP , CNRS , UCB , INSA , Bayer CropScience , 69263 Lyon Cedex 09 , France
| | - Colin M Lazarus
- School of Biological Sciences , University of Bristol , 24 Tyndall Avenue , Bristol BS8 1TQ , UK
| | - Andrew M Bailey
- School of Biological Sciences , University of Bristol , 24 Tyndall Avenue , Bristol BS8 1TQ , UK
| | - Thomas J Simpson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Russell J Cox
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK.,Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany .
| |
Collapse
|
29
|
Ear A, Amand S, Blanchard F, Blond A, Dubost L, Buisson D, Nay B. Direct biosynthetic cyclization of a distorted paracyclophane highlighted by double isotopic labelling of l-tyrosine. Org Biomol Chem 2015; 13:3662-6. [DOI: 10.1039/c5ob00114e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthesis of pyrrocidines was investigated using a double (18O,13C) labelling of l-tyrosine. It shows that the phenolic 18O is incorporated during aryl ether bond formation.
Collapse
Affiliation(s)
- Alexandre Ear
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Séverine Amand
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Florent Blanchard
- Institut de Chimie des Substances Naturelles (ICSN
- CNRS)
- 91198 Gif-sur-Yvette Cedex
- France
| | - Alain Blond
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Lionel Dubost
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Didier Buisson
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| | - Bastien Nay
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique (joint unit UMR 7245 CNRS-MNHN)
- 75005 Paris
- France
| |
Collapse
|
30
|
Trendowski M. Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochim Biophys Acta Rev Cancer 2014; 1846:599-616. [PMID: 25286320 DOI: 10.1016/j.bbcan.2014.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 02/06/2023]
Abstract
Although cytoskeletal-directed agents have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of neoplastic cells, they are all microtubule-based drugs, and there has yet to be any microfilament- or intermediate filament-directed agents approved for clinical use. There are many inherent differences between the cytoskeletal networks of malignant and normal cells, providing an ideal target to attain preferential damage. Further, numerous microfilament-directed agents, and an intermediate filament-directed agent of particular interest (withaferin A) have demonstrated in vitro and in vivo efficacy, suggesting that cytoskeletal filaments may be exploited to supplement chemotherapeutic approaches currently used in the clinical setting. Therefore, this review is intended to expose academics and clinicians to the tremendous variety of cytoskeletal filament-directed agents that are currently available for further chemotherapeutic evaluation. The mechanisms by which microfilament directed- and intermediate filament-directed agents damage malignant cells are discussed in detail in order to establish how the drugs can be used in combination with each other, or with currently approved chemotherapeutic agents to generate a substantial synergistic attack, potentially establishing a new paradigm of chemotherapeutic agents.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
31
|
Vederas JC. Explorations of fungal biosynthesis of reduced polyketides – a personal viewpoint. Nat Prod Rep 2014; 31:1253-9. [DOI: 10.1039/c4np00091a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 2014; 32:1180-204. [PMID: 24651031 DOI: 10.1016/j.biotechadv.2014.03.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 02/08/2023]
Abstract
Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites. This review focuses on co-culture studies that aim to increase the diversity of metabolites obtained from microbes. The various strategies are summarized with a special emphasis on the multiple methods of performing co-culture experiments. The analytical approaches for studying these interaction phenomena are discussed, and the chemical diversity and biological activity observed among the induced metabolites are described.
Collapse
Affiliation(s)
- Samuel Bertrand
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France
| | - Nadine Bohni
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Sylvain Schnee
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Olivier Schumpp
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Katia Gindro
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
33
|
Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M, Güldener U, Tudzynski B, Humpf HU. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. ACTA ACUST UNITED AC 2013; 20:1055-66. [PMID: 23932525 DOI: 10.1016/j.chembiol.2013.07.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster 48143, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|