1
|
Chen H, Liu F. Photo-Induced Aerobic Oxidation of C-H Bonds. Molecules 2024; 29:5277. [PMID: 39598666 PMCID: PMC11596625 DOI: 10.3390/molecules29225277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The photo-induced aerobic oxidation of C-H bonds has become an increasingly valuable strategy in organic synthesis, offering a green and efficient method for introducing oxygen into organic molecules. The utilization of molecular oxygen as an oxidant, coupled with visible-light photocatalysis, has gained significant attention due to its sustainability, atom economy, and environmentally benign nature. This review highlights the recent advancements in the field, focusing on the development of metal-free and transition-metal-based photocatalytic systems and novel photosensitizers capable of promoting selective C-H bond oxidation. The mechanistic pathways involved in various substrate oxidations, including benzylic, alkyl, alkene, and alkyne C-H bond transformations, are discussed. This review concludes with insights into the potential for integrating photocatalysis with renewable energy sources, positioning photo-induced aerobic oxidation as a cornerstone of sustainable chemical processes.
Collapse
Affiliation(s)
| | - Feng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Das A, Mohit, Thomas KRJ. Donor-Acceptor Covalent Organic Frameworks as a Heterogeneous Photoredox Catalyst for Scissoring Alkenes to Carbonyl Constituents. J Org Chem 2023; 88:14065-14077. [PMID: 37695568 DOI: 10.1021/acs.joc.3c01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The conversion of alkenes to carbonyl constituents via the cleavage of the C═C bond is unique due to its biological and pharmacological significance. Though a number of oxidative C═C cleavage protocols have been demonstrated for terminal and electron-rich alkene systems, none of them were optimized for electron-deficient and conjugated alkenes. In this work, a covalent organic framework containing triphenylamine and triazine units was revealed to cleave the C═C bond of alkenes under very mild conditions involving visible light irradiation due to its photoredox property. The alkenes can be conveniently broken across the double bond to their constituent carbonyl derivatives on light irradiation in the presence of air and the covalent organic framework photocatalyst. This protocol is applicable for a wide range of alkenes in an aqueous acetonitrile medium with high functional group tolerance and regioselectivity. Though the electron-deficient alkenes required tetramethylethylene diamine as a sacrificial donor, the electron-rich alkenes do not demand any additives.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Zhao Q, Wang Y, Wang Y, Hu Q, Yao J, Wen Z, Li H. Control of Selectivity in FeCl 3 -Catalyzed Aerobic Oxidation of Cycloketones. Chem Asian J 2023; 18:e202201101. [PMID: 36519526 DOI: 10.1002/asia.202201101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The FeCl3 -catalyzed aerobic oxidation of ketones always gives rise to the α-C-C cleavage product, having challenges to afford hydroxyl keto compounds. Here we report an effective control of the main product from keto acid to α-hydroxyl ketone, by reducing the concentration of FeCl3 catalyst, together with the use of DMSO as the solvent. In addition, mechanistic investigations suggested the same FeCl3 -coordinated peroxide intermediate for both hydroxylation and C-C cleavage routes, and emphasize the role of DMSO as both ligand and reductant. This work provides a new approach for selective aerobic oxidation under Lewis acid catalysis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Yongtao Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
- Center of Chemistry for Frontier Technologies, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Yu Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Qixuan Hu
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Jia Yao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Zeyu Wen
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| | - Haoran Li
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering, Zhejiang University, Zhe Da Rd. 38, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Cheng C, Zhu B, Cheng B, Macyk W, Wang L, Yu J. Catalytic Conversion of Styrene to Benzaldehyde over S-Scheme Photocatalysts by Singlet Oxygen. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| |
Collapse
|
5
|
Visible Light‐Promoted Fluorescein/Ni‐Catalyzed Synthesis of Bis‐(β‐Dicarbonyls) using Olefins as a Methylene Bridge Synthon. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Das S, Vanderghinste J. Applications of Photoredox Catalysis for the Radical-Induced Cleavage of C–C Bonds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1702-6193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSelective cleavage of C–C bonds forms one of the greatest challenges in current organic chemistry, due to the relative strength of these bonds. However, such transformations are an invaluable instrument to break down and construct new carbon–carbon bonds. To achieve this, photochemistry can be used as a tool to generate radicals and induce the cleavage of these bonds due to their high reactivity. This review examines some of the most influential contributions in this field since 2010.1 Introduction2 C–C Bond Cleavage2.1 Homogeneous Catalyst2.1.1 N-Centered Radical2.2.2 O-Centered Radical2.2 Heterogeneous Catalyst3 C=C Bond Cleavage3.1 Homogeneous Catalyst3.2 Heterogeneous Catalyst4 C≡C Bond Cleavage4.1 Homogeneous Catalyst4.2 Heterogeneous Catalyst5 Conclusion
Collapse
|
7
|
Heuer J, Ferguson CTJ. Photocatalytic polymer nanomaterials for the production of high value compounds. NANOSCALE 2022; 14:1646-1652. [PMID: 35037676 DOI: 10.1039/d1nr06985c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotechnology has provided a platform for producing new photocatalytic materials, where the reduction in length scales has been used to amplify the efficiency of these light active materials. The progression to nano-based photocatalysts has been driven by the increase in surface area that is achieved. Furthermore, nanophotocatalysts based on porous polymers or gel materials are often more active as reagents can more easily partition across the whole photocatalyst. Here, reducing the diffusional path length for substrates across the porous/gel material increases the quantity of accessible active sites in the photocatalytic material. The formation of nanophotocatalytic materials has also enabled the formation of functional nanoparticles that can be used in different conditions traditionally inaccessible to bulk catalysts. Specifically, aqueous compatible nanophotocatalytic materials have been reported, enabling greener reaction conditions and new applications of photocatalysts.
Collapse
Affiliation(s)
- Julian Heuer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
8
|
Singh HK, Kamal A, Kumari S, Maury SK, Kushwaha AK, Srivastava V, Singh S. Visible‐Light‐Promoted Synthesis of Fusesd Imidazoheterocycle by Eosin Y under Metal‐Free and Solvent‐Free Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Himanshu Kumar Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Arsala Kamal
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Savita Kumari
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Suresh Kumar Maury
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Ambuj Kumar Kushwaha
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Vandana Srivastava
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| | - Sundaram Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 Uttar Pradesh India
| |
Collapse
|
9
|
Li J, Zhao J, Ma C, Yu Z, Zhu H, Yun L, Meng Q. Visible-Light-Driven Oxidative Cleavage of Alkenes Using Water-Soluble CdSe Quantum Dots. CHEMSUSCHEM 2021; 14:4985-4992. [PMID: 34494393 DOI: 10.1002/cssc.202101504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The oxidative cleavage of C=C bonds is an important chemical reaction, which is a popular reaction in the photocatalytic field. However, high catalyst-loading and low turnover number (TON) are general shortcomings in reported visible-light-driven reactions. Herein, the direct oxidative cleavage of C=C bonds through water-soluble CdSe quantum dots (QDs) is described under visible-light irradiation at room temperature with high TON (up to 3.7×104 ). Under the same conditions, water-soluble CdSe QDs could also oxidize sulfides to sulfoxides with 51-84 % yields and TONs up to 3.4×104 . The key features of this photocatalytic protocol include high TONs, wide substrates scope, low catalyst loadings, simple and mild reaction conditions, and molecular O2 as the oxidant.
Collapse
Affiliation(s)
- Jianing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Hongfei Zhu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
- Ningbo Institute, Dalian University of Technology, Ningbo, Zhejiang, 315016, P. R. China
| |
Collapse
|
10
|
Eşsiz S, Bozkaya U. A computational study of the reaction mechanism of 2,2-azobis(isobutyronitrile)-initiated oxidative cleavage of geminal alkenes. Org Biomol Chem 2021; 19:9483-9490. [PMID: 34709277 DOI: 10.1039/d1ob01607e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational study of 2,2-azobis(isobutyronitrile) (AIBN)-initiated aerobic oxidative cleavage of alkenes is carried out employing density functional theory (DFT) and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. Our computations show that the barriers for the formation of dioxetane derivatives suggested by Xu and co-workers (J. Org. Chem., 2014, 79, 7220-7225) for the reaction mechanism of aerobic oxidative cleavage of alkenes are computed to be higher than 65 kcal mol-1. This barrier is relatively high under the reaction conditions. Our results for the Xu mechanism indicate that the reaction does not proceed via the formation of a dioxetane ring under the reaction conditions. Our results demonstrate that the reaction of aerobic oxidative cleavage of geminal alkenes in the presence of AIBN is initiated by the peroxyl radical 9, contrary to the isobutyronitrile radical 2. Our results show that the 2-(2-hydroxyl-1,1-diarylethoxy)-2-methylpropanenitrile radical (15) does not appear throughout the reaction scheme and the reaction progresses over the 2-(2-hydroxyl-2,2-diarylethoxy)-2-methylpropanenitrile radical (13) rather than the 2-(2-hydroxyl-1,1-diarylethoxy)-2-methylpropanenitrile radical (15). Our results are in agreement with the experimental results for the aerobic oxidative cleavage of the geminal disubstituted alkenes. Our results also demonstrate that the epoxide derivatives can be formed as an intermediate under the reaction conditions. This reaction is not applicable for pyridine derivatives due to the conversion of vinylpyridine derivatives to N-oxide derivatives.
Collapse
Affiliation(s)
- Selçuk Eşsiz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25240, Turkey.
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
11
|
Ferguson CTJ, Zhang KAI. Classical Polymers as Highly Tunable and Designable Heterogeneous Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Calum T. J. Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kai A. I. Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
12
|
Upadhyay R, Kumar S, Maurya SK. V
2
O
5
@TiO
2
Catalyzed Green and Selective Oxidation of Alcohols, Alkylbenzenes and Styrenes to Carbonyls. ChemCatChem 2021. [DOI: 10.1002/cctc.202100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shashi Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
| | - Sushil K. Maurya
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
13
|
Xin H, Duan XH, Yang M, Zhang Y, Guo LN. Visible Light-Driven, Copper-Catalyzed Aerobic Oxidative Cleavage of Cycloalkanones. J Org Chem 2021; 86:8263-8273. [PMID: 34107678 DOI: 10.1021/acs.joc.1c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A visible light-driven, copper-catalyzed aerobic oxidative cleavage of cycloalkanones has been presented. A variety of cycloalkanones with varying ring sizes and various α-substituents reacted well to give the distal keto acids or dicarboxylic acids with moderate to good yields.
Collapse
Affiliation(s)
- Hong Xin
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mingyu Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiwen Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Xie Z, Lan J, Yan L, Chen X, Li Q, Meng J, Le Z. Photocatalyst-free visible-light-promoted quinazolinone synthesis at room temperature utilizing aldehydes generated in situ via C[double bond, length as m-dash]C bond cleavage. Org Biomol Chem 2021; 19:2436-2441. [PMID: 33406170 DOI: 10.1039/d0ob02268c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first report on a facile tandem route for synthesizing quinazolinones at room temperature from various aminobenzamides and in situ-generated aldehydes. The latter was formed via C[double bond, length as m-dash]C bond cleavage, and the overall reaction proceeded using molecular oxygen as a clean oxidant in the absence of a photocatalyst. Visible light, which was indispensable for the entire course of the reaction, played multiple roles. It initially cleaved styrene to an aldehyde, then facilitated its cyclization with an o-substituted aniline, and finally promoted the dehydrogenation of the cyclized intermediate. The previous step provided the feedstock for the next step in the reaction, thereby preventing volatilization, oxidation, and polymerization of the aldehyde. Thus, the overall process is simple, environmentally benign, and economically feasible.
Collapse
Affiliation(s)
- Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chawla R, Jaiswal S, Dutta PK, Yadav LDS. A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from β-nitrostyrenes and arylazo sulfones. Org Biomol Chem 2021; 19:6487-6492. [PMID: 34241618 DOI: 10.1039/d1ob01028j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalyst-free visible-light-mediated reactions, based on the presence of a visible-light-absorbing functional group in the starting material itself in order to exclude the often costly, hazardous, degradable and difficult to remove or recover photoredox catalysts, have been gaining momentum recently. We have employed this approach to develop a denitrative photocatalyst-free visible-light-mediated protocol for the arylation/sulfonylation of β-nitrostyrenes employing arylazo sulfones (bench-stable photolabile compounds) in a switchable solvent-controlled manner. Arylazo sulfones served as the aryl and sulfonyl radical precursors under blue LED irradiation for the synthesis of trans-stilbenes and (E)-vinyl sulfones in CH3CN and dioxane/H2O 2 : 1, respectively. The absence of any metal, photocatalyst and additive; excellent selectivity (E-stereochemistry) and solvent-switchability; and the use of visible light and ambient temperature are the prime assets of the developed method. Moreover, we report the first photocatalyst-free visible light-driven route to synthesize stilbenes and vinyl sulfones from readily available β-nitrostyrenes.
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Lal Dhar S Yadav
- Green Synthesis Lab, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
16
|
|
17
|
Aman H, Chiu WH, Liu PH, Chuang GJ. Radical-mediated aerobic oxidation of substituted styrenes and stilbenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04755h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2,2-azobis(isobutyronitrile)-catalyzed oxidative cleavage of alkenes with molecular oxygen as the oxidant was described.
Collapse
Affiliation(s)
- Hasil Aman
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| | - Wei-Hua Chiu
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| | - Pin-Heng Liu
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| | - Gary Jing Chuang
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| |
Collapse
|
18
|
Ou J, He S, Wang W, Tan H, Liu K. Highly efficient oxidative cleavage of olefins with O2 under catalyst-, initiator- and additive-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00175b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Without employing any external catalyst, initiator and additives, an efficient and eco-friendly protocol has been developed for the synthesis of carbonyl compound via 1,4-dioxane- promoted oxidation of olefins with atmospheric O2 as the sole oxidant.
Collapse
Affiliation(s)
- Jinhua Ou
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
- Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Saiyu He
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Wei Wang
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Hong Tan
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Kaijian Liu
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| |
Collapse
|
19
|
1,1,1,3,3,3-Hexafluoroisopropanol as an efficient medium for the room temperature oxidation of styrenes to benzaldehydes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Roy Chowdhury S, Singh D, Hoque IU, Maity S. Organic Dye-Catalyzed Intermolecular Radical Coupling of α-Bromocarbonyls with Olefins: Photocatalytic Synthesis of 1,4-Ketocarbonyls Using Air as an Oxidant. J Org Chem 2020; 85:13939-13950. [DOI: 10.1021/acs.joc.0c01985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Injamam Ul Hoque
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Soumitra Maity
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|
21
|
Eşsiz S, Bozkaya U. Computational Study for the Reaction Mechanism of N-Hydroxyphthalimide-Catalyzed Oxidative Cleavage of Alkenes. J Org Chem 2020; 85:10136-10142. [PMID: 32672962 DOI: 10.1021/acs.joc.0c01472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational study of N-hydroxyphthalimide-catalyzed aerobic oxidative cleavage of alkenes is carried out employing density functional theory and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. Our results demonstrate that the reaction proceeds through the alkoxyl radicals, as opposed to the mechanism suggested by Jiao and co-workers (Org. Lett. 2012, 14, 4158-4161), in which the reaction proceeds via formation of the dioxetane ring. The barriers for the formation of dioxetane derivatives are computed to be higher than 50 kcal mol-1, while the barriers for the formation of alkoxyl radicals are as low as 13 kcal mol-1. Our results also demonstrate that epoxide derivatives can be formed as intermediates or byproducts under the reaction conditions.
Collapse
Affiliation(s)
- Selçuk Eşsiz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25240, Turkey
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
22
|
Firoozi S, Hosseini-Sarvari M. Photo-Difunctionalization and Photo-Oxidative Cleavage of the C-C Double Bond of Styrenes in the Presence of Nanosized Cadmium Sulfide (CdS) as a Highly Efficient Photo-Induced Reusable Nanocatalyst. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Somayeh Firoozi
- Department of Chemistry; College of Science; Shiraz University; 7194684795 Shiraz I.R. Iran
| | - Mona Hosseini-Sarvari
- Department of Chemistry; College of Science; Shiraz University; 7194684795 Shiraz I.R. Iran
| |
Collapse
|
23
|
Photocatalyst-free visible light driven synthesis of (E)-vinyl sulfones from cinnamic acids and arylazo sulfones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Jain A, Ameta C. Novel Way to Harness Solar Energy: Photo-Redox Catalysis in Organic Synthesis. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s002315842002007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Wang J, Ni B, Niu T, Ji F. C 3N 4-Photocatalyzed aerobic oxidative cleavage of CC bonds in alkynes with diazonium salts leading to two different aldehydes or esters in one pot. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01773f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C3N4-Photocatalyzed oxidative cleavage of CC bonds in alkynes with diazonium salts to obtain two different aldehydes or esters.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Bangqing Ni
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Tengfei Niu
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Fei Ji
- Department of Pharmaceutical Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
26
|
Chibac AL, Melinte V, Brezová V, Renard E, Brosseau A, Langlois V, Versace D. Metal‐Free and Heterogeneous Photocatalytic Reduction of 4‐Nitroaniline by a Poly(Ethylene Glycol)‐Supported Eosin Dye under Visible‐Light Exposure. ChemCatChem 2019. [DOI: 10.1002/cctc.201900040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andreea L. Chibac
- Petru Poni Institute of Macromolecular Chemistry 41 A Gr. GhicaVoda Alley 700487 Iasi Romania
| | - Violeta Melinte
- Petru Poni Institute of Macromolecular Chemistry 41 A Gr. GhicaVoda Alley 700487 Iasi Romania
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics Faculty of Chemical and Food TechnologySlovak University of Technology in Bratislava Radlinského 9 SK-812 37 Bratislava Slovakia
| | - Estelle Renard
- Institut de Chimie et des Matériaux de Paris Est UMR 7182 CNRS - UPEC 2–8 rue Henri Dunant 94320 Thiais France
| | - Arnaud Brosseau
- ENS-Cachan, PPSM-CNRS UMR 8531Bâtiment d'Alembert 3éme étage 61 avenue du Président Wilson 94235 Cachan Cedex France
| | - Valerie Langlois
- Institut de Chimie et des Matériaux de Paris Est UMR 7182 CNRS - UPEC 2–8 rue Henri Dunant 94320 Thiais France
| | - Davy‐Louis Versace
- Institut de Chimie et des Matériaux de Paris Est UMR 7182 CNRS - UPEC 2–8 rue Henri Dunant 94320 Thiais France
| |
Collapse
|
27
|
Kapoor R, Chawla R, Yadav LDS. Visible-light-mediated Gomberg-Bachmann reaction: An efficient photocatalytic approach to 2-aminobiphenyls. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Imada Y, Okada Y, Noguchi K, Chiba K. Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yasushi Imada
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Yohei Okada
- Department of Chemical Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
29
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
30
|
Sridhar A, Rangasamy R, Selvaraj M. Polymer-supported eosin Y as a reusable photocatalyst for visible light mediated organic transformations. NEW J CHEM 2019. [DOI: 10.1039/c9nj04064a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid synthesis of highly stable polymer-supported eosin Y for visible light-driven photoxidation of thioethers to sulfoxides and phenylboronic acids to phenols.
Collapse
Affiliation(s)
| | | | - Mari Selvaraj
- Department of Chemistry Guru Nanak College (Autonomous)
- Chennai
- India
| |
Collapse
|
31
|
Chawla R, Yadav LDS. Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: synthesis of (un)symmetrical diaryl/alkyl aryl sulfones. Org Biomol Chem 2019; 17:4761-4766. [DOI: 10.1039/c9ob00864k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition-metal- and oxidant/reductant-free visible-light-mediated synthesis of (un)symmetrical diaryl/alkyl aryl sulfones from aryl diazonium and sulfinate salts employing eosin Y as an organo-photoredox catalyst is reported.
Collapse
Affiliation(s)
- Ruchi Chawla
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Prayagraj 211 002
- India
| | - Lal Dhar S. Yadav
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Prayagraj 211 002
- India
| |
Collapse
|
32
|
Imada Y, Okada Y, Noguchi K, Chiba K. Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angew Chem Int Ed Engl 2018; 58:125-129. [PMID: 30375161 DOI: 10.1002/anie.201809454] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Indexed: 01/06/2023]
Abstract
Electrode materials can have a significant impact on the course of an electrolysis reaction. Of particular interest is that different electrodes can generate different products from the same substrate. The electrode-material-selective transformations of styrene derivatives with molecular oxygen are reported. Platinum electrodes afford carbonyl products via cleavage of olefins, whereas tetrahydrofuran formation is achieved with carbon electrodes. A variety of different styrenes are available for both reactions. Electrolysis allows straightforward and mild chemical conversions that are metal- and oxidant-free. Electrochemical measurements illuminate the different effects of platinum and carbon electrodes on styrenes. The key to the differing reactions is probably that the oxidation potentials of the substrates are lower (higher HOMO energy) on carbon electrodes than on platinum electrodes. The adsorption of the substrates on carbon electrodes can also promote tetrahydrofuran formation.
Collapse
Affiliation(s)
- Yasushi Imada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
33
|
Amaya T, Fujimoto H. Iron(III) nitrate-induced aerobic and catalytic oxidative cleavage of olefins. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Corrigan N, Shanmugam S, Xu J, Boyer C. Photocatalysis in organic and polymer synthesis. Chem Soc Rev 2018; 45:6165-6212. [PMID: 27819094 DOI: 10.1039/c6cs00185h] [Citation(s) in RCA: 468] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Singh M, Yadav AK, Yadav LDS, Singh R. Visible-light-activated selective synthesis of sulfoxides via thiol-ene/oxidation reaction cascade. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Ji X, Li D, Wang Z, Tan M, Huang H, Deng GJ. Aerobic C-C Bond Cleavage of Indoles by Visible-Light Photoredox Catalysis with Ru(bpy)3
2+. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaochen Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan China
| | - Dongdong Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan China
| | - Zhongzhen Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan China
| | - Muyun Tan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan China
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry; Chinese Academy of Sciences (CAS); 100190 Beijing P. R. China
| |
Collapse
|
37
|
Ghosh M, Ray JK. Ten years advancement in the synthetic applications of 2-bromo-cyclohexenecarbaldehydes and 2-bromobenzaldehydes and derived substrates under palladium-catalyzed cross-coupling conditions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
|
39
|
Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03654] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garazi Urgoitia
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Raul SanMartin
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - María Teresa Herrero
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Esther Domínguez
- Department of Organic Chemistry
II, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), 48940 Leioa, Spain
| |
Collapse
|
40
|
Bian C, Singh AK, Niu L, Yi H, Lei A. Visible‐Light‐Mediated Oxygenation Reactions using Molecular Oxygen. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600563] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changliang Bian
- The Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 P. R. China
| | - Atul K. Singh
- The Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 P. R. China
| | - Linbin Niu
- The Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory and Institute of Elemento-Organic ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
41
|
Liu Y, Tang Y, Jiang YY, Zhang X, Li P, Bi S. Mechanism and Origin of Et2Al(OEt)-Induced Chemoselectivity of Nickel-Catalyzed Three-Component Coupling of One Diketene and Two Alkynes. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03543] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yuxia Liu
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Yanan Tang
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Xiaomin Zhang
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Ping Li
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Siwei Bi
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P.R. China
| |
Collapse
|
42
|
Liu Y, Xue D, Li C, Xiao J, Wang C. Reactions catalyzed by a binuclear copper complex: selective oxidation of alkenes to carbonyls with O2. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01757j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A binuclear copper complex bearing a simple salicylate ligand catalyses the efficient cleavage of styrenes into ketones and aldehydes with O2 as the oxidant. The reaction works under an atmosphere of O2 (balloon) with 0.5 mol% of catalyst and could be performed on a gram scale, providing an alternative to ozonolysis.
Collapse
Affiliation(s)
- Yuxia Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Department of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Department of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Department of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Department of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Department of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
| |
Collapse
|
43
|
Deng Y, Wei X, Wang H, Sun Y, Noël T, Wang X. Disulfide‐Catalyzed Visible‐Light‐Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Charge‐Transfer Complex. Angew Chem Int Ed Engl 2016; 56:832-836. [DOI: 10.1002/anie.201607948] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Yuchao Deng
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xiao‐Jing Wei
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Hui Wang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
| | - Yuhan Sun
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P.R. China
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Xiao Wang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
- Harvard NeuroDiscovery Center Harvard Medical School and Brigham & Women's Hospital 65 Landsdowne Street Cambridge MA 02139 USA
| |
Collapse
|
44
|
Deng Y, Wei X, Wang H, Sun Y, Noël T, Wang X. Disulfide‐Catalyzed Visible‐Light‐Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Charge‐Transfer Complex. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607948] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuchao Deng
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xiao‐Jing Wei
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Hui Wang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
| | - Yuhan Sun
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P.R. China
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Xiao Wang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Pudong Shanghai 201210 P.R. China
- Harvard NeuroDiscovery Center Harvard Medical School and Brigham & Women's Hospital 65 Landsdowne Street Cambridge MA 02139 USA
| |
Collapse
|
45
|
Zhang X, Yi H, Luo Y, Lei A. Tuning O2Reactivity through Synergistic Photo/Copper Catalysis: Direct Synthesis of 4-Aryl tetralones via Cyclodimerization-Oxygenation of Styrenes. Chem Asian J 2016; 11:2117-20. [DOI: 10.1002/asia.201600758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Xu Zhang
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Hong Yi
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Yi Luo
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies; Wuhan University; Wuhan Hubei 430072 P. R. China
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P. R. China
| |
Collapse
|
46
|
Wan JP, Gao Y, Wei L. Recent Advances in Transition-Metal-Free Oxygenation of Alkene C=C Double Bonds for Carbonyl Generation. Chem Asian J 2016; 11:2092-102. [DOI: 10.1002/asia.201600671] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jie-Ping Wan
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| | - Yong Gao
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| |
Collapse
|
47
|
Visible light induced azidation of aldehydic C–H with carbon tetrabromide and sodium azide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Yadav VK, Srivastava VP, Yadav LDS. Molecular iodine mediated oxidative coupling of enol acetates with sodium sulfinates leading to β-keto sulfones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Tripathi S, Singh SN, Yadav LDS. Visible light photocatalysis with CBr4: a highly selective aerobic photooxidation of methylarenes to aldehydes. RSC Adv 2016. [DOI: 10.1039/c5ra26623h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient, operationally simple, metal-free strategy for the selective oxidation of methylarenes to aromatic aldehydes through visible light photocatalysis employing CBr4 and molecular oxygen is reported.
Collapse
Affiliation(s)
- Shubhangi Tripathi
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad 211 002
- India
| | - Sachchida N. Singh
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad 211 002
- India
| | - Lal Dhar S. Yadav
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Allahabad 211 002
- India
| |
Collapse
|
50
|
Sarma MJ, Borah AJ, Rajbongshi KK, Phukan P. Formation of new C–O and C–N bonds via base promoted Csp2–Csp3 bond cleavage of α-nitro ketone. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|