1
|
Wang X, Wen S, Wu Z, Jiang JH. Orthogonal Control of Nucleic Acid Function via Chemical Caging-Decaging Strategies. Chembiochem 2024:e202400516. [PMID: 39141545 DOI: 10.1002/cbic.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
The ability to precisely control the function of nucleic acids plays an important role in biosensing and biomedicine. In recent years, novel strategies employing biological, physical, and chemical triggers have been developed to modulate the function of nucleic acids spatiotemporally. These approaches commonly involve the incorporation of stimuli-responsive groups onto nucleic acids to block their functions until triggers-induced decaging restore activity. These inventive strategies deepen our comprehension of nucleic acid molecules' dynamic behavior and provide new techniques for precise disease diagnosis and treatment. Focusing on the spatiotemporal regulation of nucleic acid molecules through the chemical caging-decaging strategy, we here present an overview of the innovative triggered control mechanisms and accentuate their implications across the fields of chemical biology, biomedicine, and biosensing.
Collapse
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, Hunan, 410082, P. R. China
| | - Siyu Wen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
2
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
3
|
Kennelly SA, Moorthy R, Otero RS, Harki DA. Expanding Catch and Release DNA Decoy (CRDD) Technology with Pyrimidine Mimics. Chemistry 2022; 28:e202201355. [PMID: 35849314 PMCID: PMC9588621 DOI: 10.1002/chem.202201355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Catch and release DNA decoys (CRDDs) utilize photochemically responsive nucleoside analogues that generate abasic sites upon exposure to light. Herein, we describe the synthesis and evaluation of four candidate CRDD monomers containing nucleobases that mimic endogenous pyrimidines: 2-nitroimidazole (2-NI), 2-nitrobenzene (2-NB), 2-nitropyrrole (2-NP) and 3-nitropyrrole (3-NP). Our studies reveal that 2-NI and 2-NP can function as CRDDs, whereas 3-NP and 2-NB undergo decomposition and transformation to a higher-ordered structure upon photolysis, respectively. When incorporated into DNA, 2-NP undergoes rapid photochemical cleavage of the anomeric bond (1.8 min half-life) to yield an abasic site. Finally, we find that all four pyrimidine mimics show significantly greater stability when base-paired against the previously reported 7-nitroindole CRDD monomer. Our work marks the expansion of CRDD technology to both purine and pyrimidine scaffolds.
Collapse
Affiliation(s)
- Samantha A. Kennelly
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Ramkumar Moorthy
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Ruben Silva Otero
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Daniel A. Harki
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| |
Collapse
|
4
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
5
|
Yang Y, Luo S, Huang J, Xiao Y, Fu Y, Liu W, Yin H. Photoactivation of Innate Immunity Receptor TLR8 in Live Mammalian Cells by Genetic Encoding of Photocaged Tyrosine. Chembiochem 2021; 23:e202100344. [PMID: 34460982 DOI: 10.1002/cbic.202100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 11/10/2022]
Abstract
The effectiveness of innate immune responses relies on an intricate balance between activation and regulation. TLR8, a member of the Toll-like receptor (TLR) family, plays a fundamental role in host defense by sensing viral single-stranded RNAs (ssRNAs). However, the molecular recognition and regulatory mechanism of TLR8 is not fully understood, especially in a whole-cell environment. Here, we engineer the first light-controllable TLR8 model by genetically encoding a photocaged tyrosine, NBY, into specific sites of TLR8. In the caged forms, the activity of TLR8 is masked but can be restored upon decaging by exposure to UV light. To explain the mechanism clearly, we divide the sites with light responsiveness into three groups. They can separately block the ligands that bind to the pockets of TLR8, change the interaction modes between two TLR8 protomers, and interfere with the interactions between TLR8 cytosolic domains with its downstream adaptor. Specifically, we use this chemical caging strategy to probe and evaluate the function of several tyrosine sites located at the interface of TLR8 homodimers with a previously unknown regulatory mode, which may provide a new strategy for TLR8 modulator development. Effects on downstream signaling pathways are monitored at the transcriptional and translational levels in various cell lines. By photoactivating specific cells within a larger population, this powerful tool can provide novel mechanistic insights, with potential in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuchen Luo
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jian Huang
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xiao
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China.,Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, 510282, P. R. China
| | - Yixuan Fu
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Liu
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Hang Yin
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Yang L, Trentini D, Kim H, Sul J, Eberwine JH, Dmochowski IJ. Photoactivatable Circular Caged Oligonucleotides for Transcriptome In Vivo Analysis (TIVA). CHEMPHOTOCHEM 2021; 5:940-946. [DOI: 10.1002/cptc.202100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Linlin Yang
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Dora Trentini
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - HyunBum Kim
- Department of Pharmacology University of Pennsylvania 38 John Morgan Building 3620 Hamilton Walk Philadelphia PA 19104-6084 USA
| | - Jai‐Yoon Sul
- Department of Pharmacology University of Pennsylvania 38 John Morgan Building 3620 Hamilton Walk Philadelphia PA 19104-6084 USA
| | - James H. Eberwine
- Department of Pharmacology University of Pennsylvania 38 John Morgan Building 3620 Hamilton Walk Philadelphia PA 19104-6084 USA
| | - Ivan J. Dmochowski
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
7
|
Giebler M, Alabiso W, Wieser V, Radl S, Schlögl S. Photopatternable and Rewritable Epoxy-Anhydride Vitrimers. Macromol Rapid Commun 2020; 42:e2000466. [PMID: 32996232 DOI: 10.1002/marc.202000466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Indexed: 12/20/2022]
Abstract
The present work highlights a new approach to write, erase, and rewrite micropatterns into the same region of covalent adaptable polymer networks. Thermal curing of an epoxy-terminated o-nitrobenzyl ester (o-NBE) derivative with hexahydrophthalic anhydride in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields a dynamic covalent network, whose solubility is locally controlled by irradiation with ultraviolet (UV) light. The photolysis of the o-NBE chromophores enables a well-defined cleavage of the epoxy-anhydride network, and the formation of soluble photolysis products is confirmed by sol-gel analysis. The photo-induced change in solubility is exploited to inscribe micropatterns by photolithographic techniques and after development in an organic solvent positive tone structures with a feature size of 20 µm are obtained. Due to the thermo-activated exchange reactions of the hydroxyl ester links and the related macroscopic reflow, the polymer patterns are fully erased at temperatures well above the topological freezing transition of the vitrimer network. The regenerated film has a smooth surface topology and can be reused to inscribe new micropatterns via mask lithography.
Collapse
Affiliation(s)
- Michael Giebler
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben, 8700, Austria
| | - Walter Alabiso
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben, 8700, Austria
| | - Viktoria Wieser
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben, 8700, Austria
| | - Simone Radl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben, 8700, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, Leoben, 8700, Austria
| |
Collapse
|
8
|
van de Graaff MJ, Oosenbrug T, Marqvorsen MHS, Nascimento CR, de Geus MAR, Manoury B, Ressing ME, van Kasteren SI. Conditionally Controlling Human TLR2 Activity via Trans-Cyclooctene Caged Ligands. Bioconjug Chem 2020; 31:1685-1692. [PMID: 32510940 PMCID: PMC7303972 DOI: 10.1021/acs.bioconjchem.0c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Toll-like
receptors (TLRs) are key pathogen sensors of the immune
system. Their activation results in the production of cytokines, chemokines,
and costimulatory molecules that are crucial for innate and adaptive
immune responses. In recent years, specific (sub)-cellular location
and timing of TLR activation have emerged as parameters for defining
the signaling outcome and magnitude. To study the subtlety of this
signaling, we here report a new molecular tool to control the activation
of TLR2 via “click-to-release”-chemistry. We conjugated
a bioorthogonal trans-cyclooctene (TCO) protecting group via solid
support to a critical position within a synthetic TLR2/6 ligand to
render the compound unable to initiate signaling. The TCO-group could
then be conditionally removed upon addition of a tetrazine, resulting
in restored agonist activity and TLR2 activation. This approach was
validated on RAW264.7 macrophages and various murine primary immune
cells as well as human cell line systems, demonstrating that TCO-caging
constitutes a versatile approach for generating chemically controllable
TLR2 agonists.
Collapse
Affiliation(s)
- Michel J van de Graaff
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| | - Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, The Netherlands
| | - Mikkel H S Marqvorsen
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| | - Clarissa R Nascimento
- INEM, INSERM, Unité 1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine, 156 Rue de Vaugirard, 75015 Paris, France
| | - Mark A R de Geus
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| | - Bénédicte Manoury
- INEM, INSERM, Unité 1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine, 156 Rue de Vaugirard, 75015 Paris, France
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, The Netherlands
| | - Sander I van Kasteren
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
9
|
Giebler M, Radl S, Ules T, Griesser T, Schlögl S. Photopatternable Epoxy-Based Thermosets. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2350. [PMID: 31344852 PMCID: PMC6695657 DOI: 10.3390/ma12152350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023]
Abstract
The present work provides a comparative study on the photopatterning of epoxy-based thermosets as a function of network structure and network mobility. Local switching of solubility properties by light of a defined wavelength is achieved by exploiting versatile o-nitrobenzyl ester (o-NBE) chemistry. o-NBE derivatives with terminal epoxy groups are synthetized and thermally cured with different types of cycloaliphatic anhydrides via nucleophilic ring opening reaction. By varying the structure of the anhydride, glass transition temperature (Tg) and surface hardness are adjusted over a broad range. Once the network has been formed, the photolysis of the o-NBE groups enables a well-defined degradation of the 3D network. Fourier transform infrared (FT-IR) spectroscopy studies demonstrate that cleavage rate and cleavage yield increase with rising mobility of the network, which is either facilitated by inherent network properties (Tg below room temperature) or a simultaneous heating of the thermosets above their Tg. The formation of soluble species is evidenced by sol-gel analysis, revealing that low-Tg networks are prone to secondary photoreactions at higher exposure doses, which lead to a re-crosslinking of the cleaved polymer chains. The change in solubility properties is exploited to inscribe positive tone micropatterns within the thermosets by photolithographic techniques. Contrast curves show that the resist performance of rigid networks is superior to flexible ones, with a contrast of 1.17 and a resolution of 8 µm.
Collapse
Affiliation(s)
- Michael Giebler
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria
| | - Simone Radl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria
| | - Thomas Ules
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria
| | - Thomas Griesser
- Institute of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, A-8700 Leoben, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria.
| |
Collapse
|
10
|
Hughes RM. A compendium of chemical and genetic approaches to light-regulated gene transcription. Crit Rev Biochem Mol Biol 2018; 53:453-474. [PMID: 30040498 DOI: 10.1080/10409238.2018.1487382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
Collapse
Affiliation(s)
- Robert M Hughes
- a Department of Chemistry , East Carolina University , Greenville , NC , USA
| |
Collapse
|
11
|
Yang L, Kim HB, Sul JY, Yeldell SB, Eberwine JH, Dmochowski IJ. Efficient Synthesis of Light-Triggered Circular Antisense Oligonucleotides Targeting Cellular Protein Expression. Chembiochem 2018; 19:1250-1254. [PMID: 29479781 PMCID: PMC6248878 DOI: 10.1002/cbic.201800012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Light-activated ("caged") antisense oligonucleotides are powerful molecules for regulating gene expression at submicron spatial resolution through the focal modulation of endogenous cellular processes. Cyclized caged oligos are particularly promising structures because of their inherent stability and similarity to naturally occurring circular DNA and RNA molecules. Here, we introduce an efficient route for cyclizing an antisense oligodeoxynucleotide incorporating a photocleavable linker. Oligo cyclization was achieved for several sequences in nearly quantitative yields through intramolecular copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Caging stability and light activation were characterized by FRET efficiency, denaturing gel assay, and melting temperature measurements. Finally, a cyclized caged oligo was designed to target gfap, and it gave a tenfold reduction in glial fibrillary acidic protein upon photoactivation in astrocytes.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Hyun Bum Kim
- Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, 19104-6084, USA
| | - Jai-Yoon Sul
- Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, 19104-6084, USA
| | - Sean B Yeldell
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - James H Eberwine
- Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, 19104-6084, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
12
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
13
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
14
|
Light Guided In-vivo Activation of Innate Immune Cells with Photocaged TLR 2/6 Agonist. Sci Rep 2017; 7:8074. [PMID: 28808328 PMCID: PMC5556111 DOI: 10.1038/s41598-017-08520-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
The complexity of the immune system creates challenges in exploring its importance and robustness. To date, there have been few techniques developed to manipulate individual components of the immune system in an in vivo environment. Here we show a light-based dendritic cell (DC) activation allowing spatial and temporal control of immune activation in vivo. Additionally, we show time dependent changes in RNA profiles of the draining lymph node, suggesting a change in cell profile following DC migration and indicating that the cells migrating have been activated towards antigen presentation.
Collapse
|
15
|
Oosenbrug T, van de Graaff MJ, Ressing ME, van Kasteren SI. Chemical Tools for Studying TLR Signaling Dynamics. Cell Chem Biol 2017. [PMID: 28648377 DOI: 10.1016/j.chembiol.2017.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The detection of infectious pathogens is essential for the induction of antimicrobial immune responses. The innate immune system detects a wide array of microbes using a limited set of pattern-recognition receptors (PRRs). One family of PRRs with a central role in innate immunity are the Toll-like receptors (TLRs). Upon ligation, these receptors initiate signaling pathways culminating in the release of pro-inflammatory cytokines and/or type I interferons (IFN-I). In recent years, it has become evident that the specific subcellular location and timing of TLR activation affect signaling outcome. The subtlety of this signaling has led to a growing demand for chemical tools that provide the ability to conditionally control TLR activation. In this review, we survey current models for TLR signaling in time and space, discuss how chemical tools have contributed to our understanding of TLR ligands, and describe how they can aid further elucidation of the dynamic aspects of TLR signaling.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, the Netherlands
| | - Michel J van de Graaff
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, the Netherlands
| | - Maaike E Ressing
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, the Netherlands.
| | - Sander I van Kasteren
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, the Netherlands.
| |
Collapse
|
16
|
Radl SV, Schipfer C, Kaiser S, Moser A, Kaynak B, Kern W, Schlögl S. Photo-responsive thiol–ene networks for the design of switchable polymer patterns. Polym Chem 2017. [DOI: 10.1039/c7py00055c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photo-patternable thiol–ene networks are prepared by combining versatile o-NBE chemistry with the distinctive advantages of a typical “click” reaction.
Collapse
Affiliation(s)
- S. V. Radl
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - C. Schipfer
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - S. Kaiser
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - A. Moser
- Chair of Materials Science and Testing of Plastics
- Montanuniversitaet Leoben
- A-8700 Leoben
- Austria
| | - B. Kaynak
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - W. Kern
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
- Chair of Chemistry of Polymeric Materials
- Montanuniversitaet Leoben
| | - S. Schlögl
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| |
Collapse
|
17
|
Parasar B, Chang PV. Chemical optogenetic modulation of inflammation and immunity. Chem Sci 2016; 8:1450-1453. [PMID: 28451285 PMCID: PMC5390787 DOI: 10.1039/c6sc03702j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/19/2016] [Indexed: 01/09/2023] Open
Abstract
The immune system is an essential component of host defense against pathogens and is largely mediated by inflammatory molecules produced by immune cells, such as macrophages. These inflammatory mediators are regulated at the transcriptional level by chromatin-modifying enzymes including histone deacetylases (HDACs). Here we describe a strategy to regulate inflammation and immunity with photocontrolled HDAC inhibitors, which can be selectively delivered to target cells by UV irradiation to minimize off-target effects. We strategically photocaged the active moiety of an HDAC inhibitor and showed that mild UV irradiation leads to the selective release of the inhibitor in a spatiotemporal manner. This methodology was used to decrease the amount of pro-inflammatory mediators produced by a subpopulation of macrophages. Our approach could ultimately be used to control inflammation in vivo as a therapeutic for inflammatory diseases, while minimizing off-target effects to healthy tissues.
Collapse
Affiliation(s)
- Bibudha Parasar
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853 , USA
| | - Pamela V Chang
- Department of Microbiology and Immunology , Cornell University , 930 Campus Road, VMC C4-185 , Ithaca , NY 14853 , USA .
| |
Collapse
|
18
|
Stutts L, Esser-Kahn AP. A Light-Controlled TLR4 Agonist and Selectable Activation of Cell Subpopulations. Chembiochem 2015; 16:1744-8. [PMID: 26097006 PMCID: PMC4881745 DOI: 10.1002/cbic.201500164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/07/2022]
Abstract
The spatial and temporal aspects of immune cell signaling are key parameters in defining the magnitude of an immune response. Toll-like receptors (TLRs) on innate immune cells are important in the early detection of pathogens and initiation of an immune response. Controlling the spatial and temporal signaling of TLRs would enable further study of immune synergies and assist in the development of new vaccines. Here, we show a light-based method for the spatial control of TLR4 signaling. A TLR4 agonist, pyrimido[5,4-b]indole, was protected with a cage at a position critical for receptor binding. This afforded a photocontrollable agonist that was inactive while caged, yet effected NF-κB activity in cells following UV photocontrolled deprotection. We demonstrated spatial control of NF-κB activation within a population of cells by treating all cells with the caged TLR4 agonist and constraining light exposure and consequent activation to a region of interest.
Collapse
Affiliation(s)
- Lalisa Stutts
- Department of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Aaron P Esser-Kahn
- Department of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA).
| |
Collapse
|
19
|
|