1
|
Rammali S, Idir A, Aherkou M, Ciobică A, Kamal FZ, Aalaoui ME, Rahim A, Khattabi A, Abdelmajid Z, Aasfar A, Burlui V, Calin G, Mavroudis I, Bencharki B. In vitro and computational investigation of antioxidant and anticancer properties of Streptomyces coeruleofuscus SCJ extract on MDA-MB-468 triple-negative breast cancer cells. Sci Rep 2024; 14:25251. [PMID: 39448707 PMCID: PMC11502701 DOI: 10.1038/s41598-024-76200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to explore the antioxidant potential of the ethyl acetate extract of Streptomyces coeruleofuscus SCJ strain, along with its inhibitory effects on the triple-negative human breast carcinoma cell line (MDA-MB-468). The ethyl acetate extract's total phenolic and flavonoid contents were quantified, and its antioxidant activity was investigated using DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (Ferric Reducing Antioxidant Power) assays. Furthermore, the cytotoxic effect of the organic extract from Streptomyces coeruleofuscus SCJ on MDA-MB-468 cancer cells was assessed via the crystal violet assay. In tandem, a thorough computational investigation was conducted to explore the pharmacokinetic properties of the identified components of the extract, utilizing the SwissADME and pKCSM web servers. Additionally, the molecular interactions between these components and Estrogen Receptor Beta, identified as a potential target, were probed through molecular docking studies. The results revealed that ethyl acetate extract of SCJ strain exhibited remarkable antioxidant activity, with 39.899 ± 1.56% and 35.798 ± 0.082% scavenging activities against DPPH and ABTS, respectively, at 1 mg/mL. The extract also displayed significant ferric reducing power, with a concentration of 1.087 ± 0.026 mg ascorbic acid equivalents per mg of dry extract. Furthermore, a strong positive correlation (p < 0.0001) between the antioxidant activity, the polyphenol and the flavonoid contents. Regarding anticancer activity, the SCJ strain extract demonstrated significant anticancer activity against TNBC MDA-MB-468 cancer cells, with an inhibition percentage of 62.76 ± 0.62%, 62.67 ± 0.93%, and 58.07 ± 4.82% at 25, 50, and 100 µg/mL of the extract, respectively. The HPLC-UV/vis analysis revealed nine phenolic compounds: gallic acid, sinapic acid, p-coumaric acid, cinnamic acid, trans-fereulic acid, syringic acid, chloroqenic acid, ellagic acid, epicatechin. Streptomyces coeruleofuscus SCJ showed promise for drug discovery, exhibiting antioxidant and anticancer effects.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco.
| | - Abderrazak Idir
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Marouane Aherkou
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI Centre for Research and Innovation (CM6RI), Casablanca, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, Iasi, 700506, Romania.
- Center of Biomedical Research, Iasi Branch, Romanian Academy, Teodor Codrescu 2, Iasi, 700481, Romania.
- Academy of Romanian Scientists, 3 Ilfov, Bucharest, 050044, Romania.
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, Settat, 26400, Morocco
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Zyad Abdelmajid
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Vasile Burlui
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Gabriela Calin
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | | | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| |
Collapse
|
2
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01209-5. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Sethi Y, Vora V, Anyagwa OE, Turabi N, Abdelwahab M, Kaiwan O, Chopra H, Attia MS, Yahya G, Emran TB, Padda I. Streptomyces Paradigm in Anticancer Therapy: A State-of-the Art Review. CURRENT CANCER THERAPY REVIEWS 2024; 20:386-401. [DOI: 10.2174/0115733947254550230920170230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 08/16/2023] [Indexed: 01/12/2025]
Abstract
Abstract:
Cancer is one of the biggest threats to human health with a global incidence of 23.6 million,
mortality of 10 million, and an estimated 250 million lost in disability-adjusted life years
(DALYs) each year. Moreover, the incidence, mortality, and DALYs have increased over the past
decade by 26.3%, 20.9%, and 16.0%, respectively. Despite significant evolutions in medical therapy
and advances in the DNA microarray, proteomics technology, and targeted therapies, anticancer drug
resistance continues to be a growing concern and invites regular discovery of potent agents. One such
agent is the microbe-producing bioactive compounds like Streptomyces, which are proving increasingly
resourceful in anticancer therapy of the future. Streptomyces, especially the species living in
extreme conditions, produce bioactive compounds with cytolytic and anti-oxidative activity which
can be utilized for producing anticancer and chemo-preventive agents. The efficacy of the derived
compounds has been proven on cell lines and some of these have already established clinical results.
These compounds can potentially be utilized in the treatment of a variety of cancers including but not
limited to colon, lung, breast, GI tract, cervix, and skin cancer. The Streptomyces, thus possess the
armory to fuel the anticancer agents of the future and help address the problem of rising resistance to
currently available anti-cancer drugs. We conducted a state-of-art review using electronic databases
of PubMed, Scopus, and Google scholar with an objective to appraise the currently available literature
on Streptomyces as a source of anti-cancer agents and to compile the clinically significant literature
to update the clinicians.
Collapse
Affiliation(s)
- Yashendra Sethi
- PearResearch, Dehradun 248001, India
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
| | - Vidhi Vora
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
- Department of Medicine, Lokmanya Tilak Municipal
Medical College and Sion Hospital, Maharashtra University of Health Sciences, Mumbai, Maharashtra, India
| | | | | | | | - Oroshay Kaiwan
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
- Department of Medicine, Northeast Ohio Medical University, Ohio,
USA
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Chennai- 602105, Tamil Nadu, India
| | - Mohamed Shah Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University,
Zagazig 44519, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig
44519, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Inderbir Padda
- Department of Medicine, Richmond University Medical Centre, Staten Island, NY, USA
| |
Collapse
|
4
|
Quinn GA, Dyson PJ. Going to extremes: progress in exploring new environments for novel antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:8. [PMID: 39843508 PMCID: PMC11721673 DOI: 10.1038/s44259-024-00025-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2025]
Abstract
The discoveries of penicillin and streptomycin were pivotal for infection control with the knowledge subsequently being used to enable the discovery of many other antibiotics currently used in clinical practice. These valuable compounds are generally derived from mesophilic soil microorganisms, predominantly Streptomyces species. Unfortunately, problems with the replication of results suggested that this discovery strategy was no longer viable, motivating a switch to combinatorial chemistry in conjunction with existing screening programmes to derive new antimicrobials. However, the chemical space occupied by these synthetic products is vastly reduced compared to those of natural products. More recent approaches such as using artificial intelligence to 'design' synthetic ligands to dock with molecular targets suggest that chemical synthesis is still a promising option for discovery. It is important to employ diverse discovery strategies to combat the worrying increase in antimicrobial resistance (AMR). Here, we reconsider whether nature can supply innovative solutions to recalcitrant infections. Specifically, we assess progress in identifying novel antibiotic-producing organisms from extreme and unusual environments. Many of these organisms have adapted physiologies which often means they produce different repertoires of bioactive metabolites compared to their mesophilic counterparts, including antibiotics. In addition, we examine insights into the regulation of extremotolerant bacterial physiologies that can be harnessed to increase the production of clinically important antibiotics and stimulate the synthesis of new antibiotics in mesophilic microorganisms. Finally, we comment on the insights provided by combinatorial approaches to the treatment of infectious diseases that might enhance the efficacy of antibiotics and reduce the development of AMR.
Collapse
Affiliation(s)
- Gerry A Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, BT52 1SA, N, Ireland, UK
| | - Paul J Dyson
- Institute of Life Sciences, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
5
|
Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-Derived Novel Alkaloids Discovered in the Past Decade. Mar Drugs 2024; 22:51. [PMID: 38276653 PMCID: PMC10821133 DOI: 10.3390/md22010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.
Collapse
Affiliation(s)
| | | | | | | | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.L.); (W.S.); (Z.H.); (W.W.)
| |
Collapse
|
6
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
7
|
de Lima Júnior AA, de Sousa EC, de Oliveira THB, de Santana RCF, da Silva SKR, Coelho LCBB. Genus Streptomyces: Recent advances for biotechnological purposes. Biotechnol Appl Biochem 2023; 70:1504-1517. [PMID: 36924211 DOI: 10.1002/bab.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Actinomycetes are a distinct group of filamentous bacteria. The Streptomyces genus within this group has been extensively studied over the years, with substantial contributions to society and science. This genus is known for its antimicrobial production, as well as antitumor, biopesticide, and immunomodulatory properties. Therefore, the extraordinary plasticity of the Streptomyces genus has inspired new research techniques. The newest way of exploring Streptomyces has comprised the discovery of new natural metabolites and the application of emerging tools such as CRISPR technology in drug discovery. In this narrative review, we explore relevant published literature concerning the ongoing novelties of the Streptomyces genus.
Collapse
Affiliation(s)
- Apolonio Alves de Lima Júnior
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Thales Henrique Barbosa de Oliveira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Dmitrieva ME, Malygina EV, Belyshenko AY, Shelkovnikova VN, Imidoeva NA, Morgunova MM, Telnova TY, Vlasova AA, Axenov-Gribanov DV. The Effects of a High Concentration of Dissolved Oxygen on Actinobacteria from Lake Baikal. Metabolites 2023; 13:830. [PMID: 37512537 PMCID: PMC10386110 DOI: 10.3390/metabo13070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Among the diversity of microorganisms, the rarest and least explored are microorganisms that live in conditions of high oxygen in the environment and can experience the effects of natural oxidative stress. Here we suggest that the actinobacteria of Lake Baikal, sampled in the littoral zone, may produce natural products with antioxidant activity. The current study aimed to assess the effects of experimentally increased amounts of oxygen and ozone on the morphology of actinobacteria, DNA mutations, and antioxidant potential. In this experiment, we cultivated actinobacteria in liquid culture under conditions of natural aeration and increased concentrations of dissolved oxygen and ozone. Over a period of three months, bacterial samples were collected every week for further analysis. Morphological changes were assessed using the Gram method. A search for DNA mutations was conducted for the highly conserved 16S rRNA gene. The evaluation of antioxidant activity was performed using the DPPH test. The biotechnological potential was evaluated using high-resolution liquid chromatography-mass spectrometry approaches supplemented with the dereplication of natural products. We demonstrated the synthesis of at least five natural products by the Streptomyces sp. strain only under conditions of increased oxygen and ozone levels. Additionally, we showed morphological changes in Streptomyces sp. and nucleotide mutations in Rhodococcus sp. exposed to increased concentrations of dissolved oxygen and oxidative stress. Consequently, we demonstrated that an increased concentration of oxygen can influence Lake Baikal actinobacteria.
Collapse
Affiliation(s)
- Maria E Dmitrieva
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Ekaterina V Malygina
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Alexander Y Belyshenko
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Victoria N Shelkovnikova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Natalia A Imidoeva
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Maria M Morgunova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Tamara Y Telnova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Anfisa A Vlasova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Denis V Axenov-Gribanov
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| |
Collapse
|
9
|
Thayanuwadtanawong O, Duangupama T, Bunbamrung N, Pittayakhajonwut P, Intaraudom C, Tadtong S, Suriyachadkun C, He YW, Tanasupawat S, Thawai C. Streptomyces telluris sp. nov., a promising terrestrial actinobacterium with antioxidative potentials. Arch Microbiol 2023; 205:247. [PMID: 37212915 DOI: 10.1007/s00203-023-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
An actinomycete strain, AA8T, which produced a long straight chain of spores (verticillati type), was isolated from the rhizosphere soil of Mangifera indica in Bangkok, Thailand. A polyphasic taxonomic study was carried out to establish the taxonomic position of the strain. Strain AA8T formed a tight taxonomic position in the 16S rRNA gene tree with Streptomyces roseifaciens MBT76T. In contrast, the genome-based taxonomic analysis showed that strain AA8T shared low average nucleotide identity-BLAST (94.1%), the digital DNA-DNA hybridization (58.2%), and the average amino acid identity (93.6%) values with S. roseifaciens MBT76T. Moreover, a combination of physiological and biochemical properties indicated that strain AA8T was distinguished from all Streptomyces species with effectively published names. Strain AA8T, therefore, represents a novel species of Streptomyces, and the name Streptomyces telluris is proposed for the strain. The type strain is AA8T (= TBRC 8483T = NBRC 113461T). The chemical investigation led to the isolation of nine known compounds (compounds 1-9). Among these compounds, compound 7 (3,4-dihydroxybenzaldehyde) possesses strong antioxidant activity equal to ascorbic acid, a powerful antioxidative agent.
Collapse
Affiliation(s)
- Onnicha Thayanuwadtanawong
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Thitikorn Duangupama
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Khlong Song, 12120, Pathum Thani, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitti Thawai
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
- Actinobacterial Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
10
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
11
|
Zhu J, Xie Y, Li Y, Yang Y, Li C, Huang D, Wu W, Xu Y, Xia W, Huang X, Zhou S. Complete genome sequence of Streptomyces malaysiensis HNM0561, a marine sponge-associated actinomycete producing malaymycin and mccrearamycin E. Mar Genomics 2022; 63:100947. [DOI: 10.1016/j.margen.2022.100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
12
|
Wang J, Pang X, Chen C, Gao C, Zhou X, Liu Y, Luo X. Chemistry, Biosynthesis, and Biological Activity of Halogenated Compounds Produced by Marine Microorganisms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Chenghai Gao
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaowei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
13
|
Karthikeyan A, Joseph A, Nair BG. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J Genet Eng Biotechnol 2022; 20:14. [PMID: 35080679 PMCID: PMC8790952 DOI: 10.1186/s43141-021-00290-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Background The marine environment hosts a wide variety of species that have evolved to live in harsh and challenging conditions. Marine organisms are the focus of interest due to their capacity to produce biotechnologically useful compounds. They are promising biocatalysts for new and sustainable industrial processes because of their resistance to temperature, pH, salt, and contaminants, representing an opportunity for several biotechnological applications. Encouraged by the extensive and richness of the marine environment, marine organisms’ role in developing new therapeutic benefits is heading as an arable field. Main body of the abstract There is currently much interest in biologically active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Studies are focused on bacteria and fungi, isolated from sediments, seawater, fish, algae, and most marine invertebrates such as sponges, mollusks, tunicates, coelenterates, and crustaceans. In addition to marine macro-organisms, such as sponges, algae, or corals, marine bacteria and fungi have been shown to produce novel secondary metabolites (SMs) with specific and intricate chemical structures that may hold the key to the production of novel drugs or leads. The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae, including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity, and neuronal death inhibition. Conclusion The application of marine-derived bioactive compounds has gained importance because of their therapeutic uses in several diseases. Marine natural products (MNPs) display various pharmaceutically significant bioactivities, including antibiotic, antiviral, neurodegenerative, anticancer, or anti-inflammatory properties. The present review focuses on the importance of critical marine bioactive compounds and their role in different diseases and highlights their possible contribution to humanity.
Collapse
Affiliation(s)
- Akash Karthikeyan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Abey Joseph
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Baiju G Nair
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India. .,Nanomedical Engineering Laboratory, Riken, Wako, Saitama, Japan.
| |
Collapse
|
14
|
Chen J, Xu L, Zhou Y, Han B. Natural Products from Actinomycetes Associated with Marine Organisms. Mar Drugs 2021; 19:629. [PMID: 34822500 PMCID: PMC8621598 DOI: 10.3390/md19110629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
The actinomycetes have proven to be a rich source of bioactive secondary metabolites and play a critical role in the development of pharmaceutical researches. With interactions of host organisms and having special ecological status, the actinomycetes associated with marine animals, marine plants, macroalgae, cyanobacteria, and lichens have more potential to produce active metabolites acting as chemical defenses to protect the host from predators as well as microbial infection. This review focuses on 536 secondary metabolites (SMs) from actinomycetes associated with these marine organisms covering the literature to mid-2021, which will highlight the taxonomic diversity of actinomycetes and the structural classes, biological activities of SMs. Among all the actinomycetes listed, members of Streptomyces (68%), Micromonospora (6%), and Nocardiopsis (3%) are dominant producers of secondary metabolites. Additionally, alkaloids (37%), polyketides (33%), and peptides (15%) comprise the largest proportion of natural products with mostly antimicrobial activity and cytotoxicity. Furthermore, the data analysis and clinical information of SMs have been summarized in this article, suggesting that some of these actinomycetes with multiple host organisms deserve more attention to their special ecological status and genetic factors.
Collapse
Affiliation(s)
| | | | | | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.C.); (L.X.); (Y.Z.)
| |
Collapse
|
15
|
Abstract
Bacteria of the genus Streptomyces produce a very large number of secondary metabolites, many of which are of vital importance to modern medicine. There is great interest in the discovery of novel pharmaceutical compounds derived from strepomycetes, since novel antibiotics, anticancer and compounds for treating other conditions are urgently needed. Greece, as proven by recent research, possesses microbial reservoirs with a high diversity of Streptomyces populations, which provide a rich pool of strains with potential pharmaceutical value. This review examines the compounds of pharmaceutical interest that have been derived from Greek Streptomyces isolates. The compounds reported in the literature include antibiotics, antitumor compounds, biofilm inhibitors, antiparasitics, bacterial toxin production inhibitors and antioxidants. The streptomycete biodiversity of Greek environments remains relatively unexamined and is therefore a very promising resource for potential novel pharmaceuticals.
Collapse
|
16
|
Oliveira THBDE, Gusmão NBDE, Silva LAODA, Coelho LCBB. Free Radicals and Actinobacteria as a Misexplored Goldmine of Antioxidant Compounds. AN ACAD BRAS CIENC 2021; 93:e20201925. [PMID: 34586182 DOI: 10.1590/0001-3765202120201925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022] Open
Abstract
Free radicals are highly reactive unstable molecules, which can be synthesized in different ways, considered harmful and threatening to humans; these chemical species have free traffic throughout the human body, interacting with biological molecules and human body organ tissues. The interaction between free radicals and biological molecules is the main factor for disease development or pre-existing disease symptoms aggravation. Antioxidants are chemical compounds able to donate electric charge to stabilize molecules such as free radicals. Recent studies have proved the benefits of antioxidants intake in health improvement. In this way, the search for natural sources of antioxidants has become an ascending trend. In this field, the microbial sources are considered poorly explored compared to the numerous amount of other compounds obtained from them, especially from Actinobacteria. The searched literature about Actinobacteria highlights an important capacity of producing natural antioxidants; however, there is a lack of in vivo studies of these isolated compounds. In this review, we gathered information that supports our point of view that Actinobacteria is a truly renewable and superficially explored source of natural antioxidants. Furthermore, our purpose is also to point this limitation and stimulate more researches in this area.
Collapse
Affiliation(s)
- Thales Henrique B DE Oliveira
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| | - Norma B DE Gusmão
- Universidade Federal de Pernambuco, Departamento de Antibióticos, Centro de Biociências, Avenida dos Economistas, s/n, Cidade Universitária, 52171-011 Recife, PE, Brazil
| | - Leonor A O DA Silva
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Conjunto Presidente Castelo Branco III, 58033-455 João Pessoa, PB, Brazil
| | - Luana C B B Coelho
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| |
Collapse
|
17
|
Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field. Mar Drugs 2021; 19:md19080444. [PMID: 34436283 PMCID: PMC8401093 DOI: 10.3390/md19080444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
In the last decades, the marine environment was discovered as a huge reservoir of novel bioactive compounds, useful for medicinal treatments improving human health and well-being. Among several marine organisms exhibiting biotechnological potential, sponges were highlighted as one of the most interesting phyla according to a wide literature describing new molecules every year. Not surprisingly, the first marine drugs approved for medical purposes were isolated from a marine sponge and are now used as anti-cancer and anti-viral agents. In most cases, experimental evidence reported that very often associated and/or symbiotic communities produced these bioactive compounds for a mutual benefit. Nowadays, beauty treatments are formulated taking advantage of the beneficial properties exerted by marine novel compounds. In fact, several biological activities suitable for cosmetic treatments were recorded, such as anti-oxidant, anti-aging, skin whitening, and emulsifying activities, among others. Here, we collected and discussed several scientific contributions reporting the cosmeceutical potential of marine sponge symbionts, which were exclusively represented by fungi and bacteria. Bioactive compounds specifically indicated as products of the sponge metabolism were also included. However, the origin of sponge metabolites is dubious, and the role of the associated biota cannot be excluded, considering that the isolation of symbionts represents a hard challenge due to their uncultivable features.
Collapse
|
18
|
Rao MS, Hussain S. DABCO-mediated decarboxylative cyclization of isatoic anhydride with aroyl/heteroaroyl/alkoylacetonitriles under microwave conditions: Strategy for the synthesis of substituted 4-quinolones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wang C, Du W, Lu H, Lan J, Liang K, Cao S. A Review: Halogenated Compounds from Marine Actinomycetes. Molecules 2021; 26:2754. [PMID: 34067123 PMCID: PMC8125187 DOI: 10.3390/molecules26092754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Marine actinomycetes, Streptomyces species, produce a variety of halogenated compounds with diverse structures and a range of biological activities owing to their unique metabolic pathways. These halogenated compounds could be classified as polyketides, alkaloids (nitrogen-containing compounds) and terpenoids. Halogenated compounds from marine actinomycetes possess important biological properties such as antibacterial and anticancer activities. This review reports the sources, chemical structures and biological activities of 127 new halogenated compounds originated mainly from Streptomyces reported from 1992 to 2020.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| | - Weisheng Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Huanyun Lu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Jianzhou Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Kailin Liang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| |
Collapse
|
20
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
21
|
Anemonia sulcata and Its Symbiont Symbiodinium as a Source of Anti-Tumor and Anti-Oxoxidant Compounds for Colon Cancer Therapy: A Preliminary in Vitro Study. BIOLOGY 2021; 10:biology10020134. [PMID: 33567702 PMCID: PMC7915377 DOI: 10.3390/biology10020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Colorectal cancer is one of the most frequent types of cancer in the population. Recently, invertebrate marine animals have been investigated for the presence of natural products which can damage tumor cells, prevent their spread to other tissues or avoid cancer develop. We analyzed the anemone Anemonia sulcata with and without the presence of its microalgal symbiont (Symbiodinium) as a source of bioactive molecules for the colorectal cancer therapy and prevention. Colon cancer tumor cells were exposed to Anemone extracts observing a remarkable cell death and a great antioxidant capacity. These preliminary results support that Anemonia sulcata could be a source of bioactive compounds against colorectal cancer and that the absence of its symbiont may enhance these properties. Further studies will be necessary to define the bioactive compounds of Anemonia sulcata and their mechanisms of action. Abstract Recently, invertebrate marine species have been investigated for the presence of natural products with antitumor activity. We analyzed the invertebrate Anemonia sulcata with (W) and without (W/O) the presence of its microalgal symbiont Symbiodinium as a source of bioactive compounds that may be applied in the therapy and/or prevention of colorectal cancer (CRC). Animals were mechanically homogenized and subjected to ethanolic extraction. The proximate composition and fatty acid profile were determined. In addition, an in vitro digestion was performed to study the potentially dialyzable fraction. The antioxidant and antitumor activity of the samples and the digestion products were analyzed in CRC cells in vitro. Our results show a high concentration of polyunsaturated fatty acid in the anemone and a great antioxidant capacity, which demonstrated the ability to prevent cell death and a high antitumor activity of the crude homogenates against CRC cells and multicellular tumor spheroids, especially W/O symbiont. These preliminary results support that Anemonia sulcata could be a source of bioactive compounds with antioxidant and antitumor potential against CRC and that the absence of its symbiont may enhance these properties. Further studies will be necessary to define the bioactive compounds of Anemonia sulcata and their mechanisms of action.
Collapse
|
22
|
Chanadech S, Ruen-Ngam D, Intaraudom C, Pittayakhajonwut P, Chongruchiroj S, Pratuangdejkul J, Thawai C. Isolation of manumycin-type derivatives and genome characterization of a marine Streptomyces sp. C1-2. Res Microbiol 2021; 172:103812. [PMID: 33497762 DOI: 10.1016/j.resmic.2021.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
A marine actinomycete strain C1-2 was taxonomically characterized as the genus Streptomyces, based on whole-genome sequence analysis. The highest average nucleotide identity (ANI) value (98.96%) and digital DNA-DNA hybridization (DDH) value (90.4%) were observed between Streptomyces sp. C1-2 and Streptomyces griseoaurantiacus. Thus, Streptomyces sp. C1-2 could be identified as S. griseoaurantiacus. Genome analysis revealed that Streptomyces sp. C1-2 contained 22 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 54% have low similarities with known BGCs. The chemical investigation led to the isolation of three new manumycin-type derivatives and two known analog antibiotics named SW-B and cornifronin B. All compounds showed antioxidant activity with the half-maximal inhibitory concentration (IC50) values in a range of 50.82 ± 0.8-112.04 ± 1.0 μg/mL with no cytotoxicity against Vero cells. This is the first report of the antioxidant property of manumycin-type derivatives. Moreover, two known compounds exhibited antifungal activity against Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Magnaporthe grisea, with the minimum inhibitory concentration (MIC) values in a range of 125-500 μg/mL.
Collapse
Affiliation(s)
- Sakkarn Chanadech
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Ruen-Ngam
- Rattanakosin College for Sustainable Energy and Environment (RCSEE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
23
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
24
|
Baker D, Basondwah S, Jambi E, Rahimuddin SA, Abuzaid M, Aly M. Molecular Identification, Characterization and Antioxidant Activities of Some Bacteria Associated with Algae in the Red Sea of Jeddah. Pak J Biol Sci 2020; 22:467-476. [PMID: 31930836 DOI: 10.3923/pjbs.2019.467.476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Algae-associated bacteria produce secondary metabolites that have a great biological impact. The aim of this study was isolation, identification and evaluation the antioxidant activities of the associated bacteria of seven algae, Padina pavonica, Dictyota dichotoma, Cystoseira myrica, Halimeda opuntia, Ulva lactuca, Digenea simplex and Jania sp. The bacteria were isolated, characterized and identified. Identification was carried out using 16S rRNA gene sequencing. MATERIALS AND METHODS The identified bacteria were belonging to 6 families, Alteromonadaceae, Bacillaceae, Lactobacillaceae, Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae and 9 genera. The identified bacteria were belonging to genera, Alteromonas, Bacillus, Lysinibacillus Vibrio, Lactobacillus, Paracoccus, Leisingera, Pseudomonas and Pseudovibrio. The antioxidant activities of the bacterial ethyl acetate extracts was examined by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric Reducing Antioxidant Power) methods. RESULTS Out of the 17 isolated bacteria, Lactobacillus plantarum showed 95.7% free radical scavenging with EC50 = 17.7 μg mL-1, which is nearly similar to the positive control (Butylated Hydroxytoluene, BHT). The FRAP value of Lactobacillus extract was 2.00 mM ferric equivalent/mg of the extract. Phytochemical analysis of the bacterial extract revealed the presence of some secondary metabolites such as steroids, saponins, tannins, flavonoids, anthocyanin and betacyanin in all tested extracts. CONCLUSION The Red Sea algal associated bacteria have a great antioxidant potential that can be used in pharmaceutical industries.
Collapse
|
25
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
26
|
An α/β-Hydrolase Fold Subfamily Comprising Pseudomonas Quinolone Signal-Cleaving Dioxygenases. Appl Environ Microbiol 2020; 86:AEM.00279-20. [PMID: 32086305 DOI: 10.1128/aem.00279-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023] Open
Abstract
The quinolone ring is a common core structure of natural products exhibiting antimicrobial, cytotoxic, and signaling activities. A prominent example is the Pseudomonas quinolone signal (PQS), a quorum-sensing signal molecule involved in the regulation of virulence of Pseudomonas aeruginosa The key reaction to quinolone inactivation and biodegradation is the cleavage of the 3-hydroxy-4(1H)-quinolone ring, catalyzed by dioxygenases (HQDs), which are members of the α/β-hydrolase fold superfamily. The α/β-hydrolase fold core domain consists of a β-sheet surrounded by α-helices, with an active site usually containing a catalytic triad comprising a nucleophilic residue, an acidic residue, and a histidine. The nucleophile is located at the tip of a sharp turn, called the "nucleophilic elbow." In this work, we developed a search workflow for the identification of HQD proteins from databases. Search and validation criteria include an [H-x(2)-W] motif at the nucleophilic elbow, an [HFP-x(4)-P] motif comprising the catalytic histidine, the presence of a helical cap domain, the positioning of the triad's acidic residue at the end of β-strand 6, and a set of conserved hydrophobic residues contributing to the substrate cavity. The 161 candidate proteins identified from the UniProtKB database originate from environmental and plant-associated microorganisms from all domains of life. Verification and characterization of HQD activity of 9 new candidate proteins confirmed the reliability of the search strategy and suggested residues correlating with distinct substrate preferences. Among the new HQDs, PQS dioxygenases from Nocardia farcinica, N. cyriacigeorgica, and Streptomyces bingchenggensis likely are part of a catabolic pathway for alkylquinolone utilization.IMPORTANCE Functional annotation of protein sequences is a major requirement for the investigation of metabolic pathways and the identification of sought-after biocatalysts. To identify heterocyclic ring-cleaving dioxygenases within the huge superfamily of α/β-hydrolase fold proteins, we defined search and validation criteria for the primarily motif-based identification of 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQD). HQDs are key enzymes for the inactivation of metabolites, which can have signaling, antimicrobial, or cytotoxic functions. The HQD candidates detected in this study occur particularly in environmental and plant-associated microorganisms. Because HQDs active toward the Pseudomonas quinolone signal (PQS) likely contribute to interactions within microbial communities and modulate the virulence of Pseudomonas aeruginosa, we analyzed the catalytic properties of a PQS-cleaving subset of HQDs and specified characteristics to identify PQS-cleaving dioxygenases within the HQD family.
Collapse
|
27
|
Cheng MM, Tang XL, Sun YT, Song DY, Cheng YJ, Liu H, Li PL, Li GQ. Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017. Molecules 2020; 25:E853. [PMID: 32075151 PMCID: PMC7070270 DOI: 10.3390/molecules25040853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are well known as rich sources of biologically natural products. Growing evidence indicates that sponges harbor a wealth of microorganisms in their bodies, which are likely to be the true producers of bioactive secondary metabolites. In order to promote the study of natural product chemistry and explore the relationship between microorganisms and their sponge hosts, in this review, we give a comprehensive overview of the structures, sources, and activities of the 774 new marine natural products from sponge-derived microorganisms described over the last two decades from 1998 to 2017.
Collapse
Affiliation(s)
- Mei-Mei Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, China;
| | - Yan-Ting Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Dong-Yang Song
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yu-Jing Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Hui Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
28
|
JAKUBIEC-KRZESNIAK KATARZYNA, RAJNISZ-MATEUSIAK ALEKSANDRA, GUSPIEL ADAM, ZIEMSKA JOANNA, SOLECKA JOLANTA. Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. Pol J Microbiol 2019; 67:259-272. [PMID: 30451442 PMCID: PMC7256786 DOI: 10.21307/pjm-2018-048] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The growing resistance of microorganisms towards antibiotics has become a serious global problem. Therapeutics with novel chemical scaffolds and/or mechanisms of action are urgently needed to combat infections caused by multidrug resistant pathogens, including bacteria, fungi and viruses. Development of novel antimicrobial agents is still highly dependent on the discovery of new natural products. At present, most antimicrobial drugs used in medicine are of natural origin. Among the natural producers of bioactive substances, Actinobacteria continue to be an important source of novel secondary metabolites for drug application. In this review, the authors report on the bioactive antimicrobial secondary metabolites of Actinobacteria that were described between 2011 and April 2018. Special attention is paid to the chemical scaffolds, biological activities and origin of these novel antibacterial, antifungal and antiviral compounds. Arenimycin C, chromopeptide lactone RSP 01, kocurin, macrolactins A1 and B1, chaxamycin D as well as anthracimycin are regarded as the most effective compounds with antibacterial activity. In turn, the highest potency among selected antifungal compounds is exhibited by enduspeptide B, neomaclafungins A-I and kribelloside D, while ahmpatinin i Bu, antimycin A1a, and pentapeptide 4862F are recognized as the strongest antiviral agents.
Collapse
Affiliation(s)
- KATARZYNA JAKUBIEC-KRZESNIAK
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - ALEKSANDRA RAJNISZ-MATEUSIAK
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - ADAM GUSPIEL
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - JOANNA ZIEMSKA
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| | - JOLANTA SOLECKA
- National Institute of Public Health – National Institute of Hygiene, Department of Environmental Health and Safety, Warsaw, Poland
| |
Collapse
|
29
|
Huang X, Kong F, Zhou S, Huang D, Zheng J, Zhu W. Streptomyces tirandamycinicus sp. nov., a Novel Marine Sponge-Derived Actinobacterium With Antibacterial Potential Against Streptococcus agalactiae. Front Microbiol 2019; 10:482. [PMID: 30918502 PMCID: PMC6424883 DOI: 10.3389/fmicb.2019.00482] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
A novel actinobacterium, strain HNM0039T, was isolated from a marine sponge sample collected at the coast of Wenchang, Hainan, China and its polyphasic taxonomy was studied. The isolate had morphological and chemical characteristics consistent with the genus Streptomyces. Based on the 16S rRNA gene sequence analysis, strain HNM0039T was closely related to Streptomyces wuyuanensis CGMCC 4.7042T (99.38%) and Streptomyces spongiicola HNM0071T (99.05%). The organism formed a well-delineated subclade with S. wuyuanensis CGMCC 4.7042T and S. spongiicola HNM0071T in the Streptomyces 16S rRNA gene tree. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles (atpD, gyrB, rpoB, recA, trpB) further confirmed their relationship. DNA-DNA relatedness between strain HNM0039T and its closest type strains, namely S. wuyuanensis CGMCC 4.7042T and S. spongiicola HNM0071T, were 46.5 and 45.1%, respectively. The average nucleotide identity (ANI) between strain HNM0039T and its two neighbor strains were 89.65 and 91.44%, respectively. The complete genome size of strain HNM0039T was 7.2 Mbp, comprising 6226 predicted genes with DNA G+C content of 72.46 mol%. Thirty-one putative secondary metabolite biosynthetic gene clusters were also predicted in the genome of strain HNM0039T. Among them, the tirandamycin biosynthetic gene cluster has been characterized completely. The crude extract of strain HNM0039T exhibited potent antibacterial activity against Streptococcus agalactiae in Nile tilapia. And tirandamycins A and B were further identified as the active components with MIC values of 2.52 and 2.55 μg/ml, respectively. Based on genotypic and phenotypic characteristics, it is concluded that strain HNM0039T represents a novel species of the genus Streptomyces whose name was proposed as Streptomyces tirandamycinicus sp. nov. The type strain is HNM0039T (= CCTCC AA 2018045T = KCTC 49236T).
Collapse
Affiliation(s)
- Xiaolong Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fandong Kong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuangqing Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Dongyi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Jiping Zheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
30
|
Law JWF, Ser HL, Ab Mutalib NS, Saokaew S, Duangjai A, Khan TM, Chan KG, Goh BH, Lee LH. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:3056. [PMID: 30816228 PMCID: PMC6395624 DOI: 10.1038/s41598-019-39592-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
A new Streptomyces species discovered from Sarawak mangrove soil is described, with the proposed name - Streptomyces monashensis sp. nov. (strain MUSC 1JT). Taxonomy status of MUSC 1JT was determined via polyphasic approach. Phylogenetic and chemotaxonomic properties of strain MUSC 1JT were in accordance with those known for genus Streptomyces. Based on phylogenetic analyses, the strains closely related to MUSC 1JT were Streptomyces corchorusii DSM 40340T (98.7%), Streptomyces olivaceoviridis NBRC 13066T (98.7%), Streptomyces canarius NBRC 13431T (98.6%) and Streptomyces coacervatus AS-0823T (98.4%). Outcomes of DNA-DNA relatedness between strain MUSC 1JT and its closely related type strains covered from 19.7 ± 2.8% to 49.1 ± 4.3%. Strain MUSC 1JT has genome size of 10,254,857 bp with DNA G + C content of 71 mol%. MUSC 1JT extract exhibited strong antioxidative activity up to 83.80 ± 4.80% in the SOD assay, with significant cytotoxic effect against colon cancer cell lines HCT-116 and SW480. Streptomyces monashensis MUSC 1JT (=DSM 103626T = MCCC 1K03221T) could potentially be a producer of novel bioactive metabolites; hence discovery of this new species may be highly significant to the biopharmaceutical industry as it could lead to development of new and useful chemo-preventive drugs.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center (CPOR), Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Acharaporn Duangjai
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Tahir Mehmood Khan
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
31
|
Zhou S, Xiao K, Huang D, Wu W, Xu Y, Xia W, Huang X. Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Li D, Oku N, Hasada A, Shimizu M, Igarashi Y. Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp. Beilstein J Org Chem 2018; 14:1446-1451. [PMID: 29977408 PMCID: PMC6009182 DOI: 10.3762/bjoc.14.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
Exploration of rhizobacteria of the genus Burkholderia as an under-tapped resource of bioactive molecules resulted in the isolation of two new antimicrobial 2-alkyl-4-quinolones. (E)-2-(Hept-2-en-1-yl)quinolin-4(1H)-one (1) and (E)-2-(non-2-en-1-yl)quinolin-4(1H)-one (3) were isolated from the culture broth of strain MBAF1239 together with four known alkylquinolones (2 and 4-6), pyrrolnitrin (7), and BN-227 (8). The structures of 1 and 3 were unambiguously characterized using NMR spectroscopy and mass spectrometry. Compounds 1-8 inhibited the growth of the marine bacterium Tenacibaculum maritimum, an etiological agent of skin ulcers in marine fish, offering new opportunities to develop antibacterial drugs for fish farming.
Collapse
Affiliation(s)
- Dandan Li
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Atsumi Hasada
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masafumi Shimizu
- Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
33
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
34
|
Edrada-Ebel R, Ævarsson A, Polymenakou P, Hentschel U, Carettoni D, Day J, Green D, Hreggviðsson GÓ, Harvey L, McNeil B. SeaBioTech: From Seabed to Test-Bed: Harvesting the Potential of Marine Biodiversity for Industrial Biotechnology. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Streptomyces thermoalkaliphilus sp. nov., an alkaline cellulase producing thermophilic actinomycete isolated from tropical rainforest soil. Antonie van Leeuwenhoek 2017; 111:413-422. [PMID: 29110157 DOI: 10.1007/s10482-017-0964-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
During an investigation exploring potential sources of novel thermophilic species and natural products, a novel thermophilic and alkaliphilic actinomycete with alkaline cellulase producing ability, designated strain 4-2-13T, was isolated from soil of a tropical rainforest in Xishuangbanna, Yunnan province, China. The morphological and chemotaxonomic characteristics of strain 4-2-13T are consistent with those of the members of the genus Streptomyces. The strain forms extensively branched aerial mycelia and substrate mycelia. Spiral spore chains were observed on aerial mycelia; spores were oval to cylindrical, with smooth surfaces. The organism was found to contain LL-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan. The whole cell hydrolysates were found to contain glucose and ribose. The cellular fatty acid profile mainly consists of anteiso-C17:0 and iso-C16:0. The menaquinones were identified as MK-9(H8), MK-10(H6) and MK-9(H6). The polar lipids profile were found to consist of diphosphatidylglycerol, phosphatidylmethylethanolamine, a ninhydrin-positive glycophospholipid, phosphatidylinositol, phosphatidylglycerol and unidentified glycolipids. The 16S rRNA gene sequence analysis showed that the organism belongs to the genus Streptomyces and in the 16S rRNA gene tree it formed a distinct phyletic line together with the closely related type strain Streptomyces burgazadensis Z1R7T (95.2% sequence similarity). However, the phenotypic characteristics of strain 4-2-13T are significantly different from those of S. burgazadensis Z1R7T. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, strain 4-2-13T represents a novel species in the genus Streptomyces, for which the name Streptomyces thermoalkaliphilus sp. nov. is proposed. The type strain is 4-2-13T (= DSM 42159T = CGMCC 4. 7205T).
Collapse
|
36
|
RETRACTED ARTICLE: Rhodozepinone, a new antitrypanosomal azepino-diindole alkaloid from the marine sponge-derived bacterium Rhodococcus sp. UA13. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1974-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|