1
|
Tan X, Li Y, Hao Z, Wang J, Liu X, Liu B, Yuan J, Fang L, Zhou PX, Wang Y. Pentafluorosulfanylation of Acrylamides: The Synthesis of SF 5-Containing Isoquinolinediones with SF 5Cl. J Org Chem 2024; 89:15941-15952. [PMID: 39446016 DOI: 10.1021/acs.joc.4c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We disclose herein an efficient and facile method for the synthesis of SF5-containing isoquinolinediones with an all-carbon quaternary stereocenter via intramolecular pentafluorosulfanylation of acrylamides using SF5Cl as a pentafluorosulfanylation reagent. The protocol proceeds under mild reaction conditions and enjoys a broad substrate scope, wide functional group compatibility, and high atom- and step-economy. A radical mechanism involving the SF5 radical cascade addition/cyclization of acrylamides is proposed.
Collapse
Affiliation(s)
- Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yuezhen Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Ziyou Hao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xiangqian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Bingqing Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jianmei Yuan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yingling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
2
|
Narra SR, Ariff PNAM, Saha D, Bacho MZ, Shibata N. TBHP Promotes Cross-Dehydrogenative Coupling of SF 4 Alkynes with Tetrahydroisoquinolines under Copper Catalysis. Org Lett 2024; 26:7370-7375. [PMID: 39178338 DOI: 10.1021/acs.orglett.4c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
We present a viable approach for the cross-dehydrogenative coupling of Het-SF4-alkynes with tetrahydroisoquinolines under oxidative conditions, using TBHP and copper catalysts. These newly developed conditions boast enhanced yields and a more extensive range of substrates, demonstrating tolerance to various functional groups and addressing the limitations of earlier reports. Consequently, this method should increase opportunities for the exploration of SF4-containing compounds and their potential applications in drug discovery, materials science, and as alternatives to PFAS.
Collapse
Affiliation(s)
- Srikanth Reddy Narra
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Debarshi Saha
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Muhamad Zulfaqar Bacho
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Paquin P, DeGrâce N, Bélanger-Chabot G, Paquin JF. Synthesis of Substituted Pentafluorosulfanylpyrazoles Under Flow Conditions. J Org Chem 2024; 89:3552-3562. [PMID: 38329971 DOI: 10.1021/acs.joc.3c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The development of flow conditions for the synthesis of pentafluorosulfanylpyrazoles is reported. A range of alkyl- and aryl-substituted SF5-alkynes were used in combination with different diazoacetates for this transformation. The corresponding substituted SF5-pyrazoles were obtained in up to 90% yield (average of 74% for 21 examples) as a mixture of isomers (up to 73:27 ratio). Synthetic transformations starting from an SF5-containing pyrazole were also demonstrated.
Collapse
Affiliation(s)
- Pascal Paquin
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- CCVC, CERMA, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Nicolas DeGrâce
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Guillaume Bélanger-Chabot
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- CCVC, CERMA, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Jean-François Paquin
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
4
|
Narra SR, Bacho MZ, Hattori M, Shibata N. Expanding the Frontier of Linear Drug Design: Cu-Catalyzed C sp -C sp 3 -Coupling of Electron-Deficient SF 4 -Alkynes with Alkyl Iodides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306554. [PMID: 38161224 PMCID: PMC10953538 DOI: 10.1002/advs.202306554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Indexed: 01/03/2024]
Abstract
Despite the attractive properties of tetrafluorosulfanyl (SF4 ) compounds in drug discovery, medicinal research on SF4 molecules is hindered by the scarcity of suitable synthetic methodologies. Drawing inspiration from the well-established Sonogashira cross-coupling of terminal alkynes under Pd-catalysis, it is envisioned that SF4 -alkynes can serve as effective coupling partners. To overcome the challenges associated with the electron-deficient nature of SF4 -alkynes and the lability of the SF4 unit under transition-metal catalysis, an aryl radical mediated Csp -Csp 3 cross-coupling reaction is successfully developed under Cu catalysis. This methodology facilitates the coupling of SF4 -alkynes with alkyl iodides, leading to the immediate synthesis of SF4 -attached drug-like molecules. These findings highlight the potential impact of SF4 -containing molecules in the drug industry, paving the way for further research in this emerging field.
Collapse
Affiliation(s)
- Srikanth Reddy Narra
- Department of Nanopharmaceutical SciencesNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| | - Muhamad Zulfaqar Bacho
- Department of Nanopharmaceutical SciencesNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| | - Masashi Hattori
- Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| | - Norio Shibata
- Department of Nanopharmaceutical SciencesNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
- Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| |
Collapse
|
5
|
Yadav AK, Ariff PNAM, Kawai K, Ochiai S, Narra SR, Shibata N. Cross Dehydrogenative Coupling of SF 4-Alkyne with Tetrahydroisoquinolines. Org Lett 2024; 26:1442-1446. [PMID: 38319986 DOI: 10.1021/acs.orglett.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
This study introduces a dual-catalytic method for cross-dehydrogenative coupling (CDC) between tetrahydroisoquinolines and Py-SF4-alkyne using visible-light photoredox catalysis. This protocol enables selective C(sp3)-H alkynylation, expanding the synthetic toolkit for SF4-based molecules. Demonstrating efficiency and substrate versatility, this approach opens new avenues in hexacoordinated tetrafluorinated sulfur chemistry and CDC strategies and holds significant promise for drug discovery and materials science.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
- Baba Raghav Das Post Graduate College, Deoria, Uttar Pradesh 274001, India
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Koki Kawai
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Seishu Ochiai
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Srikanth Reddy Narra
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Kordnezhadian R, De Bels T, Su K, Van Meervelt L, Ismalaj E, Demaerel J, De Borggraeve WM. An Extrusion Strategy for On-Demand SF 5Cl Gas Generation from a Commercial Disulfide. Org Lett 2023. [PMID: 38051525 DOI: 10.1021/acs.orglett.3c03886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein we report a novel methodology for the ex situ generation of SF5Cl by employing 4,4'-dipyridyl disulfide as a safe commercial reagent, obviating the need for lecture bottles. The method is applicable to certain SF5Cl-involving transformations by using a two-chamber reactor. Moreover, easily applying SF5Cl in different solvents is rendered feasible, while avoiding the use of glovebox techniques. This report also suggests 1H-19F HOESY as a simple and fast stereochemistry indication for chloropentafluorosulfanylated olefins.
Collapse
Affiliation(s)
- Reza Kordnezhadian
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Tim De Bels
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Kexin Su
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| | - Ermal Ismalaj
- Molecular and Functional Biomarkers, CIC-BiomaGUNE, Paseo Miramon 182, 20014 Donostia-San Sebastian, Spain
| | - Joachim Demaerel
- Molecular and Functional Biomarkers, CIC-BiomaGUNE, Paseo Miramon 182, 20014 Donostia-San Sebastian, Spain
| | - Wim M De Borggraeve
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Leuven (Heverlee), Belgium
| |
Collapse
|
7
|
Mastalerz V, Lam K, Paquin JF. Exploration toward the synthesis of aliphatic SF5-containing compounds using the Kolbe reaction. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Reactions of difluoro-pentafluorosulfanyl-iodomethane (SF5CF2I) with electronically different types of alkenes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Zhao X, Shou JY, Newton JJ, Qing FL. trans-Trifluoromethyltetrafluorosulfanyl Chloride: Selective Synthesis and Reaction with Diazo Compounds. Org Lett 2022; 24:8412-8416. [DOI: 10.1021/acs.orglett.2c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jia-Yi Shou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Josiah J. Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
10
|
Chemistry of Pentafluorosulfanyl Derivatives and Related Analogs: From Synthesis to Applications. Chemistry 2022; 28:e202201491. [DOI: 10.1002/chem.202201491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/23/2022]
|
11
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal-Free SF 6 Activation: A New SF 5 -Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022; 61:e202204623. [PMID: 35471641 DOI: 10.1002/anie.202204623] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The activation of SF6 , a potent greenhouse gas, under metal-free and visible light conditions is reported. Herein, mechanistic investigations including EPR spectroscopy, NMR studies and cyclic voltammetry allowed the rational design of a new fluorinating reagent which was synthesized from the 2-electron activation of SF6 with commercially available TDAE. This new SF5 -based reagent was efficiently employed for the deoxyfluorination of CO2 and the fluorinative desulfurization of CS2 allowing the formation of useful fluorinated amines. Moreover, for the first time we demonstrated that our SF5 -based reagent could afford the mild generation of Cl-SF5 gas. This finding was exploited for the chloro-pentafluorosulfanylation of alkynes and alkenes.
Collapse
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire (ICR)ICR UMR 7273, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
12
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
13
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal‐Free SF
6
Activation: A New SF
5
‐Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182 46 allée d'Italie 69364 Lyon France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Julie Broggi
- Aix Marseille Univ, CNRS Institut de Chimie Radicalaire (ICR)ICR UMR 7273 Faculty of Pharmacy 27 Bd Jean Moulin 13385 Marseille France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
14
|
Maruno K, Hada K, Sumii Y, Nagata O, Shibata N. Synthesis of Pyridine-SF 4-Isoxazolines Using the Functionality of trans-Tetrafluoro-λ 6-sulfanyl Rodlike Linkers. Org Lett 2022; 24:3755-3759. [PMID: 35475347 DOI: 10.1021/acs.orglett.2c01046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tetrafluoro-λ6-sulfanyl (SF4) moiety has been relatively undeveloped since its discovery in the 1970s. In this study, we synthesized pyridine-SF4-isoxazolines, in which the two heterocycles are connected by a rodlike trans-SF4 linker, via the regioselective 1,3-dipolar cycloaddition of pyridine-SF4-alkynes and nitrones in the presence of triethylamine. SF4 linkers are a viable alternative to para-substituted benzenes, alkynes, and bicyclo[1.1.1]pentyl derivatives in drug design, and pyridine-SF4-isoxazolines have potential applications in drug development.
Collapse
Affiliation(s)
- Koki Maruno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kenshiro Hada
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Osamu Nagata
- Pharmaceutical Division, Ube Industries, Ltd., Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
15
|
Tironi M, Hopkinson MN. Silver‐Catalyzed Nucleophilic Deoxydifluoromethylthiolation of Activated Aliphatic Alcohols with BT‐SCF2H. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matteo Tironi
- Freie Universitat Berlin Institut fuer Chemie und Biochemie Fabeckstrasse 34-36 14195 Berlin GERMANY
| | - Matthew Neil Hopkinson
- Newcastle University School of Natural and Environmental Sciences Bedson Building NE1 7RU NEWCASTLE UPON TYNE UNITED KINGDOM
| |
Collapse
|
16
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
17
|
Maruno K, Niina K, Nagata O, Shibata N. Synthesis of an Eccentric Electron-Deficient Fluorinated Motif, Tetrafluoro-λ 6-sulfanyl gem-Difluorocyclopropenes. Org Lett 2022; 24:1722-1726. [PMID: 35199518 DOI: 10.1021/acs.orglett.2c00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluoro-functionalization is now recognized as a critical strategy in drug discovery; however, the accessible fluoro-functional groups are limited. We herein introduce an eccentric, fully fluorinated motif, trans-tetrafluoro-λ6-sulfanyl gem-difluorocyclopropene 2. This novel motif is highly lipophilic and polarized, enabling a connection of two independent groups via three continuous atoms with a large angle of pseudo cis configuration. The target motif was synthesized via a [2+1] cycloaddition of electron-deficient (hetero)aryl-SF4-alkynes 1 with an electrophilic difluorocarbene source.
Collapse
Affiliation(s)
- Koki Maruno
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kiyoteru Niina
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Osamu Nagata
- Pharmaceutical Division, Ube Industries, Ltd., Seavans North Building, 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
18
|
Haufe G. Synthesis and application of pentafluorosulfanylation reagents and derived aliphatic SF5-containing building blocks. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
In vitro, in vivo, and ADME evaluation of SF 5-containing N,N'-diarylureas as antischistosomal agents. Antimicrob Agents Chemother 2021; 65:e0061521. [PMID: 34310210 DOI: 10.1128/aac.00615-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, N,N'-diarylureas have emerged as a promising chemotype for the treatment of schistosomiasis, a disease that poses a considerable health burden to millions of people worldwide. Here, we report a novel series of N,N'-diarylureas featuring the scarcely explored pentafluorosulfanyl group. Low IC50 values for Schistosoma mansoni newly transformed schistosomula (0.6 - 7.7 μM) and adult worms (0.1 - 1.6 μM) were observed. Four selected compounds, highly active in presence of albumin (>70% at 10 μM), endowed with decent cytotoxicity profile (SI against L6 cells >8.5) and good microsomal hepatic stability (>62.5% of drug remaining after 60 min), were tested in S. mansoni infected mice. Despite the promising in vitro worm killing potency, none of them showed significant activity in vivo. Pharmacokinetic data showed a slow absorption, with maximal drug concentrations reached after 24 h of exposure. Finally, no direct correlation between drug exposure and in vivo activity was found. Thus, further investigations are needed to better understand the underlying mechanisms of SF5-containing N,N'-diarylureas.
Collapse
|
20
|
Debrauwer V, Leito I, Lõkov M, Tshepelevitsh S, Parmentier M, Blanchard N, Bizet V. Synthesis and Physicochemical Properties of 2-SF 5-(Aza)Indoles, a New Family of SF 5 Heterocycles. ACS ORGANIC & INORGANIC AU 2021; 1:43-50. [PMID: 36855754 PMCID: PMC9954346 DOI: 10.1021/acsorginorgau.1c00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Structural diversity in heterocyclic chemistry is key to unlocking new properties and modes of action. In this regard, heterocycles embedding emerging fluorinated substituents hold great promise. Herein is described a strategy to access 2-SF5-(aza)indoles for the first time. The sequence relies on the radical addition of SF5Cl to the alkynyl π-system of 2-ethynyl anilines followed by a cyclization reaction. A telescoped sequence is proposed, making this strategy very appealing and reproducible on a gram scale. Downstream functionalizations are also demonstrated, allowing an easy diversification of N- and C3-positions. Ames test, pK a, log P, and differential scanning calorimetry measurements of several fluorinated 2-Rf-indoles are also disclosed. These studies highlight the strategic advantages that a C2-pentafluorosulfanylated motif impart to a privileged scaffold such as an indole.
Collapse
Affiliation(s)
- Vincent Debrauwer
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Märt Lõkov
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | | | - Michael Parmentier
- Chemical
and Analytical Development, Novartis Pharma
AG, CH-4056 Basel, Switzerland
| | - Nicolas Blanchard
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France,
| | - Vincent Bizet
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France,
| |
Collapse
|
21
|
|
22
|
Dudziński P, Husstedt WS, Matsnev AV, Thrasher JS, Haufe G. Synthesis and [3,3]-sigmatropic rearrangements of 5-(pentafluorosulfanyl)-pent-3-en-2-ol, its homologues, and trifluoromethyl analogues. Org Biomol Chem 2021; 19:5607-5623. [PMID: 34100055 DOI: 10.1039/d1ob00870f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of aliphatic (pentafluoro-λ6-sulfanyl)(SF5)-substituted compounds is more challenging than that of the related CF3-substituted analogues. Previous investigations of [3,3]-sigmatropic rearrangements of γ-SF5-substituted allylic alcohols failed to yield 3-SF5-substituted carboxylic acid derivatives. Herein, we present the synthesis of a series of 1-SF5-alk-1-en-3-ols and our efforts to apply them in Johnson-Claisen, ester enolate-Claisen, and Ireland-Claisen rearrangements. Unfortunately, these reactions failed to include the 1-SF5-substituted 1,2-double bond, although successful reactions of analogous CF3-allylic alcohols were reported. Further experiments revealed that bulkiness rather than electronic properties of the SF5 group prevented [3,3]-sigmatropic rearrangements. Indeed, the introduction of a competing second vinyl group into the system (1-SF5-penta-1,4-dien-3-ol) confirmed that a Johnson-Claisen rearrangement was successful (92% yield of methyl 7-SF5-hepta-4,6-dienoate) with incorporation of the unsubstituted 4,5-double bond while the 1-SF5-substituted 1,2-double bond remained unchanged. Efforts to apply 1-(SF5CF2)-substituted 1,2-double bond systems, which are similar to CF3 analogues in steric requirements, in Johnson-Claisen or ester enolate-Claisen rearrangements failed because of the instability of the SF5CF2 substituent under various reaction conditions. On the other hand, when the SF5 group was separated from the reaction center by a CH2 group instead (5-SF5-pent-3-en-2-ol), Johnson-Claisen rearrangements using six orthoesters provided the target 2-substituted 3-(CH2SF5)-hex-4-enoates in 55-76% yields as ∼1 : 1 mixtures of diastereomers. As an example to demonstrate the utility of these products, methyl 3-(CH2SF5)-hex-4-enoate was reduced, and the formed alcohol was oxidized to the aldehyde. Finally, initial experiments showed that the synthetic sequence developed for SF5 compounds is also applicable for analogous CF3-substituted allylic alcohols (5-CF3-pent-3-en-2-ol) and their Johnson-Claisen rearrangement.
Collapse
Affiliation(s)
- Piotr Dudziński
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany.
| | - Wibke S Husstedt
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany.
| | - Andrej V Matsnev
- Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, USA
| | - Joseph S Thrasher
- Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, USA
| | - Günter Haufe
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany.
| |
Collapse
|
23
|
Tanagawa K, Zhao Z, Saito N, Shibata N. AgBF 4-Mediated Chlorine-Fluorine Exchange Fluorination for the Synthesis of Pentafluorosulfanyl (Hetero)arenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kazuhiro Tanagawa
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, Aichi 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, Aichi 466-8555, Japan
| | - Norimichi Saito
- Pharmaceutical Division, Ube Industries, Ltd., Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, Aichi 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, P. R. China
| |
Collapse
|
24
|
Shou JY, Xu XH, Qing FL. Chemoselective Hydro(Chloro)pentafluorosulfanylation of Diazo Compounds with Pentafluorosulfanyl Chloride. Angew Chem Int Ed Engl 2021; 60:15271-15275. [PMID: 33928731 DOI: 10.1002/anie.202103606] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/26/2021] [Indexed: 11/09/2022]
Abstract
Pentafluorosulfanyl chloride (SF5 Cl) is the most prevalent reagent for the incorporation of SF5 group into organic compounds. However, the preparation of SF5 Cl often relies on hazardous reagents and specialized apparatus. Herein, we described a safe and practical synthesis of a bench-stable and easy-to-handle solution of SF5 Cl in n-hexane under gas-reagent-free conditions. The synthetic application of SF5 Cl was demonstrated through the unprecedented reaction with diazo compounds. The chemoselective hydro- and chloropentafluorosulfanylations of α-diazo carbonyl compounds were developed in the presence of K3 PO4 or copper catalyst, respectively. These reactions provide a direct and efficient access to various α-pentafluorosulfanyl carbonyl compounds of high value for potential applications.
Collapse
Affiliation(s)
- Jia-Yi Shou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
25
|
Shou J, Xu X, Qing F. Chemoselective Hydro(Chloro)pentafluorosulfanylation of Diazo Compounds with Pentafluorosulfanyl Chloride. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia‐Yi Shou
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
26
|
Liebing P, Pitts CR, Reimann M, Trapp N, Rombach D, Bornemann D, Kaupp M, Togni A. The Supramolecular Structural Chemistry of Pentafluorosulfanyl and Tetrafluorosulfanylene Compounds. Chemistry 2021; 27:6086-6093. [PMID: 33544928 PMCID: PMC8048635 DOI: 10.1002/chem.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Indexed: 11/17/2022]
Abstract
The analysis of crystal structures of SF5 - or SF4 -containing molecules revealed that these groups are often surrounded by hydrogen or other fluorine atoms. Even though fluorine prefers F⋅⋅⋅H over F⋅⋅⋅F contacts, the latter appeared to be important in many compounds. In a significant number of datasets, the closest F⋅⋅⋅F contacts are below 95 % of the van der Waals distance of two F atoms. Moreover, a number of repeating structural motifs formed by contacts between SF5 groups was identified, including different supramolecular dimers and infinite chains. Among SF4 -containing molecules, the study focused on SF4 Cl compounds, including the first solid-state structure analyses of these reactive species. Additionally, electrostatic potential surfaces of a series of Ph-SF5 derivatives were calculated, pointing out the substituent influence on the ability of F⋅⋅⋅X contact formation (X=F or other electronegative atom). Interaction energies were calculated for different dimeric arrangements of Ph-SF5 , which were extracted from experimental crystal structure determinations.
Collapse
Affiliation(s)
- Phil Liebing
- Institut für ChemieOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Cody Ross Pitts
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Marc Reimann
- Institut für Chemie, Theoretische Chemie/ QuantenchemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Nils Trapp
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - David Rombach
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Dustin Bornemann
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/ QuantenchemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Antonio Togni
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology, ETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| |
Collapse
|
27
|
Hiscocks HG, Yit DL, Pascali G, Ung AT. Incorporation of the pentafluorosulfanyl group through common synthetic transformations. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02760-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Elek M, Djokovic N, Frank A, Oljacic S, Zivkovic A, Nikolic K, Stark H. Synthesis, in silico, and in vitro studies of novel dopamine D 2 and D 3 receptor ligands. Arch Pharm (Weinheim) 2021; 354:e2000486. [PMID: 33615541 DOI: 10.1002/ardp.202000486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Dopamine is an important neurotransmitter in the human brain and its altered concentrations can lead to various neurological diseases. We studied the binding of novel compounds at the dopamine D2 (D2 R) and D3 (D3 R) receptor subtypes, which belong to the D2 -like receptor family. The synthesis, in silico, and in vitro characterization of 10 dopamine receptor ligands were performed. Novel ligands were docked into the D2 R and D3 R crystal structures to examine the precise binding mode. A quantum mechanics/molecular mechanics study was performed to gain insights into the nature of the intermolecular interactions between the newly introduced pentafluorosulfanyl (SF5 ) moiety and D2 R and D3 R. A radioligand displacement assay determined that all of the ligands showed moderate-to-low nanomolar affinities at D2 R and D3 R, with a slight preference for D3 R, which was confirmed in the in silico studies. N-{4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl}-4-(pentafluoro-λ6-sulfanyl)benzamide (7i) showed the highest D3 R affinity and selectivity (pKi values of 7.14 [D2 R] and 8.42 [D3 R]).
Collapse
Affiliation(s)
- Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| |
Collapse
|
29
|
Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. Current Contributions of Organofluorine Compounds to the Agrochemical Industry. iScience 2020; 23:101467. [PMID: 32891056 PMCID: PMC7479632 DOI: 10.1016/j.isci.2020.101467] [Citation(s) in RCA: 437] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Currently, more than 1,200 agrochemicals are listed and many of these are regularly used by farmers to generate the food supply to support the expanding global population. However, resistance to pesticides is an ever more frequently occurring phenomenon, and thus, a continuous supply of novel agrochemicals with high efficiency, selectivity, and low toxicity is required. Moreover, the demand for a more sustainable society, by reducing the risk chemicals pose to human health and by minimizing their environmental footprint, renders the development of novel agrochemicals an ever more challenging undertaking. In the last two decades, fluoro-chemicals have been associated with significant advances in the agrochemical development process. We herein analyze the contribution that organofluorine compounds make to the agrochemical industry. Our database covers 424 fluoro-agrochemicals and is subdivided into several categories including chemotypes, mode of action, heterocycles, and chirality. This in-depth analysis reveals the unique relationship between fluorine and agrochemicals.
Collapse
Affiliation(s)
- Yuta Ogawa
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Osamu Kobayashi
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
| | - Kenji Hirai
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
30
|
Inoue M, Sumii Y, Shibata N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS OMEGA 2020; 5:10633-10640. [PMID: 32455181 PMCID: PMC7240833 DOI: 10.1021/acsomega.0c00830] [Citation(s) in RCA: 771] [Impact Index Per Article: 192.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Inspired by the success of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s, fluorine-containing pharmaceuticals, which are also known as fluoro-pharmaceuticals, have been attracting attention for more than half of a century. Presently, about 20% of the commercial pharmaceuticals are fluoro-pharmaceuticals. In this mini-review, we analyze the prevalence of fluoro-pharmaceuticals in the market and categorize them into several groups based on the chemotype of the fluoro-functional groups, their therapeutic purpose, and the presence of heterocycles and/or chirality to highlight the structural motifs, patterns, and promising trends in fluorine-based drug design. Our database contains 340 fluoro-pharmaceuticals, from the first fluoro-pharmaceutical, Florinef, to the latest fluoro-pharmaceuticals registered in 2019 and drugs that have been withdrawn. The names and chemical structures of all the 340 fluorinated drugs discussed are provided in the Supporting Information.
Collapse
Affiliation(s)
- Munenori Inoue
- Sagami
Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
- E-mail:
| | - Yuji Sumii
- Department
of Life Science and Applied Chemistry, Department of Nanopharmaceutical
Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Norio Shibata
- Department
of Life Science and Applied Chemistry, Department of Nanopharmaceutical
Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
- Institute
of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
- E-mail:
| |
Collapse
|
31
|
Wang Q, Ni C, Hu M, Xie Q, Liu Q, Pan S, Hu J. From C
1
to C
3
: Copper‐Catalyzed
gem
‐Bis(trifluoromethyl)olefination of α‐Diazo Esters with TMSCF
3. Angew Chem Int Ed Engl 2020; 59:8507-8511. [DOI: 10.1002/anie.202002409] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Mingyou Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qinghe Liu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Shitao Pan
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
32
|
Wang Q, Ni C, Hu M, Xie Q, Liu Q, Pan S, Hu J. From C
1
to C
3
: Copper‐Catalyzed
gem
‐Bis(trifluoromethyl)olefination of α‐Diazo Esters with TMSCF
3. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Mingyou Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qinghe Liu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Shitao Pan
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
33
|
Hirano K, Yoshioka K, Umezu K, Kagawa T, Sumii Y, Shibata N. One-step Synthesis of 2-Hydroxy-2-(trifluoromethyl)malonates by Trifluoromethylation of 2-Oxomalonates with Ruppert-Prakash Reagent. CHEM LETT 2020. [DOI: 10.1246/cl.190942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kazuki Hirano
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Kotaro Yoshioka
- KUMIAI CHEMICAL INDUSTRY CO., LTD, 4-26 Ikenohata 1-chome, Taito-ku, Tokyo 110-8782, Japan
| | - Kazuto Umezu
- KUMIAI CHEMICAL INDUSTRY CO., LTD, 4-26 Ikenohata 1-chome, Taito-ku, Tokyo 110-8782, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988 Kaiseicho, Shunan, Yamaguchi 746-0006, Japan
| | - Yuji Sumii
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, P. R. China
| |
Collapse
|
34
|
Niina K, Tanagawa K, Sumii Y, Saito N, Shibata N. Pyridine tetrafluoro-λ6-sulfanyl chlorides: spontaneous addition to alkynes and alkenes in the presence or absence of photo-irradiation. Org Chem Front 2020. [DOI: 10.1039/d0qo00339e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical addition reaction of Py-SF4Cl to alkynes and alkenes provide pyridine-SF4-alkenes and pyridine-SF4-alkanes under blue LED light irradiation or absence of light irradiation in CPME or without solvent.
Collapse
Affiliation(s)
- Kiyoteru Niina
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kazuhiro Tanagawa
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Sumii
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | | | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- Institute of Advanced Fluorine-Containing Materials
| |
Collapse
|
35
|
Zhang G, Gautam P, Chan JMW. Symmetrical and unsymmetrical fluorine-rich ullazines via controlled cycloaromatizations. Org Chem Front 2020. [DOI: 10.1039/d0qo00033g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis of a series of electron-deficient pentafluorosulfanylated ullazines (U1–U10) by sequential electrophilic cycloaromatizations has been achieved.
Collapse
Affiliation(s)
- Guoxian Zhang
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Prabhat Gautam
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Julian M. W. Chan
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
36
|
Roudias M, Gilbert A, Paquin JF. Synthesis of 5-[(Pentafluorosulfanyl)methyl]-γ-butyrolactones via a Silver-Promoted Intramolecular Cyclization Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Majdouline Roudias
- CCVC; PROTEO; Département de chimie; Université Laval; 1045 Avenue de la Médecine, Pavillon Alexandre-Vachon G1V 0A6 Québec Canada
| | - Audrey Gilbert
- CCVC; PROTEO; Département de chimie; Université Laval; 1045 Avenue de la Médecine, Pavillon Alexandre-Vachon G1V 0A6 Québec Canada
| | - Jean-François Paquin
- CCVC; PROTEO; Département de chimie; Université Laval; 1045 Avenue de la Médecine, Pavillon Alexandre-Vachon G1V 0A6 Québec Canada
| |
Collapse
|
37
|
Sumii Y, Sasaki K, Tsuzuki S, Shibata N. Studies of Halogen Bonding Induced by Pentafluorosulfanyl Aryl Iodides: A Potential Group of Halogen Bond Donors in a Rational Drug Design. Molecules 2019; 24:molecules24193610. [PMID: 31591340 PMCID: PMC6803875 DOI: 10.3390/molecules24193610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
The activation of halogen bonding by the substitution of the pentafluoro-λ6-sulfanyl (SF5) group was studied using a series of SF5-substituted iodobenzenes. The simulated electrostatic potential values of SF5-substituted iodobenzenes, the ab initio molecular orbital calculations of intermolecular interactions of SF5-substituted iodobenzenes with pyridine, and the 13C-NMR titration experiments of SF5-substituted iodobenzenes in the presence of pyridine or tetra (n-butyl) ammonium chloride (TBAC) indicated the obvious activation of halogen bonding, although this was highly dependent on the position of SF5-substitution on the benzene ring. It was found that 3,5-bis-SF5-iodobenzene was the most effective halogen bond donor, followed by o-SF5-substituted iodobenzene, while the m- and p-SF5 substitutions did not activate the halogen bonding of iodobenzenes. The similar ortho-effect was also confirmed by studies using a series of nitro (NO2)-substituted iodobenzenes. These observations are in good agreement with the corresponding Mulliken charge of iodine. The 2:1 halogen bonding complex of 3,5-bis-SF5-iodobenzene and 1,4-diazabicyclo[2.2.2]octane (DABCO) was also confirmed. Since SF5-containing compounds have emerged as promising novel pharmaceutical and agrochemical candidates, the 3,5-bis-SF5-iodobenzene unit may be an attractive fragment of rational drug design capable of halogen bonding with biomolecules.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Kenta Sasaki
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Seiji Tsuzuki
- Research Center for Computational Design of Advanced Functional Materials, AIST, Tsukuba, Ibaraki 305-8568, Japan.
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.
| |
Collapse
|
38
|
Pertusati F, Ferla S, Bassetto M, Brancale A, Khandil S, Westwell AD, McGuigan C. A new series of bicalutamide, enzalutamide and enobosarm derivatives carrying pentafluorosulfanyl (SF5) and pentafluoroethyl (C2F5) substituents: Improved antiproliferative agents against prostate cancer. Eur J Med Chem 2019; 180:1-14. [DOI: 10.1016/j.ejmech.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/31/2023]
|
39
|
Ajenjo J, Klepetářová B, Greenhall M, Bím D, Culka M, Rulíšek L, Beier P. Preparation of (Pentafluorosulfanyl)benzenes by Direct Fluorination of Diaryldisulfides: Synthetic Approach and Mechanistic Aspects. Chemistry 2019; 25:11375-11382. [DOI: 10.1002/chem.201902651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Javier Ajenjo
- Institute of Organic Chemistry and Biochemistry, of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | | | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry, of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry, of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
40
|
Kanishchev OS, Dolbier WR. Synthesis of 6-SF 5-indazoles and an SF 5-analog of gamendazole. Org Biomol Chem 2019; 16:5793-5799. [PMID: 30062352 DOI: 10.1039/c8ob01460d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work describes an efficient synthetic approach for a new type of SF5-substituted heterocyclic system, namely 6-SF5-indazoles. During this study, various derivatives of 6-SF5-indazoles such as bromo, iodo, nitro, N-acetyl and N-benzyl substituted compounds were synthesized and characterized. In addition, the utility of the synthetic methodology was demonstrated via the synthesis of 6-SF5-gamendazole - a fully matched analog of the experimental male contraceptive gamendazole, which has a 6-CF3-substituted indazole core.
Collapse
Affiliation(s)
- Oleksandr S Kanishchev
- Department of Chemistry, PO Box 117200, University of Florida, Gainesville, FL 32611-7200, USA.
| | | |
Collapse
|
41
|
Webster SJ, López-Alled CM, Liang X, McMullin CL, Kociok-Köhn G, Lyall CL, James TD, Wenk J, Cameron PJ, Lewis SE. Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj05520c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Azulenes with SF5-containing substituents gave significantly different spectroscopic responses to protonation depending on the regioisomer in question.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Centre for Sustainable Chemical Technologies
| | - Jannis Wenk
- Centre for Sustainable Chemical Technologies
- University of Bath
- Bath
- UK
- Department of Chemical Engineering & Water Innovation & Research Centre: WIRC @ Bath, University of Bath
| | - Petra J. Cameron
- Department of Chemistry
- University of Bath
- Bath
- UK
- Centre for Sustainable Chemical Technologies
| | - Simon E. Lewis
- Department of Chemistry
- University of Bath
- Bath
- UK
- Centre for Sustainable Chemical Technologies
| |
Collapse
|
42
|
Saidalimu I, Liang Y, Niina K, Tanagawa K, Saito N, Shibata N. Synthesis of aryl and heteroaryl tetrafluoro-λ6-sulfanyl chlorides from diaryl disulfides using trichloroisocyanuric acid and potassium fluoride. Org Chem Front 2019. [DOI: 10.1039/c9qo00191c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free method for the synthesis of (Het)ArSF4Cl by using trichloroisocyanuric acid and potassium fluoride in acetonitrile is disclosed.
Collapse
Affiliation(s)
- Ibrayim Saidalimu
- Department of Nanopharmaceutical Sciences
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yumeng Liang
- Department of Nanopharmaceutical Sciences
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kiyoteru Niina
- Department of Nanopharmaceutical Sciences
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kazuhiro Tanagawa
- Department of Nanopharmaceutical Sciences
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | | | - Norio Shibata
- Department of Nanopharmaceutical Sciences
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- Institute of Advanced Fluorine-Containing Materials
| |
Collapse
|
43
|
Gilbert A, Bertrand X, Paquin JF. Silver-Promoted Synthesis of 5-[(Pentafluorosulfanyl)methyl]-2-oxazolines. Org Lett 2018; 20:7257-7260. [PMID: 30370773 DOI: 10.1021/acs.orglett.8b03170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis of 5-[(pentafluorosulfanyl)methyl]-2-oxazolines is reported. The use of a silver promoter allows the intramolecular cyclization of N-[2-chloro-3-(pentafluorosulfanyl)propyl]amide to occur without elimination of the chlorine atom, a reaction pathway typically observed for β-chloro-SF5-alkyl compounds. The products, potentially valuable SF5-containing heterocycles, are obtained in up to 97% yield.
Collapse
Affiliation(s)
- Audrey Gilbert
- CGCC, PROTEO, Département de chimie , Université Laval , 1045 Avenue de la Médecine , Québec, Québec G1V 0A6 , Canada
| | - Xavier Bertrand
- CGCC, PROTEO, Département de chimie , Université Laval , 1045 Avenue de la Médecine , Québec, Québec G1V 0A6 , Canada
| | - Jean-François Paquin
- CGCC, PROTEO, Département de chimie , Université Laval , 1045 Avenue de la Médecine , Québec, Québec G1V 0A6 , Canada
| |
Collapse
|
44
|
Kondo H, Maeno M, Sasaki K, Guo M, Hashimoto M, Shiro M, Shibata N. Synthesis of Chiral Nonracemic α-Difluoromethylthio Compounds with Tetrasubstituted Stereogenic Centers via a Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation. Org Lett 2018; 20:7044-7048. [DOI: 10.1021/acs.orglett.8b02998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroya Kondo
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Mayaka Maeno
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kenta Sasaki
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Ming Guo
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
45
|
Das P, Niina K, Hiromura T, Tokunaga E, Saito N, Shibata N. An eccentric rod-like linear connection of two heterocycles: synthesis of pyridine trans-tetrafluoro-λ 6-sulfanyl triazoles. Chem Sci 2018; 9:4931-4936. [PMID: 29938019 PMCID: PMC5994873 DOI: 10.1039/c8sc01216d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/12/2018] [Indexed: 01/02/2023] Open
Abstract
The trans-tetrafluoro-λ6-sulfane (SF4) group has been utilized as a unique three-dimensional building block for the linear connection of two independent N-heterocycles, pyridines and triazoles. The linearly connected heterocyclic compounds were synthesized by thermal Huisgen 1,3-dipolar cycloaddition between previously unknown pyridine SF4-alkynes and readily available azides, providing a series of rod-like SF4-connected N-heterocycles in good to excellent yields. X-ray crystallographic analysis of the target products revealed the trans-geometry of the SF4 group, which linearly connects two independent N-heterocycles. This research will open the field of chemistry of SF4-connected heterocyclic compounds.
Collapse
Affiliation(s)
- Prajwalita Das
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Kiyoteru Niina
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Tomoya Hiromura
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Norimichi Saito
- Pharmaceutical Division , Ube Industries, Ltd. , Seavans North Bldg, 1-2-1 Shibaura, Minato-ku , Tokyo 105-8449 , Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
- Institute of Advanced Fluorine-Containing Materials , Zhejiang Normal University , 688 Yingbin Avenue , 321004 Jinhua , China
| |
Collapse
|
46
|
Das P, Gondo S, Nagender P, Uno H, Tokunaga E, Shibata N. Access to benzo-fused nine-membered heterocyclic alkenes with a trifluoromethyl carbinol moiety via a double decarboxylative formal ring-expansion process under palladium catalysis. Chem Sci 2018; 9:3276-3281. [PMID: 29732106 PMCID: PMC5915791 DOI: 10.1039/c7sc05447e] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/17/2018] [Indexed: 12/31/2022] Open
Abstract
Direct access to pharmaceutically attractive benzo-fused nine-membered heterocyclic alkenes 3 with a trifluoromethyl carbinol moiety was achieved via a palladium-catalyzed double-decarboxylative formal ring-expansion process from six-membered trifluoromethyl benzo[d][1,3]oxazinones 1 to nine-membered trifluoromethyl benzo[c][1,5]oxazonines 3 in the presence of vinylethylene carbonates 2. Generation of a Pd-π-allyl zwitterionic intermediate was proposed in the catalytic cycle. The trifluoromethyl group in the benzoxazinanones 1 plays an important role throughout the transformation. Diastereoselective chemical transformations of products 3 were also demonstrated.
Collapse
Affiliation(s)
- Pulakesh Das
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Satoshi Gondo
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Punna Nagender
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Hiroto Uno
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
- Institute of Advanced Fluorine-Containing Materials , Zhejiang Normal University , 688 Yingbin Avenue , 321004 Jinhua , China
| |
Collapse
|
47
|
Dreier AL, Matsnev AV, Thrasher JS, Haufe G. Syn-selective silicon Mukaiyama-type aldol reactions of (pentafluoro-λ 6-sulfanyl)acetic acid esters with aldehydes. Beilstein J Org Chem 2018; 14:373-380. [PMID: 29507642 PMCID: PMC5815270 DOI: 10.3762/bjoc.14.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Abstract
Aldol reactions belong to the most frequently used C-C bond forming transformations utilized particularly for the construction of complex structures. The selectivity of these reactions depends on the geometry of the intermediate enolates. Here, we have reacted octyl pentafluoro-λ6-sulfanylacetate with substituted benzaldehydes and acetaldehyde under the conditions of the silicon-mediated Mukaiyama aldol reaction. The transformations proceeded with high diastereoselectivity. In case of benzaldehydes with electron-withdrawing substituents in the para-position, syn-α-SF5-β-hydroxyalkanoic acid esters were produced. The reaction was also successful with meta-substituted benzaldehydes and o-fluorobenzaldehyde. In contrast, p-methyl-, p-methoxy-, and p-ethoxybenzaldehydes led selectively to aldol condensation products with (E)-configured double bonds in 30-40% yields. In preliminary experiments with an SF5-substituted acetic acid morpholide and p-nitrobenzaldehyde, a low amount of an aldol product was formed under similar conditions.
Collapse
Affiliation(s)
- Anna-Lena Dreier
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Andrej V Matsnev
- Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, United States of America
| | - Joseph S Thrasher
- Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, United States of America
| | - Günter Haufe
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence, Universität Münster, Waldeyerstraße 15, 48149 Münster, Germany
| |
Collapse
|