1
|
Gatarz S, Griffiths OM, Esteves HA, Jiao W, Morse P, Fisher EL, Blakemore DC, Ley SV. Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides. J Org Chem 2024; 89:1898-1909. [PMID: 38239107 PMCID: PMC10845164 DOI: 10.1021/acs.joc.3c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
A method to assemble (hetero)aryl sulfonamides via the reductive coupling of aryl sulfinates and nitroarenes is reported. Various reducing conditions with sodium bisulfite and with or without tin(II) chloride in DMSO were developed using an ultrasound bath to improve reaction homogeneity and mixing. A range of (hetero)aryl sulfonamides bearing a selection of functional groups were prepared, and the mechanism of the transformation was investigated. These investigations have led us to propose the formation of nitrosoarene intermediates, which were established via an independent molecular coupling strategy.
Collapse
Affiliation(s)
- Sandra
E. Gatarz
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Oliver M. Griffiths
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Henrique A. Esteves
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Wenhua Jiao
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Peter Morse
- Medicine
Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Ethan L. Fisher
- Medicine
Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | | | - Steven V. Ley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
2
|
Xia J, Zhang K, Mahmood EA. Methods for the synthesis of N-aryl sulfonamides from nitroarenes: an overview. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1964500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jingjing Xia
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, China
| | - Kehua Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, China
| | - Evan Abdolkarim Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan Region of Iraq
| |
Collapse
|
3
|
Wu H, Chen X, Sun N, Sanchez-Mendoza A. Recent developments in the synthesis of N-aryl sulfonamides. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1936060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huizhen Wu
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Xuesong Chen
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Nabo Sun
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | | |
Collapse
|
4
|
Babamoradi J, Ghorbani-Vaghei R, Alavinia S. CuI nanoparticles supported on a novel polymer-layered double hydroxide nanocomposite: an efficient heterogeneous nanocatalyst for the synthesis of bis- N-arylsulfonamides. RSC Adv 2021; 11:19147-19157. [PMID: 35478646 PMCID: PMC9033673 DOI: 10.1039/d1ra02086b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
A new type of polymer-layered double hydroxide nanocomposite bearing thiazole moieties was used to support CuI nanoparticles (NPs) as a heterogeneous catalyst for the synthesis of bis-N-arylsulfonamides. The prepared nanostructured catalyst (LDH@MPS-GMA-TZ-CuI) showed high catalytic activity, as well as excellent recyclability for the preparation of bis-N-arylsulfonamides via the chemoselective reaction of 1,3-disulfonyl chloride and nitroarenes. The superior catalytic activity of the LDH@MPS-GMA-TZ-CuI is related to the high loading of CuI NPs and favorable surface properties. CuI NPs supported on novel polymer–LDHs nanocomposite was investigated for the synthesis of bis-N-arylsulfonamides.![]()
Collapse
Affiliation(s)
- Jamshid Babamoradi
- Department of Chemistry, Bu-Ali Sina University Zip Code 65174 Hamedan Iran +98-81-38380647
| | - Ramin Ghorbani-Vaghei
- Department of Chemistry, Bu-Ali Sina University Zip Code 65174 Hamedan Iran +98-81-38380647
| | - Sedigheh Alavinia
- Department of Chemistry, Bu-Ali Sina University Zip Code 65174 Hamedan Iran +98-81-38380647
| |
Collapse
|
5
|
Liu Z, Ebadi A, Toughani M, Mert N, Vessally E. Direct sulfonamidation of (hetero)aromatic C-H bonds with sulfonyl azides: a novel and efficient route to N-(hetero)aryl sulfonamides. RSC Adv 2020; 10:37299-37313. [PMID: 35521237 PMCID: PMC9057145 DOI: 10.1039/d0ra04255b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more. There is therefore continuing interest in the development of novel and convenient protocols for the preparation of these pharmaceutically important compounds. Recently, direct sulfonamidation of (hetero)aromatic C–H bonds with easily available sulfonyl azides has emerged as an attractive and powerful strategy to access N-(hetero)aryl sulfonamides where non-toxic nitrogen gas forms as the sole by-product. This review highlights recent advances and developments (2012–2020) in this fast growing research area with emphasis on the mechanistic features of the reactions. N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more.![]()
Collapse
Affiliation(s)
- Zhi Liu
- School of Electrical and Automation Engineering, East China Jiaotong University Nanchang 330013 China
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Mohsen Toughani
- Department of Fishery, Babol Branch, Islamic Azad University Babol Iran
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil 65080, Van Turkey
| | | |
Collapse
|
6
|
Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Sequential C-S and S-N Coupling Approach to Sulfonamides. Org Lett 2020; 22:1841-1845. [PMID: 32073282 DOI: 10.1021/acs.orglett.0c00183] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A one-pot three-component reaction involving nitroarenes, (hetero)arylboronic acids, and potassium pyrosulfite leading to sulfonamides was described. A broad range of sulfonamides bearing different reactive functional groups were obtained in good to excellent yields through sequential C-S and S-N coupling that does not require metal catalysts.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wei Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Bing Han
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
7
|
Mansano Willig JC, Granetto G, Reginato D, Dutra FR, Poruczinski ÉF, de Oliveira IM, Stefani HA, de Campos SD, de Campos ÉA, Manarin F, Botteselle GV. A comparative study between Cu(INA)2-MOF and [Cu(INA)2(H2O)4] complex for a click reaction and the Biginelli reaction under solvent-free conditions. RSC Adv 2020; 10:3407-3415. [PMID: 35497731 PMCID: PMC9048522 DOI: 10.1039/c9ra10171c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/10/2023] Open
Abstract
The catalytic activity of metal–organic framework Cu(INA)2 (INA = isonicotinate ion) and the complex [Cu(INA)2(H2O)4] were studied in the Copper-catalyzed Azide–Alkyne Cycloaddition (CuAAC) and Biginelli reaction under solvent-free reaction conditions. The robust, efficient and eco-friendly new method allowed the preparation of a variety of 1,2,3-triazole compounds in good to excellent yields and high selectivity for the 1,4-disubstituted triazole. Moreover, for the Biginelli reaction between aldehydes, ethyl acetoacetate and urea, the corresponding dihydropyrimidinones (DHPMs) were also obtained in satisfactory yields under mild reaction conditions for both catalysts. The comparative study between Cu(INA)2-MOF and [Cu(INA)2(H2O)4] complex demonstrated better results for the Cu-MOF, for both the yields and the regioselectivity of the products. Furthermore, no change in the heterogeneous catalyst structure was observed after the reaction, allowing them to be recovered and reused without any loss of activity. The catalytic application of Cu(INA)2-MOF in click and Biginelli reactions was investigated and a comparative study with the [Cu(INA)2(H2O)4] complex was performed.![]()
Collapse
Affiliation(s)
- Julia C. Mansano Willig
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | - Gustavo Granetto
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | - Danielly Reginato
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | - Felipe R. Dutra
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | | | | | - Helio A. Stefani
- Departamento de Farmácia
- Faculdade de Ciências Farmacêuticas
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Sílvia D. de Campos
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | - Élvio A. de Campos
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | - Flávia Manarin
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| | - Giancarlo V. Botteselle
- Centro de Engenharias e Ciências Exatas-CECE
- Universidade Estadual do Oeste do Paraná
- Toledo
- Brazil
| |
Collapse
|
8
|
Zhang K, Zhang Y, Liu Q, He D, Tian J, Zhou H. Metal‐Free One‐Pot Synthesis of Sulfonamides from Nitroarenes and Arylsulfonyl Chlorides in Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201901742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaili Zhang
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Yin Zhang
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Qixing Liu
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Dan He
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Juyan Tian
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Haifeng Zhou
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| |
Collapse
|
9
|
Liu S, Chen R, Zhang J. Copper-Catalyzed Redox Coupling of Nitroarenes with Sodium Sulfinates. Molecules 2019; 24:molecules24071407. [PMID: 30974790 PMCID: PMC6479299 DOI: 10.3390/molecules24071407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
A simple copper-catalyzed redox coupling of sodium sulfinates and nitroarenes is described. In this process, abundant and stable nitroarenes serve as both the nitrogen sources and oxidants, and sodium sulfinates act as both reactants and reductants. A variety of aromatic sulfonamides were obtained in moderate to good yields with broad substrate scope. No external additive is employed for this kind of transformation.
Collapse
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
| | - Ru Chen
- Yiyang Agriculture Products Quality Detect Center, Yiyang 413000, China.
| | - Jin Zhang
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
| |
Collapse
|