1
|
Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021; 12:753686. [PMID: 34858208 PMCID: PMC8632065 DOI: 10.3389/fphys.2021.753686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexandra E Peters
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jessie M Sutherland
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Gurner KH, Richardson JJ, Harvey AJ, Gardner DK. A pilot study investigating a novel particle-based growth factor delivery system for preimplantation embryo culture. Hum Reprod 2021; 36:1776-1783. [PMID: 33975346 DOI: 10.1093/humrep/deab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can vascular endothelial growth factor (VEGF)-loaded silica supraparticles (V-SPs) be used as a novel mode of delivering VEGF to the developing preimplantation embryo in vitro? SUMMARY ANSWER Supplementation of embryo culture media with V-SPs promoted embryonic development in a manner equivalent to media supplemented with free VEGF. WHAT IS KNOWN ALREADY VEGF is a maternally derived growth factor that promotes preimplantation embryonic development in vitro. However, its use in clinical media has limitations due to its low stability in solution. STUDY DESIGN, SIZE, DURATION This study was a laboratory-based analysis utilising a mouse model. V-SPs were prepared in vitro and supplemented to embryonic culture media. The bioactivity of V-SPs was determined by analysis of blastocyst developmental outcomes (blastocyst development rate and total cell number). PARTICIPANTS/MATERIALS, SETTING, METHODS SPs were loaded with fluorescently labelled VEGF and release kinetics were characterised. Bioactivity of unlabelled VEGF released from V-SPs was determined by analysis of embryo developmental outcomes (blastocyst developmental rate and total cell number) following individual mouse embryo culture in 20 µl of G1/G2 media at 5% oxygen, supplemented with 10 ng/ml recombinant mouse VEGF in solution or with V-SPs. The bioactivity of freeze-dried V-SPs was also assessed to determine the efficacy of cryostorage. MAIN RESULTS AND THE ROLE OF CHANCE VEGF release kinetics were characterised by an initial burst of VEGF from loaded spheres followed by a consistent lower level of VEGF release over 48 h. VEGF released from V-SPs resulted in significant increases in total blastocyst cell number relative to the control (P < 0.001), replicating the effects of medium freely supplemented with fresh VEGF (P < 0.001). Similarly, freeze dried V-SPs exerted comparable effects on embryonic development (P < 0.05). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this proof of principle study, the effects of V-SPs on embryonic development were only analysed in a mouse model. WIDER IMPLICATIONS OF THE FINDINGS These findings suggest that SPs represent a novel method by which a targeted dose of therapeutic agents (e.g. bioactive VEGF) can be delivered to the developing in vitro embryo to promote embryonic development, an approach that negates the breakdown of VEGF associated with storage in solution. As such, V-SPs may be an alternative and effective method of delivering bioactive VEGF to the developing in vitro embryo; however, the potential use of V-SPs in clinical IVF requires further investigation. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the University of Melbourne. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Melbourne IVF, East Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ouyang L, Shaik R, Xu R, Zhang G, Zhe J. Mapping Surface Charge Distribution of Single-Cell via Charged Nanoparticle. Cells 2021; 10:cells10061519. [PMID: 34208707 PMCID: PMC8235745 DOI: 10.3390/cells10061519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell's surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell-nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells' surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell's surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells' surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.
Collapse
Affiliation(s)
- Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (R.X.)
| | - Rubia Shaik
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (R.X.)
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (R.X.)
- Correspondence: ; Tel.: +1-330-972-7737
| |
Collapse
|
4
|
Morris LH, Maclellan LJ. Update on advanced semen-processing technologies and their application for in vitro embryo production in horses. Reprod Fertil Dev 2020; 31:1771-1777. [PMID: 31640845 DOI: 10.1071/rd19301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
The increased commercialisation of intracytoplasmic sperm injection (ICSI) in horses creates more opportunities to incorporate advanced reproductive technologies, such as sex-sorted, refrozen and lyophilised spermatozoa, into a breeding program. This paper reviews the status of these semen-handling technologies in light of their use in equine ICSI programs. Pregnancies have been achieved from each of these advanced technologies when combined with ICSI in horses, but refinements in the semen-handling processes underpinning these technologies are currently being explored to produce more reliable and practical improvements in the results from equine ICSI.
Collapse
Affiliation(s)
- Lee H Morris
- EquiBreed NZ, 399 Parklands Road, Te Awamutu 3879, New Zealand; and Corresponding author.
| | | |
Collapse
|
5
|
Yousef MS, López-Lorente AI, Diaz-Jimenez M, Consuegra C, Dorado J, Pereira B, Ortiz I, Cárdenas S, Hidalgo M. Nano-depletion of acrosome-damaged donkey sperm by using lectin peanut agglutinin (PNA)-magnetic nanoparticles. Theriogenology 2020; 151:103-111. [PMID: 32325322 DOI: 10.1016/j.theriogenology.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
Lectin is considered as a suitable biomarker for nano-depletion of acrosome-damaged sperm. The aim of this study was to synthetize magnetic nanoparticles (MNPs) coated by peanut (Arachis hypogaea) agglutinin lectin (PNA) and investigate its beneficial effect in improving of sperm characteristics. MNPs were obtained by co-precipitation method, functionalized with chitosan and coated by PNA at a concentration of 0.04 mg/mL. Semen was frozen either with glycerol-based or sucrose-based extenders. Frozen-thawed straws from five donkeys (three ejaculates per donkey) were incubated with lectin-MNPs (2 mg/mL), and then exposed to an external magnet enabling the non-bound sperm to be collected as nanopurified sperm. Sperm were evaluated post-thawing (control) and after nanopurification for motility, plasma membrane integrity, acrosome integrity, morphology, DNA fragmentation and concentration. The statistical analyses were extended to investigate the correlation between the initial quality of the frozen-thawed semen samples and the effect of nanopurification after thawing. The obtained MNPs were biocompatible to the sperm and significantly improved the progressive motility (P < 0.05) for the glycerol nanopurified group (43.08 ± 3.52%) in comparison to control (33.70 ± 2.64%). Acrosome-damaged sperm were reduced (P < 0.05) in both nanopurified groups (19.92 ± 2.69 for G and 21.57 ± 2.77 for S) in comparison to control (36.07 ± 3.82 for G and 35.35 ± 3.88 for S). There were no significant changes in sperm morphology and membrane integrity after nanopurification. The average sperm recovery after nanopurification was 80.1%. Sperm quality index was significantly higher (P < 0.001) in nanopurified groups regardless of the initial quality of the frozen thawed semen samples. However, in the high sperm quality group, nanopurification significantly improved the progressive motility and membrane integrity besides the increasing of acrosome-intact sperm. Sperm nanopurification using lectin-magnetic nanoparticles can be considered as a suitable method to reduce the proportion of acrosome-damaged sperm and to increase the quality of frozen thawed donkey semen.
Collapse
Affiliation(s)
- M S Yousef
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain; Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - A I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - M Diaz-Jimenez
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - C Consuegra
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - J Dorado
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - B Pereira
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain
| | - I Ortiz
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, United States
| | - S Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - M Hidalgo
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, 14071, Spain.
| |
Collapse
|
6
|
Akerman JP, Hayon S, Coward RM. Sperm Extraction in Obstructive Azoospermia: What's Next? Urol Clin North Am 2020; 47:147-155. [PMID: 32272986 DOI: 10.1016/j.ucl.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For men with obstructive azoospermia, several surgical sperm retrieval techniques can facilitate conception with assisted reproductive technology. The evolution of both percutaneous and open approaches to sperm retrieval has been affected by technological innovations, including the surgical microscope, in vitro fertilization, and intracytoplasmic sperm injection. Further modifications to these procedures are designed to minimize patient morbidity and increase the quality and quantity of sperm samples. Innovative technologies promise to further ameliorate outcomes by selecting the highest quality sperm. Although various approaches to surgical sperm retrieval are now well established, several advancements in sperm selection and optimization are being developed.
Collapse
Affiliation(s)
- Jason P Akerman
- Department of Urology, University of North Carolina, 2113 Physician's Office Building, CB#7235, Chapel Hill, NC 27599-7235, USA.
| | - Solomon Hayon
- Department of Urology, University of North Carolina, 2113 Physician's Office Building, CB#7235, Chapel Hill, NC 27599-7235, USA
| | - Robert Matthew Coward
- Department of Urology, University of North Carolina, 2113 Physician's Office Building, CB#7235, Chapel Hill, NC 27599-7235, USA; UNC Fertility, 7920 ACC Blvd #300, Raleigh, North Carolina 27617, USA
| |
Collapse
|
7
|
Xu H, Medina-Sánchez M, Maitz MF, Werner C, Schmidt OG. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS NANO 2020; 14:2982-2993. [PMID: 32096976 DOI: 10.1021/acsnano.9b07851] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
Collapse
Affiliation(s)
- Haifeng Xu
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
8
|
Kielbik P, Kaszewski J, Dabrowski S, Faundez R, Witkowski BS, Wachnicki L, Zhydachevskyy Y, Sapierzynski R, Gajewski Z, Godlewski M, Godlewski MM. Transfer of orally administered ZnO:Eu nanoparticles through the blood-testis barrier: the effect on kinetic sperm parameters and apoptosis in mice testes. NANOTECHNOLOGY 2019; 30:455101. [PMID: 31362276 DOI: 10.1088/1361-6528/ab36f4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Zinc-based nanoparticles are promising materials for various applications, including in biomedicine. The aim of our study was to determine the effect of fluorescent europium-doped zinc oxide nanoparticles (ZnO:Eu NPs) on sperm parameters, cell apoptosis and integrity of the blood-testis barrier (BTB) in mice. Nanostructures were orally administered to adult mice (n = 34). Animals were sacrificed after 3 h, 24 h, 7 d and 14 d following oral administration. Sperm was collected and analysed for viability and kinetic parameters. Collected testes were quantitatively analysed for accumulation of ZnO:Eu NPs. Microscopic evaluation based on immunofluorescence and histopathological studies were also conducted. Results showed that ZnO:Eu NPs were able to overcome the BTB with their subsequent accumulation in the testis. No toxic or pro-apoptotic effects of nanoparticles on the male reproductive system were observed. The results suggested that ZnO:Eu NPs were able to accumulate in the testis with no negative impact on sperm parameters, tissue architecture or the integrity of the BTB.
Collapse
Affiliation(s)
- Paula Kielbik
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland. Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lucas CG, Chen PR, Seixas FK, Prather RS, Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol Reprod Dev 2019; 86:1531-1547. [PMID: 31478591 PMCID: PMC7183242 DOI: 10.1002/mrd.23260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
An appropriate environment to optimize porcine preimplantation embryo production in vitro is required as genetically modified pigs have become indispensable for biomedical research and agriculture. To provide suitable culture conditions, omics technologies have been applied to elucidate which metabolic substrates and pathways are involved during early developmental processes. Metabolomic profiling and transcriptional analysis comparing in vivo- and in vitro-derived embryos have demonstrated the important role of amino acids during preimplantation development. Transcriptional profiling studies have been helpful in assessing epigenetic reprogramming agents to allow for the correction of gene expression during the cloning process. Along with this, nanotechnology, which is a highly promising field, has allowed for the use of engineered nanoplatforms in reproductive biology. A growing number of studies have explored the use of nanoengineered materials for sorting, labeling, and targeting purposes; which demonstrates their potential to become one of the solutions for precise delivery of molecules into gametes and embryos. Considering the contributions of omics and the recent progress in nanoscience, in this review, we focused on their emerging applications for current in vitro pig embryo production systems to optimize the generation of genetically modified animals.
Collapse
Affiliation(s)
- Caroline G Lucas
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Paula R Chen
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Fabiana K Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Randall S Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Magdanz V, Gebauer J, Sharan P, Eltoukhy S, Voigt D, Simmchen J. Sperm-Particle Interactions and Their Prospects for Charge Mapping. ACTA ACUST UNITED AC 2019; 3:e1900061. [PMID: 32648653 DOI: 10.1002/adbi.201900061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/07/2019] [Indexed: 01/09/2023]
Abstract
In this article, a procedure to investigate sperm charge distribution by electrostatic sperm-particle interactions is demonstrated. Differently chargedparticles are fabricated and their attachment distribution on the bovine sperm membrane is investigated. The sperm-particle attachment sites are observed using bright field and cryo-scanning electron microscopy combined with energy-dispersive X-ray analysis. The findings suggest that the charge distribution of the sperm membrane is not uniform, and although the overall net charge of the sperm cell is negative, positively charged areas are especially found on the sperm heads. The newly developed method is used to investigate the dynamic charge distribution of the sperm cell membrane upon maturation induced by heparin, as a representation of the multitude of changes during the development of a sperm.
Collapse
Affiliation(s)
- Veronika Magdanz
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Johannes Gebauer
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Priyanka Sharan
- Chair of Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany
| | - Samar Eltoukhy
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Dagmar Voigt
- Chair of Botany, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Juliane Simmchen
- Chair of Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany
| |
Collapse
|
11
|
Feugang JM, Rhoads CE, Mustapha PA, Tardif S, Parrish JJ, Willard ST, Ryan PL. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology 2019; 137:75-81. [PMID: 31204016 DOI: 10.1016/j.theriogenology.2019.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continuous progress in nanoscience has allowed the synthesis of various nanoscale particles, known as nanoparticles or nanomaterials which, by harnessing unique physico-chemical properties, are crucial for multiple bio-applications. Despite the revealed toxicity (nanotoxicity) of nanoparticles in various in vitro and in vivo studies, their careful design for biocompatibility and effective interactions with single-celled and multi-cellular organisms has permitted their use in several fields of research and biomedicine. The various nanoparticles synthesized and applied in the veterinary sciences, including reproductive biology, have shown potential to influence routine practices in animal production systems. These include post-collection manipulation of semen and the protection of high-quality spermatozoa to extend their preservation, and to improve sperm-related biotechnologies such as sperm-mediated gene transfer, sperm sorting, sex-sorting, and cryopreservation. Therefore, the application of nanotechnology-based tools to semen may enhance assisted reproductive technologies for biomedical applications and improve economic productivity for farmers. Here, we review the efficacy of available techniques and emerging tools of nanotechnology that might be useful for further selection of high quality boar spermatozoa and productivity improvement.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA.
| | - Carley E Rhoads
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA
| | | | | | - John J Parrish
- Department of Animal Sciences, University of Wisconsin, WI, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Population and Pathology Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
12
|
Durfey CL, Swistek SE, Liao SF, Crenshaw MA, Clemente HJ, Thirumalai RVKG, Steadman CS, Ryan PL, Willard ST, Feugang JM. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol 2019; 10:14. [PMID: 30774950 PMCID: PMC6368687 DOI: 10.1186/s40104-018-0307-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Advances in nanotechnology have permitted molecular-based targeting of cells through safe and biocompatible magnetic nanoparticles (MNP). Their use to detect and remove damaged spermatozoa from semen doses could be of great interest. Here, MNP were synthesized and tested for their ability to target apoptotic (annexin V) and acrosome-reacted (lectin) boar spermatozoa, for high-throughout retrieval in a magnetic field (nanoselection). The potential impacts of nanoselection on sperm functions and performance of offspring sired by sperm subjected to nanoselection were determined. Fresh harvested and extended boar semen was mixed with various amounts (0, 87.5, and 175 μg) of MNP-conjugates (Annexin V-MNP or Lectin-MNP) and incubated (10 to 15 min) for 37 °C in Exp. 1. In Exp. 2, extended semen was mixed with optimal concentrations of MNP-conjugates and incubated (0, 30, 90, or 120 min). In Exp. 3, the synergistic effects of both MNP-conjugates (87.5 μg - 30 min) on spermatozoa was evaluated, followed by sperm fertility assessments through pregnancy of inseminated gilts and performance of neonatal offspring. Sperm motion, viability, and morphology characteristics were evaluated in all experiments. RESULTS Transmission electron microscopy, atomic force microscopy, and hyperspectral imaging techniques were used to confirm attachment of MNP-conjugates to damaged spermatozoa. The motility of nanoselected spermatozoa was improved (P < 0.05). The viability of boar sperm, as assessed by the abundance of reactive oxygen species and the integrity of the acrosome, plasma membrane, and mitochondrial membrane was not different between nanoselected and control spermatozoa. The fertility of gilts inseminated with control or nanoselected spermatozoa, as well as growth and health of their offspring were not different between (P > 0.05). CONCLUSIONS The findings revealed the benefit of magnetic nanoselection for high-throughput targeting of damaged sperm, for removal and rapid and effortless enrichment of semen doses with highly motile, viable, and fertile spermatozoa. Therefore, magnetic nanoselection for removal of abnormal spermatozoa from semen is a promising tool for improving fertility of males, particularly during periods, such as heat stress during the summer months.
Collapse
Affiliation(s)
- Casey L. Durfey
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | - Sabrina E. Swistek
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS USA
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | - Mark A. Crenshaw
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | | | - Rooban V. K. G. Thirumalai
- Institute of Imaging and Analytic Technology (I2AT), Mississippi State University, Mississippi State, MS USA
| | - Christy S. Steadman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | - Peter L. Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
- Department of Pathobiology and Population Medicine Biochemistry, Mississippi State University, Mississippi State, MS USA
| | - Scott T. Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS USA
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| |
Collapse
|
13
|
Establishment of an electroporation-mediated gene delivery system in porcine spermatogonial stem cells. In Vitro Cell Dev Biol Anim 2019; 55:177-188. [PMID: 30725355 DOI: 10.1007/s11626-019-00326-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Spermatogonial stem cells (SSCs) are a useful tool for the generation of genetically modified transgenic sperm. As a result, the transfer of specific genes into the cytoplasm of SSCs is crucial for the successful generation of transgenic sperm. Here, we report electroporation conditions optimized for SSCs derived from the porcine testis. The highest transfection efficiency and cell viability were observed in porcine SSCs transfected with 1 μg transgenic vector with a single electric pulse from an electroporator at a voltage of 100 V and a capacitor setting of 250 μF. The transfection efficiency and cell viability were constant regardless of the size of the transgenic vector. Furthermore, we did not detect loss of spermatozoa differentiation potential in the transfected porcine SSCs. From these results, we confirm that this electroporation-based gene delivery system can effectively introduce foreign DNA into the genome of porcine SSCs without any loss of the original porcine SSC characteristics, which will be important in the generation of mosaicism-free transgenic pigs produced from transgenic porcine sperm.
Collapse
|
14
|
Falchi L, Khalil WA, Hassan M, Marei WF. Perspectives of nanotechnology in male fertility and sperm function. Int J Vet Sci Med 2018; 6:265-269. [PMID: 30564607 PMCID: PMC6286411 DOI: 10.1016/j.ijvsm.2018.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023] Open
Abstract
Recent advances in nanotechnology have tremendously expanded its possible applications in biomedicine. Although, the effects of nanoparticles (NPs) at cellular and tissue levels have not been fully understood, some of these biological effects might be employed in assisted reproduction to improve male fertility particularly by enhancing sperm cell quality either in vivo or in vitro. This review summarises the available literature regarding the potential applications of nanomaterials in farm animal reproduction, with a specific focus on the male gamete and on different strategies to improve breeding performances, transgenesis and targeted delivery of substances to a sperm cell. Antioxidant, antimicrobial properties and special surface binding ligand functionalization and their applications for sperm processing and cryopreservation have been reviewed. In addition, nanotoxicity and detrimental effects of NPs on sperm cells are also discussed due to the increasing concerns regarding the environmental impact of the expanding use of nanotechnologies on reproduction.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud Hassan
- Animal Production Research Institute, Dokki, Giza, Egypt
| | - Waleed F.A. Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
15
|
Remião MH, Segatto NV, Pohlmann A, Guterres SS, Seixas FK, Collares T. The Potential of Nanotechnology in Medically Assisted Reproduction. Front Pharmacol 2018; 8:994. [PMID: 29375388 PMCID: PMC5768623 DOI: 10.3389/fphar.2017.00994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Reproductive medicine is a field of science which searches for new alternatives not only to help couples achieve pregnancy and preserve fertility, but also to diagnose and treat diseases which can impair the normal operation of the reproductive tract. Assisted reproductive technology (ART) is a set of methodologies applied to cases related to infertility. Despite being highly practiced worldwide, ART presents some challenges, which still require special attention. Nanotechnology, as a tool for reproductive medicine, has been considered to help overcome some of those impairments. Over recent years, nanotechnology approaches applied to reproductive medicine have provided strategies to improve diagnosis and increase specificity and sensitivity. For in vitro embryo production, studies in non-human models have been used to deliver molecules to gametes and embryos. The exploration of nanotechnology for ART would bring great advances. In this way, experiments in non-human models to test the development and safety of new protocols using nanomaterials are very important for informing potential future employment in humans. This paper presents recent developments in nanotechnology regarding impairments still faced by ART: ovary stimulation, multiple pregnancy, and genetic disorders. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed.
Collapse
Affiliation(s)
- Mariana H Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Natalia V Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Pohlmann
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia S Guterres
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana K Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
16
|
High doses of lipid-core nanocapsules do not affect bovine embryonic development in vitro. Toxicol In Vitro 2017; 45:194-201. [DOI: 10.1016/j.tiv.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 09/03/2017] [Accepted: 09/14/2017] [Indexed: 01/26/2023]
|
17
|
Durfey CL, Burnett DD, Liao SF, Steadman CS, Crenshaw MA, Clemente HJ, Willard ST, Ryan PL, Feugang JM. Nanotechnology-based selection of boar spermatozoa: growth development and health assessments of produced offspring. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Preparation, characterization and toxicity evaluation of amphotericin B loaded MPEG-PCL micelles and its application for buccal tablets. Appl Microbiol Biotechnol 2017; 101:7357-7370. [DOI: 10.1007/s00253-017-8463-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022]
|
19
|
Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev 2017; 84:832-841. [PMID: 28481043 DOI: 10.1002/mrd.22831] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
Abstract
The stringent selection of viable spermatozoa ensures the transmission of high-quality genetic material to the egg during fertilization. Sperm heterogeneity within or between ejaculates and between males obliges varied post-collection handling of semen to assure satisfactory fertility rates. The current techniques used to assess sperm generally detect non-viable and non-fertilizing gametes in the ejaculate, but do not permit the investigation of semen for improved fertility outcomes. Advances in technology, however, have spurred the search for new approaches to enrich semen with high-quality spermatozoa and to track intra-uterine sperm migration. This review highlights the current and future methodologies used for sperm labeling, selection, tracking, and imaging, with specific emphasis on the recent influence of nanotechnology.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
20
|
Roca J, Parrilla I, Bolarin A, Martinez EA, Rodriguez-Martinez H. Will AI in pigs become more efficient? Theriogenology 2015; 86:187-93. [PMID: 26723133 DOI: 10.1016/j.theriogenology.2015.11.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/19/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
AI is commercially applied worldwide to breed pigs, yielding fertility outcomes similar to those of natural mating. However, it is not fully efficient, as only liquid-stored semen is used, with a single boar inseminating about 2000 sows yearly. The use of liquid semen, moreover, constrains international trade and slows genetic improvement. Research efforts, reviewed hereby, are underway to reverse this inefficient scenario. Special attention is paid to studies intended to decrease the number of sperm used per pregnant sow, facilitating the practical use of sexed frozen-thawed semen in swine commercial insemination programs.
Collapse
Affiliation(s)
- J Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain.
| | - I Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - A Bolarin
- R&D Department of AIM iberica, Topigs Norsvin, Madrid, Spain
| | - E A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - H Rodriguez-Martinez
- Department of Clinical and Experimental Medicine (IKE), Linköping University (LiU), Linköping, Sweden
| |
Collapse
|