1
|
Lucy MC, Pohler KG. North American perspectives for cattle production and reproduction for the next 20 years. Theriogenology 2025; 232:109-116. [PMID: 39536622 DOI: 10.1016/j.theriogenology.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ruminant species are important to human society due to their ability to convert human-inedible sources of energy and protein to human-edible food. Greater efficiency of meat and milk production will require the management of the complex reproductive biology of many cattle with a limited capacity and limited budget within a smaller, hotter, and more climatically erratic land area. The over-riding drivers of new reproductive technologies in North America will be smaller economic margins, larger herd size, fewer agricultural workers per farm, and a greater reliance on automation to offset the reduced agricultural labor force. Climate change and the possibility that consumers may dictate the procedures used for animal reproductive management may present additional challenges. The successes of the past 20 years (timed AI, genomic selection for fertility in both bulls and cows, automated estrus detection, chemical and ultrasonographic pregnancy diagnosis, and gender selected semen) will be improved upon in the next 20 years as most of these technologies can be optimized further. Improving embryo technologies and increasing our understanding of embryonic loss may provide the greatest challenges for the future. Researchers must attempt to devise practical methods to release more follicles from the primordial follicle pool so that a greater number of oocytes and embryos can be harvested from individual animals. Embryonic loss continues to be an unsolved question that cuts the total number of potential offspring by nearly one-third. The identification of fertile embryos in vitro, better methods of cryopreservation, and the optimization of methods of transfer into recipient animals may improve the efficiency of advanced embryo technologies. The derivation of oocytes, sperm, and embryos from pluripotent stem cells may yield a vast supply of gametes and embryos from genetically superior animals and radically change the reproductive management in the future.
Collapse
Affiliation(s)
- M C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - K G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Mendina GR, de Brun V, de Lourdes Adrien M, Pons V, Vivian Paradizo R, Gil J, Rocha CC, Binelli M, Meikle A. Increased expression of interferon-stimulated gene 15 ( ISG15) in cervical cells on day 14 of pregnancy in Holstein heifers. JDS COMMUNICATIONS 2025; 6:165-170. [PMID: 39877189 PMCID: PMC11770300 DOI: 10.3168/jdsc.2024-0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/15/2024] [Indexed: 01/31/2025]
Abstract
In cattle, expression of IFN-stimulated genes in the female reproductive tract has been reported as an early pregnancy diagnostic tool, as early as d 17 of pregnancy. The hypothesis of this study was that expression of ISG15 in the cervix of pregnant heifers is increased on d 14 of pregnancy. The objective was to compare the expression of ISG15 in cervical cells between pregnant and cyclic heifers (control, sham-inseminated) on d 14, 16, and 18 after insemination (d 0). Holstein heifers were submitted to an estrus synchronization protocol and inseminated with extender only ("control," n = 6), or with regular semen (n = 15). Heifers were classified as pregnant (n = 10) by ultrasound at d 30 through the detection of a viable embryo with a heartbeat. Blood samples from the coccygeal vein were collected to determine serum progesterone concentrations on d 14, 16, and 18. The expression of ISG15 and PGR in cervical cells collected through cytobrush was measured on d 14, 16, and 18. A receiver operating characteristic (ROC) curve was calculated to quantify the pregnancy diagnostic accuracy of ISG15 and PGR expression. The expression levels of ISG15 in cervical cells were significantly greater in pregnant compared with control heifers on d 14, and remained greater on d 16 and 18, whereas differences in PGR were observed only on d 18. Scatter plots and ROC analyses showed the most accurate prediction of pregnancy for ISG15 on d 16. In conclusion, cervical cells express greater ISG15 mRNA in pregnant versus control heifers as early as d 14 postinsemination, with the best accuracy on d 16.
Collapse
Affiliation(s)
- Graciana R. Mendina
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Universidad de la República, Paysandú 60000, Uruguay
| | - Victoria de Brun
- Departamento de Clínicas y Hospital Veterinario, Facultad de Veterinaria, Universidad de la República, Montevideo 18000, Uruguay
| | - Maria de Lourdes Adrien
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Universidad de la República, Paysandú 60000, Uruguay
| | - Victoria Pons
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Universidad de la República, Paysandú 60000, Uruguay
| | - Rodrigo Vivian Paradizo
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Paysandú 60000, Uruguay
| | - Jorge Gil
- Departamento de Ciencias Veterinarias y Agrarias, Facultad de Veterinaria, Universidad de la República, Paysandú 60000, Uruguay
| | - Cecilia C. Rocha
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Ana Meikle
- Departamento de Clínicas y Hospital Veterinario, Facultad de Veterinaria, Universidad de la República, Montevideo 18000, Uruguay
| |
Collapse
|
3
|
Brown W, Oliveira M, Reis Silva R, Demetrio D, Block J. Effects of administration of mycobacterium cell wall fraction during the periovulatory period on embryo development following superovulation in virgin dairy heifers. JDS COMMUNICATIONS 2024; 5:361-365. [PMID: 39220845 PMCID: PMC11365348 DOI: 10.3168/jdsc.2023-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/17/2023] [Indexed: 09/04/2024]
Abstract
Proinflammatory cytokines are involved in regulating several reproductive processes that occur during the periovulatory period, including ovulation, corpus luteum formation, and preimplantation embryo development. The objective of this study was to determine whether stimulation of proinflammatory cytokines through administration of mycobacterium cell wall fraction (MCWF; Amplimune, NovaVive) could improve embryo development following superovulation in dairy heifers. A total of 34 independent embryo recovery procedures were performed using nulliparous Holstein heifers (n = 20; age 12-18 mo) as donors. For superovulation, dominant follicle removal was performed and an intravaginal progesterone device was inserted on d -6. Thirty-six hours later, on d -4, FSH (420 IU total) was administered in a decreasing dose regimen consisting of 8 injections given twice daily at 12-h intervals. Prostaglandin F2α was administered in conjunction with the fifth and sixth injections of FSH on d -2 and the intravaginal progesterone device was removed on the morning of d -1. Twenty-four hours later, on d 0, donors received their randomly assigned treatment (sterile saline or MCWF, 5 mL, i.m.) and gonadotropin-releasing hormone was administered to induce ovulation. Donors were artificially inseminated with frozen-thawed semen at 12 and 24 h after induced ovulation. Nonsurgical embryo recovery procedures were performed on d 7. Recovered structures were evaluated using a stereomicroscope to assess embryo development. There was no effect of MCWF treatment on the numbers of total structures, unfertilized oocytes, degenerate embryos, transferable embryos, or blastocysts. However, there was a trend for donors treated with MCWF to have a greater proportion of blastocysts out of total structures recovered. Overall, the efficacy of superovulation in virgin dairy heifer donors was not improved by administration of MCWF during the peri-ovulatory period, but results indicate that MCWF treatment may enhance embryo developmental kinetics.
Collapse
Affiliation(s)
- W. Brown
- Department of Animal Science, University of Wyoming, Laramie, WY 82071
| | | | - R. Reis Silva
- School of Veterinary and Animal Science (EVZ), Federal University of Goias, Goiania, GO, Brazil 74690-900
| | | | - J. Block
- Department of Animal Science, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
4
|
Strangstalien A, Braz CU, Miyamoto A, Marey M, Khatib H. Early transcriptomic changes in peripheral blood 7 days after embryo transfer in dairy cattle. J Dairy Sci 2024; 107:3080-3089. [PMID: 38101734 DOI: 10.3168/jds.2023-24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
A common goal of the dairy industry is to shorten the calving interval to reap several benefits associated with improved fertility. Early pregnancy detection is crucial to shorten this interval, allowing for prompt re-insemination of cows that failed to conceive after the first service. Currently, the industry lacks a method to accurately predict pregnancy within the first 3 wk. The polypeptide cytokine IFN-tau (IFNT) is the primary signal for maternal recognition of pregnancy in ruminants. As IFNT is released from the early conceptus, it initiates a cascade of effects, including upregulation of IFN-stimulated genes (ISG). Expression of ISG can be detected in the peripheral blood. The present study aimed to characterize peripheral transcriptomic changes, including the ISG, as early as d 7 after embryo transfer. A total of 170 Holstein heifers received in vitro-produced embryos. Whole blood was collected from these heifers within 24 h of the embryo transfer (d 0), d 7, and d 14 after embryo transfer. The heifers were divided into 2 groups, pregnant and nonpregnant, based on pregnancy diagnosis on d 28 via ultrasound. Total RNA was extracted from the peripheral blood of pregnant and nonpregnant heifers, pooled and sequenced. Expression analysis on d 7 heifers resulted in 13 significantly differentially expressed genes mostly related to innate immunity. Differential expression analysis comparing pregnant heifers on d 0 to the same heifers on d 14 showed 51 significantly differentially expressed genes. Eight genes were further quantified through reverse-transcription quantitative real-time PCR for biological validation. On d 7 after embryo transfer, mRNA transcriptions of EDN1, CXCL3, CCL4, and IL1A were significantly upregulated in pregnant heifers (n = 14) compared with nonpregnant heifers (n = 14), with respective fold changes of 8.10, 18.12, 29.60, and 29.97. Although on d 14 after embryo transfer, mRNA transcriptions of ISG15, MX2, OASY1, and IFI6 were significantly upregulated in the blood of pregnant heifers (n = 14) compared with the same heifers on d 0, with respective fold changes of 5.09, 2.59, 3.89, and 3.08. These findings demonstrate that several immune-related genes and ISG are activated during the first 2 wk after embryo transfer, which may explain how the maternal immune system accommodates the allogenic conceptus. To further investigate the diagnostic potentials of these genes, future studies are warranted to analyze the specificity and sensitivity of these biomarkers to predict early pregnancy.
Collapse
Affiliation(s)
- A Strangstalien
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - C U Braz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - A Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture & Veterinary Medicine, Obihiro 080-8555, Japan
| | - M Marey
- Global Agromedicine Research Center, Obihiro University of Agriculture & Veterinary Medicine, Obihiro 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Behera, 22511, Egypt
| | - H Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
5
|
Cambra JM, Gil MA, Cuello C, Gonzalez-Plaza A, Rodriguez-Martinez H, Klymiuk N, Martinez EA, Parrilla I. Cytokine profile in peripheral blood mononuclear cells differs between embryo donor and potential recipient sows. Front Vet Sci 2024; 11:1333941. [PMID: 38601906 PMCID: PMC11006195 DOI: 10.3389/fvets.2024.1333941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Pregnancy success relies on the establishment of a delicate immune balance that requires the early activation of a series of local and systemic immune mechanisms. The changes in the immunological profile that are normally occurring in the pregnant uterus does not take place in cyclic (non-pregnant) uterus, a fact that has been widely explored in pigs at the tissue local level. Such differences would be especially important in the context of embryo transfer (ET), where a growing body of literature indicates that immunological differences at the uterine level between donors and recipients may significantly impact embryonic mortality. However, whether components of peripheral immunity also play a role in this context remains unknown. Accordingly, our hypothesis is that the immune status of donor sows differs from potential recipients, not only at the tissue local level but also at the systemic level. These differences could contribute to the high embryonic mortality rates occurring in ET programs. Methods In this study differences in systemic immunity, based on cytokine gene expression profile in peripheral blood mononuclear cells (PBMCs), between embryo-bearing donor (DO group; N = 10) and potential recipient sows (RE group; N = 10) at Day 6 after the onset of the estrus were explored. Gene expression analysis was conducted for 6 proinflammatory (IL-1α, IL-1β, IL-2, GM-CSF, IFN-γ, and TNF-α) and 6 anti-inflammatory (IL-4, IL-6, IL-10, IL-13, TGF-β1, and LIF) cytokines. Results and discussion All cytokines were overexpressed in the DO group except for IL-4, suggesting that stimuli derived from the insemination and/or the resultant embryos modify the systemic immune profile in DO sows compared to RE (lacking these stimuli). Our results also suggest that certain cytokines (e.g., IL-1α and IL-1β) might have a predictive value for the pregnancy status.
Collapse
Affiliation(s)
- Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
6
|
Visnyaiová K, Varga I, Feitscherová C, Pavlíková L, Záhumenský J, Mikušová R. Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ. Front Cell Dev Biol 2024; 12:1325565. [PMID: 38516130 PMCID: PMC10955054 DOI: 10.3389/fcell.2024.1325565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.
Collapse
Affiliation(s)
- Kristína Visnyaiová
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Feitscherová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lada Pavlíková
- Department of Rehabilitation Studies, Faculty of Health Care Studies, University of Western Bohemia, Pilsen, Czechia
| | - Jozef Záhumenský
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Renáta Mikušová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
7
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Scott C, da Rosa Filho RR, de Carvalho NAT, Oba E. Uterine secretome: What do the proteins say about maternal-fetal communication in buffaloes? J Proteomics 2024; 290:105023. [PMID: 37838095 DOI: 10.1016/j.jprot.2023.105023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Thais Regiani Cataldi
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Laíza Sartori de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Caroline Scott
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto Rodrigues da Rosa Filho
- Department of Animal Reproduction - School of Veterinary Medicine and Animal Science, University of São Paulo, campus São Paulo, São Paulo, Brazil
| | - Nélcio Antonio Tonizza de Carvalho
- Research and Development Unit of Registro / Diversified Animal Science Research Center / Institute of Animal Science, Registro, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
8
|
Neubrand L, Pothmann H, Besenfelder U, Havlicek V, Gabler C, Dolezal M, Aurich C, Drillich M, Wagener K. In vivo dynamics of pro-inflammatory factors, mucins, and polymorph nuclear neutrophils in the bovine oviduct during the follicular and luteal phase. Sci Rep 2023; 13:22353. [PMID: 38102308 PMCID: PMC10724147 DOI: 10.1038/s41598-023-49151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Dynamic functional changes in the oviductal microenvironment are the prerequisite for the establishment of pregnancy. The objective of this study was to gain the first insights into oestrous cycle-dependent dynamics of polymorph nuclear neutrophils (PMN) and the mRNA abundance of selected genes and their correlations in the oviduct of living cows. Mini-cytobrush samples were taken from the oviducts of healthy heifers (n = 6) and cows (n = 7) during the follicular (FOL) and luteal phase (LUT) by transvaginal endoscopy. Total RNA was isolated from the samples and subjected to reverse transcription-quantitative PCR for selected pro-inflammatory factors, glycoproteins, and a metabolic marker. The percentage of PMN was determined by cytological examination. The mean PMN percentage was 2.8-fold greater during LUT than FOL. During LUT, significantly greater mRNA abundance of the pro-inflammatory factors IL1B, CXCL1, CXCL3, and CXCL8 was observed. The OVGP1 mRNA abundance was twice as high during FOL than in LUT. Pearson correlation, principal component analysis and heatmap analyses indicated characteristic functional patterns with strong correlations among investigated factors. Using this novel approach, we illustrate complex physiological dynamics and interactions of the mRNA expression of pro-inflammatory factors, mucins, OVGP1, and PMN in the oviduct during the oestrous cycle.
Collapse
Affiliation(s)
- L Neubrand
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - H Pothmann
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - U Besenfelder
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - V Havlicek
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - C Gabler
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - M Dolezal
- Platform for Bioinformatics and Biostatistics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - C Aurich
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Unit for Reproduction Medicine and Udder Health, Clinic for Farm Animals, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Reshi QUA, Godakumara K, Ord J, Dissanayake K, Hasan MM, Andronowska A, Heath P, Fazeli A. Spermatozoa, acts as an external cue and alters the cargo and production of the extracellular vesicles derived from oviductal epithelial cells in vitro. J Cell Commun Signal 2023; 17:737-755. [PMID: 36469292 PMCID: PMC10409707 DOI: 10.1007/s12079-022-00715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
The oviduct provides optimum physiological and biochemical milieu essential for successful fertilization, early embryo development and facilitates functional maturation of spermatozoa. A study has revealed that spermatozoa alters the gene expression in bovine oviductal epithelial cells (BOECs) remotely via bio-active particles, thus acting as a cue to the oviduct prior to their arrival. However, very little attention has been paid to the question of whether spermatozoa could alter the cargo of extracellular vesicles (EVs) derived from BOECs. Therefore, the aim of this study was to investigate the alterations in small non-coding RNAs in EVs cargo derived from BOECs when incubated with spermatozoa in contact and non-contact co-culture models. After 4 h of incubation the EVs were isolated from the conditioned media, followed by small non-coding sequencing of the BOEC derived EVs. Our results revealed that EVs from both co-culture models contained distinct cargo in form of miRNA, fragmented mRNA versus control. The pathway enrichment analysis revealed that EV miRNA from direct co-culture were involved in the biological processes associated with phagocytosis, macroautophagy, placenta development, cellular responses to TNF and FGF. The mRNA fragments also varied within the different groups and mapped to the exonic regions of the transcriptome providing vital insights regarding the changes in cellular transcriptome on the arrival of spermatozoa. The findings of this study suggest that spermatozoa, in contact as well as remotely, alter the EV cargo of female reproductive tract epithelial cells which might be playing an essential role in pre and post-fertilization events.
Collapse
Affiliation(s)
- Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - James Ord
- Institute for Fish and Wildlife Health, University of Bern, Längassstrasse 122, 3012, Bern, Switzerland
| | - Keerthie Dissanayake
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mohammad Mehedi Hasan
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, 86-96 Chenies Mews, London, WC1N 1EH, UK
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748, Olsztyn, Poland
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience SITraN, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia.
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2SF, UK.
| |
Collapse
|
10
|
Li R, Song W, Qu J, Liu H, Qi J, He Y, Niu J. Transcriptome sequencing reveals ovarian immune response and development during female sperm storage in viviparous black rockfish (Sebastes schlegelii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101050. [PMID: 36525779 DOI: 10.1016/j.cbd.2022.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Black rockfish (Sebastes schlegelii) is a viviparous teleost fish whose spermatozoa were transferred into the female ovary cavity and stored for up to five months and then fertilized with the matured eggs. There is no clarity about the molecular characteristics of ovarian follicles during female sperm storage in Sebastes schlegelii. In this study, histological observation, transcriptomic analysis and hormone level detection were performed in ovaries at stages of pre-mating (PRM), post-mating (POM) and pre-fertilization (PRF). Histological observation displayed that oocytes developed from the primary growth (PG) stage to the mature stage during the three stages. Furthermore, somatic cells around the oocyte were proliferated and spermatozoa were found near the layer of epithelial cells. Transcriptomic analysis showed that there were 437 and 747 differentially expressed genes (DEGs) in ovarian comparison of PRM-vs-POM and POM-vs-PRF, respectively. GO enrichment and KEGG analysis revealed that lots of DEGs from PRM-vs-POM were linked to immune-related pathways, such as antigen processing and presentation, immune response, and complement and coagulation cascade. Meanwhile, seven DEGs associated with immune response were differentially expressed after spermatozoa treatment in ovarian tissue in vitro. While the DEGs from POM-vs-PRF were mostly enriched in the pathways related to homeostasis maintenance and cellular junction and metabolism. In addition, we found increased estrogen (E2) and 11-ketotestosterone (11-KT) level and decreased testosterone level in ovarian follicles during the sperm storage period by ELISA, suggesting that sex hormones are involved in the dynamic change of ovarian follicles. In total, this study could provide new hints for understanding the immune adaption and developmental signatures of ovarian follicles post copulation in black rockfish and other viviparous fish.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huaxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
11
|
Berg DK, Ledgard A, Donnison M, McDonald R, Henderson HV, Meier S, Juengel JL, Burke CR. The first week following insemination is the period of major pregnancy failure in pasture-grazed dairy cows. J Dairy Sci 2022; 105:9253-9270. [PMID: 36153157 DOI: 10.3168/jds.2021-21773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
A 60% pregnancy success for inseminations is targeted to optimize production efficiency for dairy cows within a seasonal, pasture-grazed system. Routine measures of pregnancy success are widely available but are limited, in practice, to a gestation stage beyond the first 28 d. Although some historical data exist on embryonic mortality before this stage, productivity of dairy systems and genetics of the cows have advanced significantly in recent decades. Accordingly, the aim was to construct an updated estimate of pregnancy success at key developmental stages during the first 70 d after insemination. Blood samples were collected for progesterone concentrations on d 0 and 7. A temporal series of 4 groups spanning fertilization through d 70 were conducted on 4 seasonal, pasture-grazed dairy farms (n = 1,467 cows) during the first 21 d of the seasonal breeding period. Morphological examination was undertaken on embryos collected on d 7 (group E7) and 15 (group E15), and pregnancy was diagnosed via ultrasonography on approximately d 28 and 35 (group E35) as well as d 70 (group E70). Fertilization, embryo, and fetal evaluation for viability established a pregnancy success pattern. Additionally, cow and on-farm risk factor variables associated with pregnancy success were evaluated. We estimated pregnancy success rates of 70.9%, 59.1%, 63.8%, 62.3%, and 56.7% at d 7, 15, 28, 35, and 70, respectively. Fertilization failure (15.8%) and embryonic arrest before the morula stage (10.3%) were the major developmental events contributing to first-week pregnancy failures. Embryo elongation failure of 7% contributed to pregnancy failure during the second week. The risk factors for pregnancy success that were related to the cows included interval between calving and insemination, and d-7 plasma progesterone concentrations, whereas insemination sire was associated with pregnancy outcome. Most pregnancy failure occurs during the first week among seasonal-calving pasture-grazed dairy cows.
Collapse
Affiliation(s)
- D K Berg
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand.
| | - A Ledgard
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - M Donnison
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - R McDonald
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - H V Henderson
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - S Meier
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| | - J L Juengel
- AgResearch Ltd., Invermay, Puddle Alley Rd., Mosgiel 9092, New Zealand
| | - C R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| |
Collapse
|
12
|
Rashid MB, Marey MA, Fukuda K, Haneda S, Kusama K, Shimada M, Imakawa K, Miyamoto A. Intrauterine infusion of low levels of interferon-tau on day-8 post-estrus stimulates the bovine endometrium to secrete apolipoprotein-A1: A possible implication for early embryo tolerance. Am J Reprod Immunol 2022; 88:e13592. [PMID: 35785505 DOI: 10.1111/aji.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that interferon-tau (IFNT), derived from day-7 blastocyst, generates anti-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. However, the real in vivo impact of early embryo-derived IFNT on the uterine proteomic profile is mostly unknown. This study aimed to investigate proteomic changes of uterine flush (UF) when infused with a low physiological level of IFNT without embryo on day-8 post-estrus and its possible impact on the uterine immunological microenvironment. First, a fresh medium was infused into the uterine lumen on day-6, from which UF was obtained 24 h later, and this procedure was repeated on day-7 (control UF). On day-8, this procedure was done with a medium containing recombinant bovine IFNT (100 pg/ml) (IFNT-supplemented UF). Control and IFNT-supplemented UF were tested for immune responses in peripheral blood mononuclear cells (PBMCs). Real-time PCR results revealed that IFNT-supplemented UF downregulated pro-inflammatory cytokines (TNFA, IL1B) and upregulated anti-inflammatory cytokine (TGFB1) and PTGES in PBMCs. Through 2-D PAGE, followed by TOF/TOF mass spectrometer, apolipoprotein-A1 (Apo-A1) protein was identified in the IFNT-supplemented UF, which was confirmed by ELISA analysis. Proteomic analysis revealed again that the in vitro stimulation of BEECs by IFNT upregulated Apo-A1 expression. Further, stimulation of PBMCs with recombinant bovine Apo-A1 downregulated TNFA and NFKB and upregulated TGFB1 and PTGES in PBMCs. Altogether, our results suggest that minute amounts of IFNT alone, normally secreted from bovine blastocyst, stimulate Apo-A1 secretion from the endometrial epithelium in the absence of embryo that initiates an anti-inflammatory environment, which could pave the way for the acceptance of early embryo in the uterus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kenji Fukuda
- Department of Life and Food Sciences, Section of Biomolecular Structure and Function, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shingo Haneda
- Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
13
|
Mesenchymal Stem Cells in Embryo-Maternal Communication under Healthy Conditions or Viral Infections: Lessons from a Bovine Model. Cells 2022; 11:cells11121858. [PMID: 35740987 PMCID: PMC9221285 DOI: 10.3390/cells11121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine mesenchymal stem cells are a relevant cell population found in the maternal reproductive tract that exhibits the immunomodulation capacity required to prevent embryo rejection. The phenotypic plasticity showed by both endometrial mesenchymal stem cells (eMSC) and embryonic trophoblast through mesenchymal to epithelial transition and epithelial to mesenchymal transition, respectively, is essential for embryo implantation. Embryonic trophoblast maintains active crosstalk via EVs and soluble proteins with eMSC and peripheral blood MSC (pbMSC) to ensure the retention of eMSC in case of pregnancy and induce the chemotaxis of pbMSC, critical for successful implantation. Early pregnancy-related proteins and angiogenic markers are detected as cargo in EVs and the soluble fraction of the embryonic trophectoderm secretome. The pattern of protein secretion in trophectoderm-EVs changes depending on their epithelial or mesenchymal phenotype and due to the uptake of MSC EVs. However, the changes in this EV-mediated communication between maternal and embryonic MSC populations infected by viruses that cause abortions in cattle are poorly understood. They are critical in the investigation of reproductive viral pathologies.
Collapse
|
14
|
Kusama K, Rashid MB, Kowsar R, Marey MA, Talukder AK, Nagaoka K, Shimada M, Khatib H, Imakawa K, Miyamoto A. Day 7 Embryos Change the Proteomics and Exosomal Micro-RNAs Content of Bovine Uterine Fluid: Involvement of Innate Immune Functions. Front Genet 2021; 12:676791. [PMID: 34262596 PMCID: PMC8273763 DOI: 10.3389/fgene.2021.676791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to characterize proteins and exosomal microRNAs (miRNAs) in the uterine flushings (UF) of cows associated with Day 7 (D7) pregnancy using the embryo donor cows of the embryo transfer program. Superovulated cows either were inseminated (AI cows) or remained non-inseminated (Ctrl cows). UF was collected on D7 in the presence of multiple embryos (AI cows) or without embryos (Ctrl cows) and subjected to isobaric tags for relative and absolute quantification protein analysis. A total of 336 proteins were identified, of which 260 proteins were more than 2-fold higher in AI cows than Ctrl cows. Gene ontology analysis revealed that many differentially expressed proteins were involved in “neutrophil-related” and “extracellular vesicular exosome-related” terms. In silico analysis of proteins with higher concentrations in the UF of AI identified 18 uniquely expressed proteins. Exosomes were isolated from the UF, from which RNA was subjected to miRNA-seq, identifying 37 miRNAs. Of these, three miRNAs were lower, and six miRNAs were higher in the UF of AI cows than those of Ctrl ones. The principal component analysis displayed a close association in miRNA and protein between bta-miR-29a, bta-miR-199b, SUGT1, and PPID. In addition, the receiver operating characteristic curve analysis showed that SUGT1 was the best predictor for the presence of embryos in the uterus. These findings suggest that the presence of multiple D7 embryos in the uterus can lead to significant changes in the protein composition and exosomal miRNA contents of UF, which could mediate innate immunological interactions between the pre-hatching embryo and the uterus in cows.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Rasoul Kowsar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Anup K Talukder
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
15
|
Endometrial Inflammation at the Time of Insemination and Its Effect on Subsequent Fertility of Dairy Cows. Animals (Basel) 2021; 11:ani11071858. [PMID: 34206536 PMCID: PMC8300153 DOI: 10.3390/ani11071858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary A detailed understanding of cellular and molecular mechanisms in the bovine uterus is crucial to explain and avoid subfertility in dairy cows. Therefore, we examined the effect of inflammation in the bovine uterus in cows with no clinical signs of disease at the time of artificial insemination (AI) on subsequent pregnancy outcome. In a total of 71 healthy dairy cows, uterine cytology samples were collected by cytobrush technique within 10 min after insemination. Endometrial inflammation was investigated at the cellular and mRNA expression levels. All factors with a significant effect on fertility in our study were related to uterine polymorphonuclear neutrophil (PMN) migration, i.e., the first line of uterine defense. Cows with a proportion of ≥1% PMN had a 1.8-fold increased chance of pregnancy within 150 days postpartum compared to cows with fewer PMNs. From our results, we conclude that a certain level of inflammation at the molecular and cellular levels before the stimulus of AI might be favorable for cows’ fertility. Abstract Our objective was to investigate the level of endometrial immune response at artificial insemination (AI) and to relate it to subsequent fertility. From 71 healthy cows, endometrial cytobrush samples were taken at the first AI for cytological and mRNA analyses. Total RNA isolated from the cytobrushes was used for reverse transcription qPCR for selected transcripts. Animals were grouped into pregnant (PREG; n = 32) and non-pregnant (non-PREG; n = 39) cows following their first AI. The mRNA abundance of the neutrophil-related factor CEACAM1 and the chemokine CXCL5 was 1.2- (p = 0.03) and 2.0-fold (p = 0.04) greater in PREG than in non-PREG cows, respectively. Animals were further subdivided according to the number of inseminations until pregnancy (PREG1, n = 32; PREG2-3, n = 19) and in repeat breeder cows (RBC, n = 13). CEACAM1 and CXCL8 mRNA expression was 1.7- (p = 0.01) and 2.3-fold (p = 0.03) greater in PREG1 than in RBC, respectively. Cox regression showed that cows with PMN ≥ 1% had a 1.8-fold increased chance of pregnancy within 150 days postpartum compared with cows with fewer PMNs. We conclude that a certain level of inflammation before the stimulus of AI might be beneficial for subsequent fertility.
Collapse
|
16
|
Schabmeyer ST, Kneidl AM, Schneider JK, Kirsch S, Zablotski Y, Petzl W, Weber F, Zerbe H, Meyerholz MM. Concentration-Dependent Type 1 Interferon-Induced Regulation of MX1 and FABP3 in Bovine Endometrial Explants. Animals (Basel) 2021; 11:262. [PMID: 33494350 PMCID: PMC7912598 DOI: 10.3390/ani11020262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
The inadequate maternal recognition of embryonic interferon τ (IFNτ) might explain subfertility in cattle. This study aimed at modeling the inducibility of type 1 interferon receptor subunits 1/2 (IFNAR1/2), mimicking competition between IFNτ and infection-associated interferon α (IFNα), and simulating type 1 interferon pathways in vitro. Endometrial explants (n = 728 from n = 26 healthy uteri) were collected at the abattoir, challenged with IFNτ and/or IFNα in different concentrations, and incubated for 24 h. Gene expression analysis confirmed the inducibility of IFNAR1/2 within this model, it being most prominent in IFNAR2 with 10 ng/mL IFNα (p = 0.001). The upregulation of interferon-induced GTP-binding protein (MX1, classical pathway) was higher in explants treated with 300 ng/mL compared to 10 ng/mL IFNτ (p < 0.0001), whereas the non‑classical candidate fatty acid binding protein 3 (FABP3) exhibited significant downregulation comparing 300 ng/mL to 10 ng/mL IFNτ. The comparison of explants challenged with IFNτ + IFNα indicated the competition of IFNτ and IFNα downstream of the regulatory factors. In conclusion, using this well-defined explant model, interactions between infection-associated signals and IFNτ were indicated. This model can be applied to verify these findings and to mimic and explore the embryo-maternal contact zone in more detail.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marie Margarete Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine Ludwig Maximilians University Munich, 85764 Oberschleissheim, Germany; (S.T.S.); (A.M.K.); (J.K.S.); (S.K.); (Y.Z.); (W.P.); (F.W.); (H.Z.)
| |
Collapse
|
17
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Zinnah MA, Marey MA, Akhtar I, Elesh IF, Matsuno Y, Elweza AE, Ma D, Fiorenza M, Sasaki M, Shimada M, Imakawa K, Miyamoto A. Peptidoglycan disrupts early embryo-maternal crosstalk via suppression of ISGs expression induced by interferon-tau in the bovine endometrium. Biochem Biophys Res Commun 2020; 532:101-107. [PMID: 32828539 DOI: 10.1016/j.bbrc.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023]
Abstract
Uterine infection with bacteria and the release of peptidoglycan (PGN), antigenic cell wall components of both Gram-negative and Gram-positive bacteria, can cause early pregnancy losses in ruminants, but the associated mechanisms remain unsolved. Day 7 blastocyst starts to secrete a minute amount of interferon-tau (IFNT) in the uterine horn which is required for early stage of maternal recognition of pregnancy (MRP) in ruminants, and it induces interferon stimulated genes (ISGs) for driving uterine receptivity in cows. This study investigated if PGN disrupts IFNT response through modulation of endometrial ISGs expressions. Cultured bovine endometrial epithelial cells (BEECs) were treated with embryo culture medium (ECM) or IFNT (1 ng/ml) in the presence or absence of a low level of PGN (10 pg/ml) for 24 h. A real-time PCR analyses revealed that the presence of PGN suppressed IFNT-induced ISGs (OAS1 and ISG15) and STAT1 expressions in BEECs. To visualize the impact of PGN in an ex-vivo model that resembles the in vivo status, endometrial explants were treated by IFNT (1 ng/ml) with or without PGN (10 pg/ml) for 12 h. PGN suppressed IFNT-induced gene expressions of the above factors, but not for IFNA receptor type1 (IFNAR1) or type2 (IFNAR2) in explants. Immunofluorescence analysis illustrated that PGN completely suppressed the IFNT-triggered OAS1 protein expression in the luminal epithelium of explants. Of note, PGN did not stimulate pro-inflammatory cytokines (TNFA and IL1B) or TLR2 mRNA expression in both models. These findings indicate that the presence of low levels of PGN suppresses ISGs expression induced by IFNT secreted from early embryo, at the luminal epithelium of the bovine endometrium. This could severely interfere with early stage of MRP processes in cows, leading to pregnancy failure.
Collapse
Affiliation(s)
- Mohammad A Zinnah
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohamed A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Behera, Egypt.
| | - Ihshan Akhtar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Ibrahim F Elesh
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Damanhour University, Behera, Egypt
| | - Yuta Matsuno
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Ahmed E Elweza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Sadat City University, Menofia, 32897, Egypt
| | - Dongxue Ma
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Mariani Fiorenza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Motoki Sasaki
- Department of Veterinary Anatomy, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| |
Collapse
|