1
|
Liu N, Cui X, Yan W, Guo T, Wang Z, Wei X, Sun Y, Liu J, Xian C, Ma W, Chen L. Baicalein: A potential GLP-1R agonist improves cognitive disorder of diabetes through mitophagy enhancement. J Pharm Anal 2024; 14:100968. [PMID: 39258173 PMCID: PMC11386286 DOI: 10.1016/j.jpha.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024] Open
Abstract
There is increasing evidence that the activation of glucagon-like peptide-1 receptor (GLP-1R) can be used as a therapeutic intervention for cognitive disorders. Here, we have screened GLP-1R targeted compounds from Scutellaria baicalensis, which revealed baicalein is a potential GLP-1R small-molecule agonist. Mitophagy, a selective autophagy pathway for mitochondrial quality control, plays a neuroprotective role in multiple cognitive impairment diseases. We noticed that Glp1r knock-out (KO) mice present cognitive impairment symptoms and appear worse in spatial learning memory and learning capacity in Morris water maze (MWM) test than their wide-type (WT) counterparts. Our mechanistic studies revealed that mitophagy is impaired in hippocampus tissue of diabetic mice and Glp1r KO mice. Finally, we verified that the cognitive improvement effects of baicalein on diabetic cognitive dysfunction occur through the enhancement of mitophagy in a GLP-1R-dependent manner. Our findings shed light on the importance of GLP-1R for cognitive function maintenance, and revealed the vital significance of GLP-1R for maintaining mitochondrial homeostasis. Furthermore, we identified the therapeutic potential of baicalein in the treatment of cognitive disorder associated with diabetes.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhuanzhuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Cheng Xian
- Hezhou People's Hospital, Guangxi Zhuang Autonomous Region, Hezhou, Guangxi, 542899, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China
| |
Collapse
|
3
|
Yang H, Cai X, Qiu M, Deng C, Xue H, Zhang J, Yang W, XianZhong W. Heat stress induces ferroptosis of porcine Sertoli cells by enhancing CYP2C9-Ras- JNK axis. Theriogenology 2024; 215:281-289. [PMID: 38103405 DOI: 10.1016/j.theriogenology.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Heat stress leads to the accumulation of lipid peroxides in Sertoli cells. Unrestricted lipid peroxidation of catalyzed polyunsaturated fatty acids by Cytochrome P450 (CYP) drive the ferroptosis. However, little is known about the role of CYP cyclooxygenase in heat stress-induced ferroptosis in Sertoli cells. In this study, we investigated the relationship between CYP cyclooxygenase and heat stress-induced ferroptosis in porcine Sertoli cells, as well as whether Ras-JNK signaling is involved in the process. The results showed that heat stress significantly increased the expression of cytochrome P450 cyclooxygenase 2C9 (CYP2C9) and the content of epoxyeicosatrienoic acids (EETs), although there are no significant effect on the expression of cytochrome P450 cyclooxygenase 2J2 (CYP2J2) and cytochrome P450 cyclooxygenase 2C8 (CYP2C8). In addition, heat stress reduced the cell viability, the protein expression level of glutathione peroxidase 4 (GPX4) and Ferritin (all P < 0.01) while increased the level of intracellular reactive oxygen species (ROS) and the protein level of Transferrin receptor 1(TFR1) (both P < 0.01), as well as activating the Ras-JNK signaling pathway. Ferrostatin-1, a ferroptosis-specific inhibitor, reduced ROS levels and the protein level of TFR1 (both P < 0.01), but elevated the cell viability, the protein level of GPX4, and Ferritin (all P < 0.01). Sulfaphenazole, a specific inhibitor of CYP2C9 or two small interfering RNAs targaring CYP2C9 enhanced the cell viability (all P < 0.01), while reduced the content of EETs (all P < 0.01) and inhibited the Ras-JNK signaling and ferroptosis under heat stress. Salirasib, a specific inhibitor of Ras, significantly elevated the cell viability, whereas reduced the level of intracellular ROS and inhibited the phosphorylation of JNK, and alleviated heat stress-induced ferroptosis in porcine Sertoli cells. Notably, there is no effect on the expression of CYP2C9 and the content of EETs. These results indicate that heat stress can induce ferroptosis in Sertoli cells by increasing the expression of CYP2C9 and the content of EETs, which in true activates the Ras-JNK signaling pathway, but there is no feedback from Ras-JNK signaling to the expression of CYP2C9. Our study finds a novel heat stress-induced cell death model of Sertoli cells as well as providing the therapeutic potential for anti-ferroptosis.
Collapse
Affiliation(s)
- Huan Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China
| | - XiaQing Cai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China
| | - MeiJia Qiu
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China
| | - ChengChen Deng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China
| | - HongYan Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China
| | - JiaoJiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Weirong Yang
- Institute of Ecology China West Normal University, Yuying Road No.81, Shunqing District, Nanchong City, Sichuan Province, PR China
| | - Wang XianZhong
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
4
|
Broos JY, van der Burgt RTM, Konings J, Rijnsburger M, Werz O, de Vries HE, Giera M, Kooij G. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: fueling or dampening disease progression? J Neuroinflammation 2024; 21:21. [PMID: 38233951 PMCID: PMC10792915 DOI: 10.1186/s12974-023-02981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rianne T M van der Burgt
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | - Julia Konings
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Broos JY, Loonstra FC, de Ruiter LRJ, Gouda M, Fung WH, Schoonheim MM, Heijink M, Strijbis EMM, Teunissen C, Killestein J, de Vries HE, Giera M, Uitdehaag BMJ, Kooij G. Association of Arachidonic Acid-Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis. Neurology 2023; 101:e533-e545. [PMID: 37290971 PMCID: PMC10401685 DOI: 10.1212/wnl.0000000000207459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Excessive activation of certain lipid mediator (LM) pathways plays a role in the complex pathogenesis of multiple sclerosis (MS). However, the relationship between bioactive LMs and different aspects of CNS-related pathophysiologic processes remains largely unknown. Therefore, in this study, we assessed the association of bioactive LMs belonging to the ω-3/ω-6 lipid classes with clinical and biochemical (serum neurofilament light [sNfL] and serum glial fibrillary acidic protein [sGFAP]) parameters and MRI-based brain volumes in patients with MS (PwMS) and healthy controls (HCs). METHODS A targeted high-performance liquid chromatography-tandem mass spectrometry approach was used on plasma samples of PwMS and HCs of the Project Y cohort, a cross-sectional population-based cohort that contains PwMS all born in 1966 in the Netherlands and age-matched HCs. LMs were compared between PwMS and HCs and were correlated with levels of sNfL, sGFAP, disability (Expanded Disability Status Scale [EDSS]), and brain volumes. Finally, significant correlates were included in a backward multivariate regression model to identify which LMs best related to disability. RESULTS The study sample consisted of 170 patients with relapsing remitting MS (RRMS), 115 patients with progressive MS (PMS), and 125 HCs. LM profiles of patients with PMS significantly differed from those of patients with RRMS and HCs, particularly patients with PMS showed elevated levels of several arachidonic acid (AA) derivatives. In particular, 15-hydroxyeicosatetraenoic acid (HETE) (r = 0.24, p < 0.001) correlated (average r = 0.2, p < 0.05) with clinical and biochemical parameters such as EDSS and sNfL. In addition, higher 15-HETE levels were related to lower total brain (r = -0.24, p = 0.04) and deep gray matter volumes (r = -0.27, p = 0.02) in patients with PMS and higher lesion volume (r = 0.15, p = 0.03) in all PwMS. DISCUSSION In PwMS of the same birth year, we show that ω-3 and ω-6 LMs are associated with disability, biochemical parameters (sNfL, GFAP), and MRI measures. Furthermore, our findings indicate that, particularly, in patients with PMS, elevated levels of specific products of the AA pathway, such as 15-HETE, associate with neurodegenerative processes. Our findings highlight the potential relevance of ω-6 LMs in the pathogenesis of MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Floor C Loonstra
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Lodewijk R J de Ruiter
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Mariam Gouda
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Wing Hee Fung
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Menno M Schoonheim
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Marieke Heijink
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Eva M M Strijbis
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Charlotte Teunissen
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Joep Killestein
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Helga E de Vries
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Martin Giera
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Bernard M J Uitdehaag
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Gijs Kooij
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands.
| |
Collapse
|