1
|
PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int J Mol Sci 2021; 22:ijms22063170. [PMID: 33804680 PMCID: PMC8003717 DOI: 10.3390/ijms22063170] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Hypofibrinolysis is a key abnormality in diabetes and contributes to the adverse vascular outcome in this population. Plasminogen activator inhibitor (PAI)-1 is an important regulator of the fibrinolytic process and levels of this antifibrinolytic protein are elevated in diabetes and insulin resistant states. This review describes both the physiological and pathological role of PAI-1 in health and disease, focusing on the mechanism of action as well as protein abnormalities in vascular disease with special focus on diabetes. Attempts at inhibiting protein function, using different techniques, are also discussed including direct and indirect interference with production as well as inhibition of protein function. Developing PAI-1 inhibitors represents an alternative approach to managing hypofibrinolysis by targeting the pathological abnormality rather than current practice that relies on profound inhibition of the cellular and/or acellular arms of coagulation, and which can be associated with increased bleeding events. The review offers up-to-date knowledge on the mechanisms of action of PAI-1 together with the role of altering protein function to improve hypofirbinolysis. Developing PAI-1 inhibitors may form for the basis of future new class of antithrombotic agents that reduce vascular complications in diabetes.
Collapse
|
2
|
uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget 2018; 7:57351-57366. [PMID: 27385000 PMCID: PMC5302994 DOI: 10.18632/oncotarget.10344] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
There is strong evidence supporting the role of the plasminogen activator system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA (urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances tumor cell migration and invasion and plays a key role in metastasis development, conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor SERPINE1 producing similar effects is solved by the identification of SERPINE1 activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, the acquisition of stem cell properties and resistance to antitumor agents. The aim of this review is to provide insight on the deregulation of these proteins in all these processes. We also summarize their potential value as prognostic biomarkers or potential drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and SERPINE1 is associated with a higher risk of metastasis and could be used to identify patients that would benefit from an adjuvant treatment. In the future, the specific inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be used to design new therapeutic strategies in HNSCCs.
Collapse
|
3
|
Gue YX, Gorog DA. Importance of Endogenous Fibrinolysis in Platelet Thrombus Formation. Int J Mol Sci 2017; 18:E1850. [PMID: 28841147 PMCID: PMC5618499 DOI: 10.3390/ijms18091850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
The processes of thrombosis and coagulation are finely regulated by endogenous fibrinolysis maintaining healthy equilibrium. When the balance is altered in favour of platelet activation and/or coagulation, or if endogenous fibrinolysis becomes less efficient, pathological thrombosis can occur. Arterial thrombosis remains a major cause of morbidity and mortality in the world despite advances in medical therapies. The role endogenous fibrinolysis in the pathogenesis of arterial thrombosis has gained increasing attention in recent years as it presents novel ways to prevent and treat existing diseases. In this review article, we discuss the role of endogenous fibrinolysis in platelet thrombus formation, methods of measurement of fibrinolytic activity, its role in predicting cardiovascular diseases and clinical outcomes and future directions.
Collapse
Affiliation(s)
- Ying X Gue
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire SG1 4AB, UK.
| | - Diana A Gorog
- Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire SG1 4AB, UK.
- Department of Postgraduate Medicine, University of Hertfordshire, Hertfordshire AL10 9AB, UK.
- National Heart & Lung Institute, Imperial College, London SW3 6LY, UK.
| |
Collapse
|
4
|
Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol 2017; 16:34. [PMID: 28279217 PMCID: PMC5345237 DOI: 10.1186/s12933-017-0515-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition.
Collapse
Affiliation(s)
- Katherine Kearney
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK
| | - Darren Tomlinson
- Biomedical Health Research Centre, Astbury Building, University of Leeds, Leeds, LS2 9JT, UK
| | - Kerrie Smith
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK
| | - Ramzi Ajjan
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Pautus S, Alami M, Adam F, Bernadat G, Lawrence DA, De Carvalho A, Ferry G, Rupin A, Hamze A, Champy P, Bonneau N, Gloanec P, Peglion JL, Brion JD, Bianchini EP, Borgel D. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1. Sci Rep 2016; 6:36462. [PMID: 27876785 PMCID: PMC5120274 DOI: 10.1038/srep36462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.
Collapse
Affiliation(s)
- Stéphane Pautus
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Mouad Alami
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Fréderic Adam
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Guillaume Bernadat
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Allan De Carvalho
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Gilles Ferry
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Alain Rupin
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Abdallah Hamze
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Pierre Champy
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Natacha Bonneau
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Philippe Gloanec
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Louis Peglion
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Daniel Brion
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Elsa P Bianchini
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,AP-HP, Hôpital Necker, Service d'Hématologie Biologique, 75015 Paris, France
| |
Collapse
|
6
|
Placencio VR, DeClerck YA. Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing. Cancer Res 2015; 75:2969-74. [PMID: 26180080 DOI: 10.1158/0008-5472.can-15-0876] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022]
Abstract
Despite its function as an inhibitor of urokinase and tissue-type plasminogen activator (PA), PA inhibitor-1 (PAI-1) has a paradoxical protumorigenic role in cancer, promoting angiogenesis and tumor cell survival. In this review, we summarize preclinical evidence in support of the protumorigenic function of PAI-1 that has led to the testing of small-molecule PAI-1 inhibitors, initially developed as antithrombotic agents, in animal models of cancer. The review discusses the challenges and the opportunities that lay ahead to the development of efficacious and nontoxic PAI-1 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Veronica R Placencio
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
7
|
Rouch A, Vanucci-Bacqué C, Bedos-Belval F, Baltas M. Small molecules inhibitors of plasminogen activator inhibitor-1 - an overview. Eur J Med Chem 2015; 92:619-36. [PMID: 25615797 DOI: 10.1016/j.ejmech.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
PAI-1, a glycoprotein from the serpin family and the main inhibitor of tPA and uPA, plays an essential role in the regulation of intra and extravascular fibrinolysis by inhibiting the formation of plasmin from plasminogen. PAI-1 is also involved in pathological processes such as thromboembolic diseases, atherosclerosis, fibrosis and cancer. The inhibition of PAI-1 activity by small organic molecules has been observed in vitro and with some in vivo models. Based on these findings, PAI-1 appears as a potential therapeutic target for several pathological conditions. Over the past decades, many efforts have therefore been devoted to developing PAI-1 inhibitors. This article provides an overview of the publishing activity on small organic molecules used as PAI-1 inhibitors. The chemical synthesis of the most potent inhibitors as well as their biological and biochemical evaluations is also presented.
Collapse
Affiliation(s)
- Anne Rouch
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Corinne Vanucci-Bacqué
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Florence Bedos-Belval
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Michel Baltas
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| |
Collapse
|
8
|
Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Proc Natl Acad Sci U S A 2013; 110:E4941-9. [PMID: 24297881 DOI: 10.1073/pnas.1216499110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a member of the serine protease inhibitor (serpin) family. Excessive PAI-1 activity is associated with human disease, making it an attractive pharmaceutical target. However, like other serpins, PAI-1 has a labile structure, making it a difficult target for the development of small molecule inhibitors, and to date, there are no US Food and Drug Administration-approved small molecule inactivators of any serpins. Here we describe the mechanistic and structural characterization of a high affinity inactivator of PAI-1. This molecule binds to PAI-1 reversibly and acts through an allosteric mechanism that inhibits PAI-1 binding to proteases and to its cofactor vitronectin. The binding site is identified by X-ray crystallography and mutagenesis as a pocket at the interface of β-sheets B and C and α-helix H. A similar pocket is present on other serpins, suggesting that this site could be a common target in this structurally conserved protein family.
Collapse
|
9
|
Lin Z, Jensen JK, Hong Z, Shi X, Hu L, Andreasen PA, Huang M. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist. ACTA ACUST UNITED AC 2013; 20:253-61. [PMID: 23438754 DOI: 10.1016/j.chembiol.2013.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a serpin, is the physiological inhibitor of tissue-type and urokinase-type plasminogen activators and thus also an inhibitor of fibrinolysis and tissue remodeling. It is a potential therapeutic target in many pathological conditions, including thrombosis and cancer. Several types of PAI-1 antagonist have been developed, but the structural basis for their action has remained largely unknown. Here we report X-ray crystal structure analysis of PAI-1 in complex with a small-molecule antagonist, embelin. We propose a mechanism for embelin-induced rapid conversion of PAI-1 into a substrate for its target proteases and the subsequent slow conversion of PAI-1 into an irreversibly inactivated form. Our work provides structural clues to an understanding of PAI-1 inactivation by small-molecule antagonists and an important step toward the design of drugs targeting PAI-1.
Collapse
Affiliation(s)
- Zhonghui Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Yasui H, Suzuki Y, Sano H, Suda T, Chida K, Dan T, Miyata T, Urano T. TM5275 prolongs secreted tissue plasminogen activator retention and enhances fibrinolysis on vascular endothelial cells. Thromb Res 2013; 132:100-5. [PMID: 23611258 DOI: 10.1016/j.thromres.2013.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/05/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Elevated plasminogen activator inhibitor-1 (PAI-1) reduces fibrinolytic potential in plasma, contributing to thrombotic disease. Thus, inhibiting PAI-1 activity is clinically desirable. We recently demonstrated that tissue plasminogen activator (tPA) remains on the surface of vascular endothelial cells (VECs) after secretion in a heavy-chain dependent manner, which is essential for high fibrinolytic activity on the surface of VECs, and that PAI-1 dissociates retained tPA from the cell surface as a result of high-molecular weight complex formation. Based on the model whereby amounts of tPA and its equilibrium with PAI-1 dynamically change after exocytosis, we examined how TM5275, a newly synthesized small molecule PAI-1 inhibitor, modulated tPA retention and VEC surface-derived fibrinolytic activity using microscopic techniques. MATERIALS AND METHODS The effects of TM5275 on the kinetics of the secretion and retention of green fluorescent protein (GFP)-tagged tPA (tPA-GFP) on VECs were analyzed using total internal reflection fluorescence microscopy. The effects of TM5275 on the generation of plasmin activity were evaluated by both plasminogen accumulation and fibrin clot lysis on tPA-GFP-expressing VECs using confocal laser scanning microscopy. RESULTS TM5275 at concentrations of 20 and 100 μM significantly prolonged the retention of tPA-GFP on VECs by inhibiting tPA-GFP-PAI-1 high-molecular-weight complex formation. TM5275 enhanced the time-dependent accumulation of plasminogen as well as the dissolution of fibrin clots on and around the tPA-GFP-expressing cells. CONCLUSIONS The profibrinolytic effects of TM5275 were clearly demonstrated by the prolongation of tPA retention and enhancement of plasmin generation on the VEC surface as a result of PAI-1 inhibition.
Collapse
Affiliation(s)
- Hideki Yasui
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Van De Craen B, Declerck PJ, Gils A. The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res 2012; 130:576-85. [DOI: 10.1016/j.thromres.2012.06.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 12/16/2022]
|
12
|
Discovery of inhibitors of plasminogen activator inhibitor-1: Structure–activity study of 5-nitro-2-phenoxybenzoic acid derivatives. Bioorg Med Chem Lett 2011; 21:5701-6. [DOI: 10.1016/j.bmcl.2011.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/22/2011] [Accepted: 08/05/2011] [Indexed: 11/22/2022]
|
13
|
Van De Craen B, Scroyen I, Abdelnabi R, Brouwers E, Lijnen HR, Declerck PJ, Gils A. Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thromb Res 2011; 128:68-76. [DOI: 10.1016/j.thromres.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 11/23/2010] [Accepted: 01/31/2011] [Indexed: 11/27/2022]
|
14
|
Schmitt M, Mengele K, Napieralski R, Magdolen V, Reuning U, Gkazepis A, Sweep F, Brünner N, Foekens J, Harbeck N. Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 10:1051-67. [PMID: 21080821 DOI: 10.1586/erm.10.71] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prognostic and/or predictive value of the cancer biomarkers, urokinase-type plasminogen activator (uPA) and its inhibitor (plasminogen activator inhibitor [PAI]-1), determined by ELISA in tumor-tissue extracts, was demonstrated for several cancer types in numerous clinically relevant retrospective or prospective studies, including a multicenter breast cancer therapy trial (Chemo-N0). Consequently, for the first time ever for any cancer biomarker for breast cancer, uPA and PAI-1 have reached the highest level of evidence, level-of-evidence-1. At present, two other breast cancer therapy trials, NNBC-3 and Plan B, also incorporating uPA and PAI-1 as treatment-assignment tools are in effect. Furthermore, small synthetic molecules targeting uPA are currently in Phase II clinical trials in patients afflicted with advanced cancer of the ovary, breast or pancreas.
Collapse
Affiliation(s)
- Manfred Schmitt
- Frauenklinik der Technischen Universitaet Muenchen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Suzuki JI, Ogawa M, Muto S, Itai A, Hirata Y, Isobe M, Nagai R. Effects of specific chemical suppressors of plasminogen activator inhibitor-1 in cardiovascular diseases. Expert Opin Investig Drugs 2011; 20:255-64. [PMID: 21194395 DOI: 10.1517/13543784.2011.546784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION plasminogen activator inhibitor-1 (PAI-1) is critical in thrombus formation and inflammation. Although these are essential pathological features of cardiovascular diseases, the effects of PAI-1 inhibition against the development of cardiovascular remodeling have not been well studied. AREAS COVERED the review explores the therapeutic value of PAI-1 in the progression of various cardiovascular diseases. To date, the authors have reported that a novel PAI-1 inhibitor suppressed the development of experimental autoimmune myocarditis, vascular remodeling after arterial injury, and heart transplant rejection using rodent models. Pathologically, the PAI-1 inhibitor improved histological remodeling of myocardium and arteries with suppression of inflammation and thrombus formation. EXPERT OPINION PAI-1 inhibitors appear to exhibit potent effects on the prevention of adverse tissue remodeling. However, PAI-1 is a multifunctional protein and more research is needed to further elucidate the association between PAI-1 expression and cardiovascular disease.
Collapse
Affiliation(s)
- Jun-Ichi Suzuki
- University of Tokyo, Graduate School of Medicine, Department of Advanced Clinical Science and Therapeutics, 7 - 3 - 1 Hongo, Bunkyo, Tokyo 113 - 8655, Japan +81 3 5800 9116 ; +81 3 5800 9182 ;
| | | | | | | | | | | | | |
Collapse
|
16
|
Brown NJ. Review: Therapeutic potential of plasminogen activator inhibitor-1 inhibitors. Ther Adv Cardiovasc Dis 2010; 4:315-24. [DOI: 10.1177/1753944710379126] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of fibrinolysis and regulates cell migration and fibrosis. Preclinical studies using genetically altered mice and biological or small molecule inhibitors have elucidated a role for PAI-1 in the pathogenesis of thrombosis, vascular remodeling, renal injury, and initiation of diabetes. Inhibition of PAI-1 is a potential therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Nancy J. Brown
- 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA,
| |
Collapse
|
17
|
Cale JM, Li SH, Warnock M, Su EJ, North PR, Sanders KL, Puscau MM, Emal CD, Lawrence DA. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem 2010; 285:7892-902. [PMID: 20061381 DOI: 10.1074/jbc.m109.067967] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC(50) values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10-1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.
Collapse
Affiliation(s)
- Jacqueline M Cale
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0644, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
El-Ayache NC, Li SH, Warnock M, Lawrence DA, Emal CD. Novel bis-arylsulfonamides and aryl sulfonimides as inactivators of plasminogen activator inhibitor-1 (PAI-1). Bioorg Med Chem Lett 2009; 20:966-70. [PMID: 20056540 DOI: 10.1016/j.bmcl.2009.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Inactivators of plasminogen activator inhibitor-1 (PAI-1) have been identified as possible treatments for a range of conditions, including atherosclerosis, venous thrombosis, and obesity. We describe the synthesis and inhibitory activity of a novel series of compounds based on bis-arylsulfonamide and aryl sulfonimide motifs that show potent and specific activity towards PAI-1. Inhibitors containing short linking units between the sulfonyl moieties and a 3,4-dihydroxy aryl substitution pattern showed the most potent inhibitory activity, and retained high specificity for PAI-1 over the structurally-related serpin anti-thrombin III (ATIII).
Collapse
Affiliation(s)
- Nadine C El-Ayache
- Department of Chemistry, Eastern Michigan University, 225 Mark Jefferson, Ypsilanti, MI 48197, United States
| | | | | | | | | |
Collapse
|
19
|
Effects of pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 in radiation-induced intestinal injury. Int J Radiat Oncol Biol Phys 2009; 74:942-8. [PMID: 19480973 DOI: 10.1016/j.ijrobp.2009.01.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. METHODS AND MATERIALS Wild-type (Wt) and PAI-1(-/-) knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. RESULTS At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor beta1 (TGF-beta1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1(-/-) mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. CONCLUSIONS A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.
Collapse
|
20
|
Maher VMG, Kitano Y, Neuwirth C, Davies GJ, Maseri A, Thompson GR, Andreotti F. Plasminogen activator inhibitor-1 removal using dextran sulphate columns. Evidence of PAI-1 homeostasis. J Thromb Thrombolysis 2008; 28:166-72. [DOI: 10.1007/s11239-008-0260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 07/14/2008] [Indexed: 11/29/2022]
|