1
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
2
|
Zhang M, Li S, Ying J, Qu Y. Neutrophils: a key component in ECMO-related acute organ injury. Front Immunol 2024; 15:1432018. [PMID: 39346902 PMCID: PMC11427252 DOI: 10.3389/fimmu.2024.1432018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO), as an extracorporeal life support technique, can save the lives of reversible critically ill patients when conventional treatments fail. However, ECMO-related acute organ injury is a common complication that increases the risk of death in critically ill patients, including acute kidney injury, acute brain injury, acute lung injury, and so on. In ECMO supported patients, an increasing number of studies have shown that activation of the inflammatory response plays an important role in the development of acute organ injury. Cross-cascade activation of the complement system, the contact system, and the coagulation system, as well as the mechanical forces of the circuitry are very important pathophysiological mechanisms, likely leading to neutrophil activation and the production of neutrophil extracellular traps (NETs). NETs may have the potential to cause organ damage, generating interest in their study as potential therapeutic targets for ECMO-related acute organ injury. Therefore, this article comprehensively summarized the mechanism of neutrophils activation and NETs formation following ECMO treatment and their actions on acute organ injury.
Collapse
Affiliation(s)
- Mingfu Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Frunt R, El Otmani H, Smits S, Clark CC, Maas C. Factor XII contact activation can be prevented by targeting 2 unique patches in its epidermal growth factor-like 1 domain with a nanobody. J Thromb Haemost 2024; 22:2562-2575. [PMID: 38897387 DOI: 10.1016/j.jtha.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Factor (F)XII triggers contact activation by binding to foreign surfaces, with the epidermal growth factor-like 1 (EGF-1) domain being the primary binding site. Blocking FXII surface-binding might hold therapeutic value to prevent medical device-induced thrombosis. OBJECTIVES To unravel and prevent EGF-1-mediated FXII surface-binding with a variable domain of heavy chain-only antibody (VHH). METHODS FXII variants with glutamine substitutions of 2 positively charged amino acid patches within the EGF-1 domain were created. Their role in FXII contact activation was assessed using kaolin pull-down experiments, amidolytic activity assays, and clotting assays. FXII EGF-1 domain-specific VHHs were raised to inhibit EGF-1-mediated FXII contact activation while preserving quiescence. RESULTS Two unique, positively charged patches in the EGF-1 domain were identified (upstream, 73K74K76K78H81K82H; downstream, 87K113K). Neutralizing the charge of both patches led to a 99% reduction in FXII kaolin binding, subsequent decrease in autoactivation of 94%, and prolongation of clot formation in activated partial thromboplastin time assays from 36 (±2) to 223 (±13) seconds. Three FXII EGF-1-specific VHHs were developed that are capable of inhibiting kaolin binding and subsequent contact system activation in plasma. The most effective VHH "F2" binds the positively charged patches and thereby dose-dependently extends activated partial thromboplastin time clotting times from 29 (±2) to 43 (±3) seconds without disrupting FXII quiescence. CONCLUSION The 2 unique, positively charged patches in FXII EGF-1 cooperatively mediate FXII surface-binding, making both patches crucial for contact activation. Targeting these with FXII EGF-1-specific VHHs can exclusively decrease FXII surface-binding and subsequent contact activation, while preserving zymogen quiescence. These patches thus have potential as druggable targets in preventing medical device-induced thrombosis.
Collapse
Affiliation(s)
- Rowan Frunt
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Hinde El Otmani
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Simone Smits
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chantal C Clark
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen Maas
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Christiansen SC, Zuraw BL. Contact System Activation and Bradykinin Generation in Angioedema: Laboratory Assessment and Biomarker Utilization. Immunol Allergy Clin North Am 2024; 44:543-560. [PMID: 38937015 DOI: 10.1016/j.iac.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The role of contact system activation has been clearly established in the pathogenesis of hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH). C1 inhibitor (C1INH)-protease complexes, levels of functional C1INH, plasma kallikrein activation, and cleavage of high-molecular-weight kininogen have each been associated with disease activity. More recently, HAE with normal levels of C1INH (HAE-nl-C1INH) has been recognized. Six genetic mutations have been identified which are linked to HAE-nl-C1INH phenotypes. The majority of individuals with HAE-nl-C1INH fall into the unknown category. There is substantial evidence that bradykinin generation underlies the recurrent attacks of swelling in some of these cohorts.
Collapse
Affiliation(s)
- Sandra C Christiansen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA 92093, USA
| | - Bruce L Zuraw
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0732, La Jolla, CA 92093, USA; Medicine Service, San Diego Veterans Administration Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
5
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
6
|
Nascimbene A, Bark D, Smadja DM. Hemocompatibility and biophysical interface of left ventricular assist devices and total artificial hearts. Blood 2024; 143:661-672. [PMID: 37890145 PMCID: PMC10900168 DOI: 10.1182/blood.2022018096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT Over the past 2 decades, there has been a significant increase in the utilization of long-term mechanical circulatory support (MCS) for the treatment of cardiac failure. Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) have been developed in parallel to serve as bridge-to-transplant and destination therapy solutions. Despite the distinct hemodynamic characteristics introduced by LVADs and TAHs, a comparative evaluation of these devices regarding potential complications in supported patients, has not been undertaken. Such a study could provide valuable insights into the complications associated with these devices. Although MCS has shown substantial clinical benefits, significant complications related to hemocompatibility persist, including thrombosis, recurrent bleeding, and cerebrovascular accidents. This review focuses on the current understanding of hemostasis, specifically thrombotic and bleeding complications, and explores the influence of different shear stress regimens in long-term MCS. Furthermore, the role of endothelial cells in protecting against hemocompatibility-related complications of MCS is discussed. We also compared the diverse mechanisms contributing to the occurrence of hemocompatibility-related complications in currently used LVADs and TAHs. By applying the existing knowledge, we present, for the first time, a comprehensive comparison between long-term MCS options.
Collapse
Affiliation(s)
- Angelo Nascimbene
- Advanced Cardiopulmonary Therapies and Transplantation, University of Texas, Houston, TX
| | - David Bark
- Division of Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - David M. Smadja
- Université de Paris-Cité, Innovative Therapies in Haemostasis, INSERM, Paris, France
- Hematology Department, Assistance Publique–Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
7
|
Witzdam L, Vosberg B, Große-Berkenbusch K, Stoppelkamp S, Wendel HP, Rodriguez-Emmenegger C. Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting. Macromol Biosci 2024; 24:e2300321. [PMID: 37742317 DOI: 10.1002/mabi.202300321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Berlind Vosberg
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Katharina Große-Berkenbusch
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Sandra Stoppelkamp
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Barcelona, Madrid, 28029, Spain
| |
Collapse
|
8
|
Dominguez-Reyes VM, Hernandez-Juarez J, Arreola-Diaz R, Majluf-Cruz K, Reyes-Maldonado E, Alvarado-Moreno JA, Ruiz LAM, Majluf-Cruz A. Factor XII Deficiency in Mexico: High Prevalence in the General Population and Patients with Venous Thromboembolic Disease. Arch Med Res 2024; 55:102913. [PMID: 38065013 DOI: 10.1016/j.arcmed.2023.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/01/2023] [Accepted: 11/07/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Thrombosis is one of the leading causes of morbidity and mortality worldwide. Venous thromboembolic disease (VTD) is considered a new epidemic. FXII deficiency is supposed to be a cause of thrombosis. To search for unknown causes of thrombosis in our population, our aim was to determine if FXII deficiency can be considered a risk factor for VTD. METHODS Young adult Mexican patients with at least one VTD episode and healthy controls were included in this prospective, observational, controlled study. Liver and renal function tests, blood cytometry, and blood coagulation assays were performed. Plasma FXII activity and its concentration were evaluated. RESULTS Over a two-year period, 250 patients and 250 controls were included. FXII activity was significantly lower in the control group compared to patients with VTD (p = 0.005). However, percentage of patients and controls with FXII deficiency was 8.8 and 9.2%, respectively (p = 1.000). No significant association was found between FXII deficiency and VTD (p = 1.0). FXII plasma concentration was lower in controls vs. patients with VTD: 4.05 vs. 6.19 ng/mL (p <0.001). Percentage of patients with low FXII plasma concentration was 1.6% and 6.0% in patients and controls, respectively (p = 0.010). CONCLUSIONS FXII deficiency is a frequent finding in patients with VTD and controls in Mexico. Some patients with FXII deficiency had normal APTT result, an effect not described above. FXII plasma concentration was lower in patients with low activity.
Collapse
Affiliation(s)
- Víctor Manuel Dominguez-Reyes
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico; National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jesus Hernandez-Juarez
- Conacyt-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlan, Oaxaca, Mexico
| | - Rodrigo Arreola-Diaz
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karim Majluf-Cruz
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Antonio Alvarado-Moreno
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Abraham Majluf-Cruz
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
9
|
Bentounes NK, Melicine S, Martin AC, Smadja DM, Gendron N. Development of new anticoagulant in 2023: Prime time for anti-factor XI and XIa inhibitors. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:69-80. [PMID: 37422330 DOI: 10.1016/j.jdmv.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 07/10/2023]
Abstract
Thrombosis remains one of the leading causes of death in the world. The history of anticoagulation has evolved considerably from non-specific drugs (i.e., heparins and vitamin K antagonists, VKA) to agents that directly target specific coagulation factors (i.e., argatroban, fondaparinux and direct oral anticoagulants, DOAC). Since the last decade, DOAC are widely used in clinical practice because of their ease to use with favorable pharmacological profile and not requiring monitoring, particularly for venous thromboembolism treatment and prevention and stroke prevention in atrial fibrillation. However, despite having a better safety profile than VKA, their bleeding risk is not negligible. Therefore, research is underway to develop new anticoagulant therapies with a better safety profile. One of these news approaches to reduce the risk of bleeding is to target the coagulation in the intrinsic pathway, in particular the contact activation, with the ultimate goal of preventing thrombosis without impairing hemostasis. Based on epidemiological data with patients with inherited factor XI (FXI) deficiency and preclinical studies, FXI emerged as the most promising candidate target separating hemostasis from thrombosis. This review summaries the role of FXI and FXIa in hemostasis, provides evidence of initial success with FXI pathway inhibitors in clinical trials (such as IONIS-FXIRx, fesomersen, osocimab, abelacimab, milvexian, asundexian or xisomab 3G3) and highlights the opportunities and challenges for this next generation of anticoagulants.
Collapse
Affiliation(s)
- Nûn K Bentounes
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France
| | - Sophie Melicine
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France
| | - Anne Céline Martin
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Cardiology Department, Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France
| | - David M Smadja
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France; INNOVTE, F-CRIN, Saint-Étienne, France
| | - Nicolas Gendron
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
10
|
F12 as a reliable diagnostic and prognostic biomarker associated with immune infiltration in papillary thyroid cancer. Aging (Albany NY) 2022; 14:3687-3704. [PMID: 35483340 PMCID: PMC9085229 DOI: 10.18632/aging.204037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Objective: To explore the function of coagulation factor XII (F12) in papillary thyroid cancer (PTC). Materials and Methods: We assessed F12 expression and its relationship with overall survival (OS) in various cancers using TIMER and TISIDB databases. Further, we evaluated the mRNA and protein expression levels of F12 in PTC via different bioinformatics tools. The receiver operating characteristic (ROC) curve was applied to determine the diagnostic value of F12 in PTC. Then, the Kaplan-Meier plotter and Cox regression analyses were performed to examine the prognostic significance of F12. The possible mechanism of F12 in PTC was investigated through enrichment analyses. Finally, the correlation between F12 expression and immune cell infiltration was analyzed using TCGA data. Results: This study revealed the clinical significance of F12 in various cancers. Higher mRNA (P <0.001) and protein expressions of F12 were observed in PTC compared with normal tissues. Besides, F12 expression exhibited high diagnostic performance in PTC and its overexpression served as an independent predictor for the poor OS (P <0.05). Enrichment analyses results showed that F12 was mainly involved in metabolism-associated pathways. Additionally, F12 expression was significantly linked to immune cell infiltration levels, especially macrophage infiltration. Conclusions: F12 might be a reliable diagnostic and prognostic biomarker for PTC. Moreover, F12 expression might affect the OS of PTC patients via regulating metabolic pathways.
Collapse
|
11
|
Edwards JV, Graves E, Prevost N, Condon B, Yager D, Dacorta J, Bopp A. Development of a Nonwoven Hemostatic Dressing Based on Unbleached Cotton: A De Novo Design Approach. Pharmaceutics 2020; 12:pharmaceutics12070609. [PMID: 32629845 PMCID: PMC7407894 DOI: 10.3390/pharmaceutics12070609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Minimally processed greige (unbleached) cotton fibers demonstrate enhanced clotting relative to highly processed United States Pharmacopeia (USP) type 7 bleached cotton gauze. This effect is thought to be due to the material surface polarity. We hypothesized that a textile could be constructed, conserving the hemostasis-accelerating properties of greige cotton, while maintaining structural integrity and improving absorbance. Spun bond nonwovens of varying surface polarity were designed and prepared based on ratios of greige cotton/bleached cotton/polypropylene fibers. A thromboelastographic analysis was performed on fibrous samples in citrated blood to evaluate the rate of fibrin and clot formation. Lee White clotting times were obtained to assess the material’s clotting activity in platelet fresh blood. An electrokinetic analysis of samples was performed to analyze for material surface polarity. Hemostatic properties varied with composition ratios, fiber density, and fabric fenestration. The determinations of the surface polarity of cotton fabrics with electrokinetic analysis uncovered a range of surface polarities implicated in fabric-initiated clotting; a three-point design approach was employed with the combined use of thromboelastography, thrombin velocity index, Lee White clotting, and absorption capacity determinations applied to fabric structure versus function analysis. The resulting analysis demonstrates that greige cotton may be utilized, along with hydrophilic and hydrophobic fibers, to improve the initiation of fibrin formation and a decrease in clotting time in hemostatic dressings suitable to be commercially developed. Hydroentanglement is an efficient and effective process for imparting structural integrity to cotton-based textiles, while conserving hemostatic function.
Collapse
Affiliation(s)
- J. Vincent Edwards
- Southern Regional Research Center, New Orleans, LA 70124, USA; (E.G.); (N.P.); (B.C.)
- Correspondence: ; Tel.: +1-504-284-4360
| | - Elena Graves
- Southern Regional Research Center, New Orleans, LA 70124, USA; (E.G.); (N.P.); (B.C.)
| | - Nicolette Prevost
- Southern Regional Research Center, New Orleans, LA 70124, USA; (E.G.); (N.P.); (B.C.)
| | - Brian Condon
- Southern Regional Research Center, New Orleans, LA 70124, USA; (E.G.); (N.P.); (B.C.)
| | - Dorne Yager
- Plastic and Reconstructive Surgery, Virginia Commonwealth University, Richmond, VA 23111, USA;
| | | | - Alvin Bopp
- Department of Natural Sciences, Southern University at New Orleans, New Orleans, LA 70126, USA;
| |
Collapse
|
12
|
Hilal T, Mudd J, DeLoughery TG. Hemostatic complications associated with ventricular assist devices. Res Pract Thromb Haemost 2019; 3:589-598. [PMID: 31624778 PMCID: PMC6781923 DOI: 10.1002/rth2.12226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
Hemostatic complications are common in patients with ventricular assist devices. The pathophysiologic mechanisms that lead to dysregulated hemostasis involve complex interactions between device surface, sheer stress, and blood flow. These factors lead to various manifestations that require a thorough understanding of the interplay among platelets, coagulation factors, and red cells. In this article, we review the pathophysiology of hematologic complications (bleeding, acquired von Willebrand disease, heparin-induced thrombocytopenia, hemolysis, stroke and pump thrombosis), the clinical manifestations, and the management of each. We summarize the evidence available for management of these entities and provide a pragmatic clinical review.
Collapse
Affiliation(s)
- Talal Hilal
- Division of Hematology/OncologyMayo Clinic Cancer CenterMayo ClinicPhoenixArizona
| | - James Mudd
- Center for Advanced Heart Disease and TransplantationProvidence Sacred Heart Medical CenterSpokaneWashington
| | - Thomas G. DeLoughery
- Division of Hematology/Medical OncologyKnight Cancer CenterOregon Health & Science UniversityPortlandOregon
- Division of Laboratory MedicineDepartment of PathologyOregon Health & Science UniversityPortlandOregon
- Division of Hematology/OncologyDepartment of PediatricsOregon Health & Science UniversityPortlandOregon
| |
Collapse
|
13
|
Maruyama H, Brooks MB, Stablein A, Frye A. Factor XII deficiency is common in domestic cats and associated with two high frequency F12 mutations. Gene 2019; 706:6-12. [PMID: 31022435 DOI: 10.1016/j.gene.2019.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 11/19/2022]
Abstract
Factor XII (FXII) is a coagulation protein that initiates surface-activation of the coagulation cascade in vitro. The protein's in vivo role, however, remains poorly defined. Factor XII deficiency, or Hageman trait, is a rare hereditary disorder that is not associated with bleeding, and wide variations in FXII activity (FXII:C) exist among healthy people. While FXII-deficient knockout mice appear to be resistant to arterial thrombosis, human F12 polymorphisms that influence FXII:C have not been associated with thrombotic risk in population surveys. Factor XII deficiency is a naturally occurring hereditary trait in domestic cats. We undertook phenotypic and genotypic analyses of FXII-deficient cats for comparative studies with the human disease counterpart. A retrospective review of feline submissions to our laboratory revealed that FXII deficiency is common in domestic cats, and also present in many different breeds. The trait has a geographic bias toward the Midwestern United States. Clinical history, coagulation assays, and samples for F12 sequencing were obtained from 26 FXII deficient cats. None of the cats had experienced abnormal bleeding and their residual FXII:C was related to F12 mutation number and mutation-type. We found 2 high frequency F12 mutations: an exon 13 missense mutation (c.1631G > C) and an exon 11 deletion mutation (c.1321delC), and additional sequence variants throughout the gene. Factor XII deficiency in pet cat populations provides an animal model system to help clarify the biologic actions and clinical relevance of FXII protein.
Collapse
Affiliation(s)
- Haruhiko Maruyama
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Nihon University, Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America.
| | - Alyssa Stablein
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Amelia Frye
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
14
|
Alexander-Curtis M, Pauls R, Chao J, Volpi JJ, Bath PM, Verdoorn TA. Human tissue kallikrein in the treatment of acute ischemic stroke. Ther Adv Neurol Disord 2019; 12:1756286418821918. [PMID: 30719079 PMCID: PMC6348491 DOI: 10.1177/1756286418821918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of death and disability throughout the world. The most severe form of stroke results from large vessel occlusion of the major branches of the Circle of Willis. The treatment strategies currently available in western countries for large vessel occlusion involve rapid restoration of blood flow through removal of the offending blood clot using mechanical or pharmacological means (e.g. tissue plasma activator; tPA). This review assesses prospects for a novel pharmacological approach to enhance the availability of the natural enzyme tissue kallikrein (KLK1), an important regulator of local blood flow. KLK1 is responsible for the generation of kinins (bradykinin and kallidin), which promote local vasodilation and long-term vascularization. Moreover, KLK1 has been used clinically as a direct treatment for multiple diseases associated with impaired local blood flow including AIS. A form of human KLK1 isolated from human urine is approved in the People's Republic of China for subacute treatment of AIS. Here we review the rationale for using KLK1 as an additional pharmacological treatment for AIS by providing the biochemical mechanism as well as the human clinical data that support this approach.
Collapse
Affiliation(s)
| | - Rick Pauls
- DiaMedica Therapeutics, Minneapolis, MN, USA
| | - Julie Chao
- Medical University of South Carolina, Department of Biochemistry and Molecular Biology, Charleston, SC, USA
| | - John J Volpi
- Houston Methodist, Stanley H. Appel Department of Neurology, Houston, TX, USA
| | - Philip M Bath
- Stroke Trials Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | | |
Collapse
|
15
|
Didiasova M, Wujak L, Schaefer L, Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal 2018; 51:257-265. [DOI: 10.1016/j.cellsig.2018.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
16
|
Blanco-Abad V, Noia M, Valle A, Fontenla F, Folgueira I, De Felipe AP, Pereiro P, Leiro J, Lamas J. The coagulation system helps control infection caused by the ciliate parasite Philasterides dicentrarchi in the turbot Scophthalmus maximus (L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:147-156. [PMID: 29935288 DOI: 10.1016/j.dci.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Many studies have shown that coagulation systems play an important role in the defence against pathogens in invertebrates and vertebrates. In vertebrates, particularly in mammals, it has been established that the coagulation system participates in the entrapment of pathogens and activation of the early immune response. However, functional studies investigating the importance of the fish coagulation system in host defence against pathogens are scarce. In the present study, injection of turbot (Scopthalamus maximus) with the pathogenic ciliate Philasterides dicentrarchi led to the formation of macroscopic intraperitoneal clots in the fish. The clots contained abundant, immobilized ciliates, many of which were lysed. We demonstrated that the plasma clots immobilize and kill the ciliates in vitro. To test the importance of plasma clotting in ciliate killing, we inhibited the process by adding a tetrapeptide known to inhibit fibrinogen/thrombin clotting in mammals. Plasma tended to kill P. dicentrarchi slightly faster when clotting was inhibited by the tetrapeptide, although the total mortality of ciliates was similar. We also found that kaolin, a particulate activator of the intrinsic pathway in mammals, accelerates plasma clotting in turbot. In addition, PMA-stimulated neutrophils, living ciliates and several ciliate components such as cilia, proteases and DNA also displayed procoagulant activity in vitro. Injection of fish with the ciliates generated the massive release of neutrophils to the peritoneal cavity, with formation of large aggregates in those fish with live ciliates in the peritoneum. We observed, by SEM, numerous fibrin-like fibres in the peritoneal exudate, many of which were associated with peritoneal leukocytes and ciliates. Expression of the CD18/CD11b gene, an integrin associated with cell adhesion and the induction of fibrin formation, was upregulated in the peritoneal leukocytes. In conclusion, the findings of the present study show that P. dicentrarchi induces the formation of plasma clots and that the fish coagulation system may play an important role in immobilizing and killing this parasite.
Collapse
Affiliation(s)
- V Blanco-Abad
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Noia
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Valle
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - F Fontenla
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Folgueira
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A P De Felipe
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - P Pereiro
- Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - J Leiro
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J Lamas
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Hovingh ES, de Maat S, Cloherty APM, Johnson S, Pinelli E, Maas C, Jongerius I. Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor. Front Immunol 2018; 9:1172. [PMID: 29915576 PMCID: PMC5994690 DOI: 10.3389/fimmu.2018.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.
Collapse
Affiliation(s)
- Elise S Hovingh
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Steven de Maat
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alexandra P M Cloherty
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elena Pinelli
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
18
|
Björkqvist J, Sala-Cunill A, Renné T. Hereditary angioedema: a bradykinin-mediated swelling disorder. Thromb Haemost 2017; 109:368-74. [DOI: 10.1160/th12-08-0549] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/08/2012] [Indexed: 11/05/2022]
Abstract
SummaryEdema is tissue swelling and is a common symptom in a variety of diseases. Edema form due to accumulation of fluids, either through reduced drainage or increased vascular permeability. There are multiple vascular signalling pathways that regulate vessel permeability. An important mediator that increases vascular leak is the peptide hormone bradykinin, which is the principal agent in the swelling disorder hereditary angioedema. The disease is autosomal dominant inherited and presents clinically with recurrent episodes of acute swelling that can be life-threatening involving the skin, the oropharyngeal, laryngeal, and gastrointestinal mucosa. Three different types of hereditary angiodema exist in patients. The review summarises current knowledge on the pathophysiology of hereditary angiodema and focuses on recent experimental and pharmacological findings that have led to a better understanding and new treatments for the disease.
Collapse
|
19
|
Björkqvist J, Nickel K, Stavrou E, Renné T. In vivo activation and functions of the protease factor XII. Thromb Haemost 2017; 112:868-75. [DOI: 10.1160/th14-04-0311] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022]
Abstract
SummaryCombinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. Factor XII (FXII, Hageman factor) is a plasma protease that initiates the contact system. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. The current review concentrates on activators and functions of the FXII-driven contact system in vivo. Elucidating its physiologic activities offers the exciting opportunity to develop strategies for the safe interference with both thrombotic and inflammatory diseases.
Collapse
|
20
|
Yang A, Chen F, He C, Zhou J, Lu Y, Dai J, Birge RB, Wu Y. The Procoagulant Activity of Apoptotic Cells Is Mediated by Interaction with Factor XII. Front Immunol 2017; 8:1188. [PMID: 28993777 PMCID: PMC5622377 DOI: 10.3389/fimmu.2017.01188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
Apoptotic cells, by externalizing phosphatidylserine (PS) as a hallmark feature, are procoagulant. However, the mechanism by which apoptotic cells activate coagulation system remains unknown. Intrinsic coagulation pathway is initiated by coagulation factor XII (FXII) of contact activation system. The purpose of this study was to determine whether FXII is involved in procoagulant activity of apoptotic cells. Using western blotting and chromogenic substrate assay, we found that incubation with apoptotic cells, but not with viable cells, resulted in rapid cleavage and activation of FXII in the presence of prekallikrein and high molecular weight kininogen (HK), other two components of contact activation system. As detected by flow cytometry, FXII bound to apoptotic cells in a concentration-dependent manner, which was inhibited by annexin V and PS liposome. Direct association of FXII with PS was confirmed in a surface plasmon resonance assay. Clotting time of FXII-deficient plasma induced by apoptotic cells was significantly prolonged, which was fully reversed by replenishment with FXII. Corn trypsin inhibitor, a FXII inhibitor, completely prevented apoptotic cells-induced intrinsic tenase complex formation. Consistently, apoptotic cells significantly increased thrombin production in normal plasma, which was not affected by an inhibitory anti-tissue factor antibody. However, blocking of PS by annexin V, inhibition of FXII, or the deficiency of FXII suppressed apoptotic cells-induced thrombin generation. Addition of purified FXII to FXII-deficient plasma recovered thrombin generation to the normal plasma level. In conclusion, FXII binds to apoptotic cells via PS and becomes activated, thereby constituting a novel mechanism mediating the procoagulant activity of apoptotic cells.
Collapse
Affiliation(s)
- Aizhen Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fengwu Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Junsong Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Yi Lu
- Wuhan Thalys Medical Technology Inc., Wuhan, China
| | - Jihong Dai
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Yi Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
21
|
Jukema BN, de Maat S, Maas C. Processing of Factor XII during Inflammatory Reactions. Front Med (Lausanne) 2016; 3:52. [PMID: 27867935 PMCID: PMC5095611 DOI: 10.3389/fmed.2016.00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 01/18/2023] Open
Abstract
The contact system was originally identified as an obsolete part of the coagulation system, but it has been repeatedly implicated in inflammatory states, such as infection, as well as in allergic- and chronic inflammatory disease. Under these conditions, there is surprisingly little evidence that factor XII (FXII) acts as a coagulation factor, and its activity appears to be mainly directed toward activation of the kallikrein–kinin system. The contact system factors interact with pathogens as well as cells of the (innate) immune system on several levels. Among others, these cells may provide negatively charged surfaces that contribute to contact activation as well as release enzymes that feed into this system. Furthermore, cellular receptors have been identified that bind contact factors at sites of inflammation. Based on the accumulated evidence, we propose a model for enzymatic crosstalk between inflammatory cells and the plasma contact system. During these reactions, FXII is enzymatically cleaved by non-contact system enzymes. This generates unactivated FXII fragments that can subsequently be rapidly activated in the fluid phase. The resulting enzyme lacks procoagulant properties, but retains its pro-inflammatory characteristic as a prekallikrein activator.
Collapse
Affiliation(s)
- Bernard Nico Jukema
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Steven de Maat
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
22
|
Vorlova S, Koch M, Manthey HD, Cochain C, Busch M, Chaudhari SM, Stegner D, Yepes M, Lorenz K, Nolte MW, Nieswandt B, Zernecke A. Coagulation factor XII induces pro-inflammatory cytokine responses in macrophages and promotes atherosclerosis in mice. Thromb Haemost 2016; 117:176-187. [PMID: 27786338 DOI: 10.1160/th16-06-0466] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is considered a chronic inflammatory disease of the vessel wall. Coagulation pathways and immune responses contribute to disease development. The role of coagulation factor XII (FXII) in vascular inflammation, however, remains controversial. We here investigated the function of FXII in atherosclerosis using apolipoprotein E and FXII-deficient (F12-/-Apoe-/-) mice. Compared to F12+/+Apoe-/- controls, atherosclerotic lesion formation was reduced in F12-/-Apoe-/- mice. This was associated with a decrease in serum interleukin (IL)-1β and IL-12 levels and reduced expression of pro-inflammatory cytokines in the aorta in atherosclerotic F12-/-Apoe-/- mice, as well as diminished Th1-cell differentiation in the aorta, blood, and lymphoid organs. No changes in circulating bradykinin, thrombin-antithrombin-complexes or plasminogen were observed. Mechanistically, activated FXII (FXIIa) was revealed to directly induce bone marrow-derived macrophages to secrete pro-inflammatory cytokines, including tumour necrosis factor-α, IL-1β, IL-12, and IL-6. Exposure of bone marrow-derived antigen presenting cells to FXIIa similarly induced pro-inflammatory cytokines, and an enhanced capacity to trigger antigen-specific interferon γ-production in CD4+ T cells. Notably, bone-marrow derived macrophages were capable of directly activating FXII. Moreover, the induction of cytokine expression by FXIIa in macrophages occurred independently of FXII protease enzymatic activity and was decreased upon phospholipase C treatment, suggesting urokinase-type plasminogen activator receptor (uPAR) to confer FXIIa-induced cell signalling. These data reveal FXII to play an important role in atherosclerotic lesion formation by functioning as a strong inducer of pro-inflammatory cytokines in antigen-presenting cells. Targeting of FXII may thus be a promising approach for treating cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alma Zernecke
- Dr. Alma Zernecke, Universitätsklinikum Würzburg, Institut für Experimentelle Biomedizin, Josef-Schneider-Str. 2, 97080 Würzburg, Germany, Tel: +49 201 48331, Fax: +49 201 648341, E-mail:
| |
Collapse
|
23
|
Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun 2016; 7:11626. [PMID: 27188843 PMCID: PMC4873982 DOI: 10.1038/ncomms11626] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/14/2016] [Indexed: 12/18/2022] Open
Abstract
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.
Collapse
|
24
|
Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14:427-37. [PMID: 26707513 DOI: 10.1111/jth.13235] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/22/2015] [Indexed: 12/12/2022]
Abstract
The contact system is a plasma protease cascade initiated by factor XII (FXII) that activates the proinflammatory kallikrein-kinin system and the procoagulant intrinsic coagulation pathway. Anionic surfaces induce FXII zymogen activation to form proteolytically active FXIIa. Bacterial surfaces also have the ability to activate contact system proteins, indicating an important role for host defense using the cooperation of the inflammatory and coagulation pathways. Recent research has shown that inorganic polyphosphate found in platelets activates FXII in vivo and can induce coagulation in pathological thrombus formation. Experimental studies have shown that interference with FXII provides thromboprotection without a therapy-associated increase in bleeding, renewing interest in the FXIIa-driven intrinsic pathway of coagulation as a therapeutic target. This review summarizes how the contact system acts as the cross-road of inflammation, coagulation, and innate immunity.
Collapse
Affiliation(s)
- A T Long
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Kenne
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - R Jung
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T A Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - T Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Worm M, Köhler EC, Panda R, Long A, Butler LM, Stavrou EX, Nickel KF, Fuchs TA, Renné T. The factor XIIa blocking antibody 3F7: a safe anticoagulant with anti-inflammatory activities. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:247. [PMID: 26605293 DOI: 10.3978/j.issn.2305-5839.2015.09.07] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The plasma protein factor XII (FXII) is the initiating protease of the procoagulant and proinflammatory contact system. FXII activates both the bradykinin (BK) producing kallikrein-kinin system and the intrinsic pathway of coagulation. Contact with negatively charged surfaces induces auto-activation of zymogen FXII that results in activated FXII (FXIIa). Various in vivo activators of FXII have been identified including heparin, misfolded protein aggregates, nucleic acids and polyphosphate. Murine models have established a central role of FXII in arterial and venous thromboembolic diseases. Despite the central function of FXII in pathologic thrombosis, its deficiency does not impair hemostasis in animals or humans. The selective role of FXIIa in thrombosis, but not hemostasis, offers an exciting novel strategy for safe anticoagulation based on interference with FXIIa. We have generated the recombinant fully human FXIIa-blocking antibody 3F7, which abolished FXIIa enzymatic activity and prevented thrombosis in a cardiopulmonary bypass system in large animals, in the absence of increased therapy-associated bleeding. Furthermore, 3F7 also interfered with BK-driven edema in the severe swelling disorder hereditary angioedema (HAE) type III. Taken together, targeting FXIIa with 3F7 appears to be a promising approach to treat edema disorders and thrombosis.
Collapse
Affiliation(s)
- Marie Worm
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Elodie C Köhler
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Rachita Panda
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Andy Long
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Lynn M Butler
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Evi X Stavrou
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Katrin F Nickel
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Tobias A Fuchs
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| | - Thomas Renné
- 1 Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; 2 Division of Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden ; 3 Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA ; 4 Department of Medicine, Louis Stokes Veterans Administration Hospital, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Uszyński M, Kuczyński J, Żekanowska E, Uszyński W. The Contact Activation System (CAS) in cord blood: Measurement of CAS components and comparison with mother's blood. A pilot study. Thromb Res 2015; 136:1018-21. [PMID: 26384441 DOI: 10.1016/j.thromres.2015.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/19/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Classical reference data concerning the coagulation system and fibrinolysis in fetuses and newborns date back to the 1990 s. Since that time a number of methodological or other improvements have been implemented, which may cast some doubt on timeliness of the data. The study objective was to measure the levels of Contact Activation System (CAS) components by antigen, i.e. factors XII and XI (FXII, FXI), prekallikrein (PK) and high molecular weight kininogen (HMWK) in cord blood and maternal blood. MATERIAL AND METHODS The study group consisted of 35 healthy parturient women with an uneventful pregnancy and birth. The samples of cord blood and maternal blood were obtained immediately after delivery, before clumping the umbilical cord. The CAS components were measured by immunoenzymatic method (ELISA). RESULTS The median concentrations of CAS components in cord blood plasma and mother's plasma were as follow: FXII: 1.02 (0.60- 2.58) ng/mg protein vs. 0.94 (0.66-1.86) ng/mg protein (p>0.05); FXI: 2.71(0.03-8.0) ng/mg protein vs. 0.92 (0.03-10.44) ng/mg protein (p>0.05); PK: 168.78 (104.28-261.16) pg/mg protein vs. 113.44 (79.94-146.70) pg/mg protein (p>0.05); HMWK: 2169.45 (1530.64- 2539.83) ng/mg protein vs. 2857.96 (2541.52-3161.04) ng/mg protein (p<0.001). CONCLUSIONS 1. The antigen levels of the three contact factors, i.e. FXII, FXI and PK in the cord blood of full-term and healthy fetuses were similar to those observed in mother's blood immediately after delivery. Only high molecular weight kininogen was found to be lower (accounting for 84% of the values noted in mothers). 2. Based on our measurements, we claim that the cited reference data concerning the contact factors in full-term and healthy newborns are underestimated; hence, new reference values need to be determined for each antigen and activity contact factor level.
Collapse
Affiliation(s)
- Mieczysław Uszyński
- Department of Propedeutics of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland.
| | | | - Ewa Żekanowska
- Department of Pathophysiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | | |
Collapse
|
27
|
Batt AR, St Germain CP, Gokey T, Guliaev AB, Baird T. Engineering trypsin for inhibitor resistance. Protein Sci 2015; 24:1463-74. [PMID: 26106067 DOI: 10.1002/pro.2732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/22/2015] [Accepted: 06/22/2015] [Indexed: 01/05/2023]
Abstract
The development of effective protease therapeutics requires that the proteases be more resistant to naturally occurring inhibitors while maintaining catalytic activity. A key step in developing inhibitor resistance is the identification of key residues in protease-inhibitor interaction. Given that majority of the protease therapeutics currently in use are trypsin-fold, trypsin itself serves as an ideal model for studying protease-inhibitor interaction. To test the importance of several trypsin-inhibitor interactions on the prime-side binding interface, we created four trypsin single variants Y39A, Y39F, K60A, and K60V and report biochemical sensitivity against bovine pancreatic trypsin inhibitor (BPTI) and M84R ecotin. All variants retained catalytic activity against small, commercially available peptide substrates [kcat /KM = (1.2 ± 0.3) × 10(7) M(-1 ) s(-1) . Compared with wild-type, the K60A and K60V variants showed increased sensitivity to BPTI but less sensitivity to ecotin. The Y39A variant was less sensitive to BPTI and ecotin while the Y39F variant was more sensitive to both. The relative binding free energies between BPTI complexes with WT, Y39F, and Y39A were calculated based on 3.5 µs combined explicit solvent molecular dynamics simulations. The BPTI:Y39F complex resulted in the lowest binding energy, while BPTI:Y39A resulted in the highest. Simulations of Y39F revealed increased conformational rearrangement of F39, which allowed formation of a new hydrogen bond between BPTI R17 and H40 of the variant. All together, these data suggest that positions 39 and 60 are key for inhibitor binding to trypsin, and likely more trypsin-fold proteases.
Collapse
Affiliation(s)
- Anna R Batt
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, California, 94132
| | - Commodore P St Germain
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, California, 94132
| | - Trevor Gokey
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, California, 94132
| | - Anton B Guliaev
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, California, 94132
| | - Teaster Baird
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, California, 94132
| |
Collapse
|
28
|
Uszyński W, Żekanowska E, Uszyński M, Kieszkowski P. Activation contact system (ACS) and tissue factor (TF) in human amniotic fluid: Measurements of ACS components and TF, and some implications on the pathophysiology of amniotic fluid embolism. Thromb Res 2015; 135:699-702. [DOI: 10.1016/j.thromres.2014.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 10/14/2014] [Indexed: 11/15/2022]
|
29
|
Labberton L, Kenne E, Renné T. New agents for thromboprotection. A role for factor XII and XIIa inhibition. Hamostaseologie 2015; 35:338-50. [PMID: 25609114 DOI: 10.5482/hamo-14-11-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
Blood coagulation is essential for hemostasis, however excessive coagulation can lead to thrombosis. Factor XII starts the intrinsic coagulation pathway and contact-induced factor XII activation provides the mechanistic basis for the diagnostic aPTT clotting assay. Despite its function for fibrin formation in test tubes, patients and animals lacking factor XII have a completely normal hemostasis. The lack of a bleeding tendency observed in factor XII deficiency states is in sharp contrast to deficiencies of other components of the coagulation cascade and factor XII has been considered to have no function for coagulation in vivo. Recently, experimental animal models showed that factor XII is activated by an inorganic polymer, polyphosphate, which is released from procoagulant platelets and that polyphosphate-driven factor XII activation has an essential role in pathologic thrombus formation. Cumulatively, the data suggest to target polyphosphate, factor XII, or its activated form factor XIIa for anticoagulation. As the factor XII pathway specifically contributes to thrombosis but not to hemostasis, interference with this pathway provides a unique opportunity for safe anticoagulation that is not associated with excess bleeding. The review summarizes current knowledge on factor XII functions, activators and inhibitors.
Collapse
Affiliation(s)
| | | | - T Renné
- Thomas Renné, M.D. Ph.D., Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna (L2:05), 171 76 Stockholm, Sweden, Tel. +46/8/51 77 33 90, +49/(0)40/741 05 89 84, Fax +46/31 03 76, +49/(0)40/741 05 75 76, E-mail:
| |
Collapse
|
30
|
Edwards JV, Graves E, Bopp A, Prevost N, Santiago M, Condon B. Electrokinetic and hemostatic profiles of nonwoven cellulosic/synthetic fiber blends with unbleached cotton. J Funct Biomater 2014; 5:273-87. [PMID: 25459983 PMCID: PMC4285407 DOI: 10.3390/jfb5040273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/29/2022] Open
Abstract
Greige cotton contains waxes and pectin on the outer surface of the fiber that are removed when bleached, but these components present potential wound dressing functionality. Cotton nonwovens blended with hydrophobic and hydrophilic fibers including viscose, polyester, and polypropylene were assessed for clotting activity with thromboelastography (TEG) and thrombin production. Clotting was evaluated based on TEG measurements: R (time to initiation of clot formation), K (time from end of R to a 20 mm clot), α (rate of clot formation according to the angle tangent to the curve as K is reached), and MA (clot strength). TEG values correlate to material surface polarity as measured with electrokinetic parameters (ζplateau, Δζ and swell ratio). The material surface polarity (ζplateau) varied from −22 to −61 mV. K values and thrombin concentrations were found to be inversely proportional to ζplateau with an increase in material hydrophobicity. An increase in the swell ratios of the materials correlated with decreased K values suggesting that clotting rates following fibrin formation increase with increasing material surface area due to swelling. Clot strength (MA) also increased with material hydrophobicity. Structure/function implications from the observed clotting physiology induced by the materials are discussed.
Collapse
Affiliation(s)
- J Vincent Edwards
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| | - Elena Graves
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| | - Alvin Bopp
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| | - Nicolette Prevost
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| | - Michael Santiago
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| | - Brian Condon
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA.
| |
Collapse
|
31
|
Ecotin-like ISP of L. major promastigotes fine-tunes macrophage phagocytosis by limiting the pericellular release of bradykinin from surface-bound kininogens: a survival strategy based on the silencing of proinflammatory G-protein coupled kinin B2 and B1 receptors. Mediators Inflamm 2014; 2014:143450. [PMID: 25294952 PMCID: PMC4177093 DOI: 10.1155/2014/143450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/17/2014] [Indexed: 01/22/2023] Open
Abstract
Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.
Collapse
|
32
|
Csiszar A, Kutay B, Wirth S, Schmidt U, Macho-Maschler S, Schreiber M, Alacakaptan M, Vogel GF, Aumayr K, Huber LA, Beug H. Interleukin-like epithelial-to-mesenchymal transition inducer activity is controlled by proteolytic processing and plasminogen-urokinase plasminogen activator receptor system-regulated secretion during breast cancer progression. Breast Cancer Res 2014; 16:433. [PMID: 25212966 PMCID: PMC4303039 DOI: 10.1186/s13058-014-0433-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 08/27/2014] [Indexed: 12/27/2022] Open
Abstract
Introduction Interleukin-like epithelial-to-mesenchymal transition inducer (ILEI) is an essential cytokine in tumor progression that is upregulated in several cancers, and its altered subcellular localization is a predictor of poor survival in human breast cancer. However, the regulation of ILEI activity and the molecular meaning of its altered localization remain elusive. Methods The influence of serum withdrawal, broad-specificity protease inhibitors, different serine proteases and plasminogen depletion on the size and amount of the secreted ILEI protein was investigated by Western blot analysis of EpRas cells. Proteases with ILEI-processing capacity were identified by carrying out an in vitro cleavage assay. Murine mammary tumor and metastasis models of EpC40 and 4T1 cells overexpressing different mutant forms of ILEI were used—extended with in vivo aprotinin treatment for the inhibition of ILEI-processing proteases—to test the in vivo relevance of proteolytic cleavage. Stable knockdown of urokinase plasminogen activator receptor (uPAR) in EpRas cells was performed to investigate the involvement of uPAR in ILEI secretion. The subcellular localization of the ILEI protein in tumor cell lines was analyzed by immunofluorescence. Immunohistochemistry for ILEI localization and uPAR expression was performed on two human breast cancer arrays, and ILEI and uPAR scores were correlated with the metastasis-free survival of patients. Results We demonstrate that secreted ILEI requires site-specific proteolytic maturation into its short form for its tumor-promoting function, which is executed by serine proteases, most efficiently by plasmin. Noncleaved ILEI is tethered to fibronectin-containing fibers of the extracellular matrix through a propeptide-dependent interaction. In addition to ILEI processing, plasmin rapidly increases ILEI secretion by mobilizing its intracellular protein pool in a uPAR-dependent manner. Elevated ILEI secretion correlates with an altered subcellular localization of the protein, most likely representing a shift into secretory vesicles. Moreover, altered subcellular ILEI localization strongly correlates with high tumor cell–associated uPAR protein expression, as well as with poor survival, in human breast cancer. Conclusions Our findings point out extracellular serine proteases, in particular plasmin, and uPAR as valuable therapeutic targets against ILEI-driven tumor progression and emphasize the prognostic relevance of ILEI localization and a combined ILEI-uPAR marker analysis in human breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0433-7) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Park JE, Park JW, Lee W, Lee JS. Pleiotropic effects of a vibrio extracellular protease on the activation of contact system. Biochem Biophys Res Commun 2014; 450:1099-103. [DOI: 10.1016/j.bbrc.2014.06.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 12/31/2022]
|
34
|
Siegerink B, Rosendaal FR, Algra A. Antigen levels of coagulation factor XII, coagulation factor XI and prekallikrein, and the risk of myocardial infarction and ischemic stroke in young women. J Thromb Haemost 2014; 12:606-13. [PMID: 24977287 DOI: 10.1111/jth.12531] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND High levels of activated protein–inhibitor complexes of the intrinsic coagulation proteins are associated with ischemic stroke (IS) but not with myocardial infarction (MI). This study was aimed at determining whether the antigen levels of coagulation factors(factor XII, FXII, and FXI and prekallikrein (PK)are associated with MI and IS, and whether this association is independent of levels of activated protein–inhibitor complexes. PATIENTS AND METHODS The RATIO study included young women (< 50 years) with MI (N = 205)and IS (N = 175), and 638 healthy controls. Antigen levels of FXII, FXI and PK were measured and expressed as percentages of of those in pooled normal plasmas. Odds ratios (ORs) and corresponding 99% confidence intervals (CIs) were calculated for high levels (i.e. ≥ 90th percentile of controls) as measures of rate ratios. RESULTS After adjustment for potential confounders, high levels of FXII antigen were not associated with MI risk or IS risk(OR(MI) 1.18, 99% CI 0.51–2.74; ORIS 1.03, 9% CI 0.41–2.55). High levels of FXI antigen were slightly associated with an increase in MI risk (OR(MI) 1.55, 9% CI 0.74–3.21), whereas there was a substantial association with IS risk (ORIS 2.65, 9% CI 1.27–5.56). PK antigen was slightly associated with MI risk but not with IS risk(ORMI 1.54, 9% CI 0.67–3.52; ORIS 0.90, 9% CI 0.35–2.33). All associations remained similar after adjustment for levels of protein–inhibitor complexes. CONCLUSION Increased levels of FXI antigen were associated with an increase in IS risk, whereas they showed only a marginal association with MI risk. FXII antigen and PK antigen levels were not substantially associated with MI risk and IS risk.
Collapse
|
35
|
de Maat S, Tersteeg C, Herczenik E, Maas C. Tracking down contact activation - from coagulationin vitroto inflammationin vivo. Int J Lab Hematol 2014; 36:374-81. [DOI: 10.1111/ijlh.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/28/2014] [Indexed: 02/07/2023]
Affiliation(s)
- S. de Maat
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. Tersteeg
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - E. Herczenik
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| | - C. Maas
- Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
36
|
Björkqvist J, Jämsä A, Renné T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost 2013; 110:399-407. [PMID: 23846131 DOI: 10.1160/th13-03-0258] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022]
Abstract
Plasma prekallikrein is the liver-derived precursor of the trypsin-like serine protease plasma kallikrein (PK) and circulates in plasma bound to high molecular weight kininogen. The zymogen is converted to PK by activated factor XII. PK drives multiple proteolytic reaction cascades in the cardiovascular system such as the intrinsic pathway of coagulation, the kallikrein-kinin system, the fibrinolytic system, the renin-angiotensin system and the alternative complement pathway. Here, we review the biochemistry and cell biology of PK and focus on recent in vivo studies that have established important functions of the protease in procoagulant and proinflammatory disease states. Targeting PK offers novel strategies not previously appreciated to interfere with thrombosis and vascular inflammation in a broad variety of diseases.
Collapse
Affiliation(s)
- J Björkqvist
- Thomas Renné, MD, PhD, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna (L1:00), SE-171 76 Stockholm, Sweden, Tel.: +46 8 517 73390, Fax: +46 310376, E-mail:
| | | | | |
Collapse
|
37
|
Feener EP, Zhou Q, Fickweiler W. Role of plasma kallikrein in diabetes and metabolism. Thromb Haemost 2013; 110:434-41. [PMID: 23676986 DOI: 10.1160/th13-02-0179] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/03/2013] [Indexed: 01/06/2023]
Abstract
Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism.
Collapse
Affiliation(s)
- E P Feener
- Edward P. Feener, PhD, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA, Tel.: +1 617 309 2599, Fax: +1 617 309 2637, E-mail:
| | | | | |
Collapse
|
38
|
García-Bailo B, Jamnik J, Da Costa LA, Borchers CH, Badawi A, El-Sohemy A. Plasma 25-hydroxyvitamin D, hormonal contraceptive use, and the plasma proteome in Caucasian, East Asian, and South Asian young adults. J Proteome Res 2013; 12:1797-807. [PMID: 23427916 DOI: 10.1021/pr4001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vitamin D affects gene expression, but its downstream effects on the proteome are unclear. Hormonal contraceptives (HC), which affect vitamin D metabolism and have widespread effects on the plasma proteome, may confound the association between vitamin D and the proteome. We determined whether HC use modified the association between 25-hydroxyvitamin D (25D) and a panel of 54 high-abundance plasma proteins. Cross-sectional analyses were conducted in healthy, nonsmoking female HC users (n = 216), female HC nonusers (n = 502), and men (n = 301) from Toronto, Canada. Plasma 25D was measured by HPLC-MS/MS, and proteins were measured by LC-multiple-reaction-monitoring (MRM)-MS. The 54 proteins clustered into four distinct proteomic profiles. A positive association was observed between Profile 1, containing positive acute phase proteins, and 25D. In female HC users, a J-shaped association existed between Profile 1 and 25D, but no associations existed in female HC nonusers and men. Twelve proteins were individually associated with 25D in female HC users, but only two were associated with 25D in female HC nonusers and no associations were observed in men. After accounting for hormone dose, only three proteins were associated with 25D. In summary, HC use is an important confounder of the association between circulating 25D and numerous plasma proteins.
Collapse
Affiliation(s)
- Bibiana García-Bailo
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto , Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
39
|
de Maat S, van Dooremalen S, de Groot PG, Maas C. A nanobody-based method for tracking factor XII activation in plasma. Thromb Haemost 2013; 110:458-68. [PMID: 23349032 DOI: 10.1160/th12-11-0792] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/15/2012] [Indexed: 11/05/2022]
Abstract
The physiological role of the plasma protein factor XII (FXII), as well as its involvement in human pathology, is poorly understood. While FXII is implicated in thrombotic pathology as a coagulation factor, it can contribute to inflammatory conditions without triggering coagulation. We recently generated nanobodies against the catalytic domain of activated FXII (FXIIa). Here, we describe two of these nanobodies, A10 and B7, both of which do not recognise FXII. Nanobody A10 recognises the catalytic domain of purified α-FXIIa (80 kDa), but not that of purified β-FXIIa (28 kDa), whereas nanobody B7 recognises both. This suggests minute differences in the catalytic domain between these isoforms of FXIIa. The detection of FXIIa by these nanobodies in plasma can become compromised through inactivation by serine protease inhibitors. This effect can be efficiently countered through the addition of the small-molecular protease inhibitor PPACK. Finally, we show that our nanobody-based assays in vitro distinguish various activation products of FXII that differ with the type of activator present: whereas procoagulant activators solely trigger the formation of a species that is captured by B7, proinflammatory activators first generate a species that is recognised by B7, which is later converted into a species that is recognised by A10. These findings suggest that a progressive proteolysis of FXIIa results in the generation a non-procoagulant form of FXIIa, whereas retention of intermediate forms triggers coagulation. Moreover, our findings indicate the development of nanobodies against activated enzymes offers improved opportunities to investigate their contribution to health and disease.
Collapse
Affiliation(s)
- S de Maat
- Dr. C. Maas, University Medical Center Utrecht, Department of Clinical Chemistry and Hematology, Room G.03.550, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands, Tel.: +31 88 755 6513, Fax: +31 88 755 5418, E-mail:
| | | | | | | |
Collapse
|