1
|
Feng W, Qiao J, Tan Y, Liu Q, Wang Q, Yang B, Yang S, Cui L. Interaction of antiphospholipid antibodies with endothelial cells in antiphospholipid syndrome. Front Immunol 2024; 15:1361519. [PMID: 39044818 PMCID: PMC11263079 DOI: 10.3389/fimmu.2024.1361519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease with arteriovenous thrombosis and recurrent miscarriages as the main clinical manifestations. Due to the complexity of its mechanisms and the diversity of its manifestations, its diagnosis and treatment remain challenging issues. Antiphospholipid antibodies (aPL) not only serve as crucial "biomarkers" in diagnosing APS but also act as the "culprits" of the disease. Endothelial cells (ECs), as one of the core target cells of aPL, bridge the gap between the molecular level of these antibodies and the tissue and organ level of pathological changes. A more in-depth exploration of the relationship between ECs and the pathogenesis of APS holds the potential for significant advancements in the precise diagnosis, classification, and therapy of APS. Many researchers have highlighted the vital involvement of ECs in APS and the underlying mechanisms governing their functionality. Through extensive in vitro and in vivo experiments, they have identified multiple aPL receptors on the EC membrane and various intracellular pathways. This article furnishes a comprehensive overview and summary of these receptors and signaling pathways, offering prospective targets for APS therapy.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| |
Collapse
|
2
|
Resende ABL, Monteiro GP, Ramos CC, Lopes GS, Broekman LA, De Souza JM. Integrating the autoimmune connective tissue diseases for the medical student: A classification proposal based on pathogenesis and clinical phenotype. Heliyon 2023; 9:e16935. [PMID: 37484370 PMCID: PMC10361038 DOI: 10.1016/j.heliyon.2023.e16935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
It is hard for medical students to recognize and understand the clinical presentation of systemic connective tissue diseases (SCTDs). In this study, we aimed to review the immune mechanisms of the main SCTDs and to propose a classification system focused on the student and based on each immune dysfunction's clinical phenotype. The search involved the MEDLINE database and included the terms "systemic lupus erythematosus," "antiphospholipid syndrome," "inflammatory myopathies," "rheumatoid arthritis," "Sjögren's syndrome" or "systemic sclerosis" and "pathogenesis," and "immunology" or "mechanism of disease." Systemic lupus erythematosus (SLE) is a prototypic immune-complex disease with a tendency toward vascular injury. Antiphospholipid syndrome (APS) is a diffuse immune-mediated thrombotic vasculopathy. In inflammatory myopathies (IMs), muscle inflammation leading to muscle weakness is the cardinal manifestation. Rheumatoid arthritis (RA) is a unique form of erosive and destructive polyarthritis. Sjögren's syndrome (SS) causes sicca symptoms due to infiltration of the exocrine glands. Disseminated fibrosis in systemic sclerosis (SSc) is caused by vascular injury with excessive fibroblast activation. After the review, we created a focus group involving all the authors to group the diseases according to their pathogenesis and clinical phenotype. Our group agreed that SCTDs can be divided in 3 groups based on the preferential clinical presentation and immune dysfunction: 1) vasculopathic features (SLE and APS), 2) tissue inflammation (IMs, RA, and SS), and 3) tissue fibrosis (SSc). In synthesis, we suggest that clustering SCTDs in groups based on clinical phenotype and presumptive immune dysfunction instead of ordering autoantibodies randomly can help students understand the diseases.
Collapse
|
3
|
Yun Z, Duan L, Liu X, Cai Q, Li C. An update on the biologics for the treatment of antiphospholipid syndrome. Front Immunol 2023; 14:1145145. [PMID: 37275894 PMCID: PMC10237350 DOI: 10.3389/fimmu.2023.1145145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombosis and pregnancy morbidity with the persistent presence of antiphospholipid antibodies (aPLs). Although anticoagulation is the primary treatment for APS, it fails in approximately 20-30% of obstetric APS cases and more than 30% of thrombotic APS cases. Therefore, there is a need for new, targeted treatments beyond anticoagulants. Biologics, such as rituximab and eculizumab, have been recommended for refractory catastrophic APS. This review focuses on the recent advancements in the pathogenesis of APS and explores the potential of targeted treatments, including eculizumab, rituximab, belimumab, daratumumab, obinutuzumab, and anti-TNF-α antibodies, for APS management.
Collapse
Affiliation(s)
- Zelin Yun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| | - Lizhi Duan
- Department of Rheumatology and Immunology, Gangkou Hospital of Hebei Port Group Company Limited, Qinhuangdao, Hebei, China
| | - Xiangjun Liu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| | - Qingmeng Cai
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| |
Collapse
|
4
|
Foret T, Dufrost V, Heymonet M, Risse J, Faure GC, Louis H, Lagrange J, Lacolley P, Devreese K, Gibot S, Regnault V, Zuily S, Wahl D. Circulating Endothelial Cells are Associated with Thromboembolic Events in Patients with Antiphospholipid Antibodies. Thromb Haemost 2023; 123:76-84. [PMID: 35977699 DOI: 10.1055/a-1926-0453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endothelial damage has been described in antiphospholipid antibody (aPL)-positive patients. However, it is uncertain whether circulating endothelial cells (CECs)-which are released when endothelial injury occurs-can be a marker of patients at high risk for thrombosis. METHODS Ninety-seven patients with aPL and/or systemic lupus erythematosus (SLE) were included. CECs were determined by an automated CellSearch system. We also assayed plasma levels of tissue factor-bearing extracellular vesicles (TF+/EVs) and soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) as markers of endothelial dysfunction/damage. RESULTS Patients' mean age was 46.1 ± 13.9 years, 77 were women. Thirty-seven had SLE and 75 patients were suffering from antiphospholipid syndrome. Thirty-seven percent of patients presented a medical history of arterial thrombosis and 46% a history of venous thromboembolism (VTE). Thirteen patients had increased levels of CECs (>20/mL), with a mean CEC level of 48.3 ± 21.3 per mL. In univariate analysis, patients with obesity or medical history of myocardial infarction (MI), VTE, or nephropathy had a significant increased CEC level. In multivariate analysis, obesity (odds ratio [OR] = 6.07, 95% confidence interval [CI]: 1.42-25.94), VTE (OR = 7.59 [95% CI: 1.38-41.66]), and MI (OR = 5.5 [95% CI: 1.1-26.6)] were independently and significantly associated with elevated CECs. We also identified significant correlations between CECs and other markers of endothelial dysfunction: sTREM-1 and TF+/EVs. CONCLUSION This study demonstrated that endothelial injury assessed by the levels of CECs was associated with thromboembolic events in patients with aPL and/or autoimmune diseases.
Collapse
Affiliation(s)
- Thomas Foret
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| | - Virginie Dufrost
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| | | | - Jessie Risse
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France.,CH de Sarreguemines, Sarreguemines, France
| | - Gilbert C Faure
- Laboratory of Immunology, CHRU-Nancy, Nancytomique, Pôle Laboratoire.,CRAN UMR CNRS 7039, Nancy, France
| | | | - Jeremy Lagrange
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Délégation à la Recherche Clinique et à l'Innovation, CHRU-Nancy, Nancy, France
| | - Patrick Lacolley
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Délégation à la Recherche Clinique et à l'Innovation, CHRU-Nancy, Nancy, France
| | - Katrien Devreese
- Department of Diagnostic Sciences, Coagulation Laboratory, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Veronique Regnault
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Délégation à la Recherche Clinique et à l'Innovation, CHRU-Nancy, Nancy, France
| | - Stéphane Zuily
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| | - Denis Wahl
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| |
Collapse
|
5
|
Moghbel M, Roth A, Baptista D, Miteva K, Burger F, Montecucco F, Vuilleumier N, Mach F, Brandt KJ. Epitope of antiphospholipid antibodies retrieved from peptide microarray based on R39-R43 of β2-glycoprotein I. Res Pract Thromb Haemost 2022; 6:e12828. [PMID: 36304483 PMCID: PMC9592562 DOI: 10.1002/rth2.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background Antiphospholipid antibody (aPL) syndrome (APS) is an autoimmune disease characterized by the presence of antiphospholipid antibodies and thromboembolic or pregnancy complications. Although cryptic epitope R39-R43 belonging to beta-2-glycoprotein 1 (β2GP1) has been identified as the main antigenic determinant for aPLs, we have recently demonstrated that the epitope is a motif determined by the polarity, rather than by the sequence or charge of amino acids. Objective In the present study, we wanted to identify the association of residues needed to obtain the highest aPL affinity. Methods Based on the epitope R39-R43 and our identified motif, we generated a printed peptide microarray of 676 different peptides. These peptides have been then screened for their ability to interact with the plasmas from 11 well-characterized APS patients and confirmed by surface plasma resonance assay. Results and Conclusions We identified a peptide that selectively bound immunoglobulin G (IgG) derived from APS patients with 100 times more affinity than β2GP1, Domain I, or epitope R39-R43. This peptide is able to inhibit the activity of IgG derived from APS patients in vitro. We have also generated a monoclonal IgG antibody against this peptide. Using both peptide and monoclonal antibody, we have been able to develop a fully standardized indirect colorimetric immunoassay with highly sensitivity. The identification of the optimized peptide offers a new standardized and accurate tool for diagnostics of APS. Furthermore, having increased affinity for aPL, this peptide could represent a useful tool as prevention strategy for APS and an alternative to the use of anticoagulants.
Collapse
Affiliation(s)
| | - Aline Roth
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Foundation for Medical ResearchUniversity of GenevaGenevaSwitzerland
| | - Daniela Baptista
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Foundation for Medical ResearchUniversity of GenevaGenevaSwitzerland
| | - Kapka Miteva
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Foundation for Medical ResearchUniversity of GenevaGenevaSwitzerland
| | - Fabienne Burger
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Foundation for Medical ResearchUniversity of GenevaGenevaSwitzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino GenoaItalian Cardiovascular NetworkGenoaItaly
- Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), First Clinic of Internal MedicineUniversity of GenoaGenoaItaly
| | - Nicolas Vuilleumier
- Department of Genetic Medicine, Laboratory and PathologyGeneva University HospitalsGenevaSwitzerland
- Division of Laboratory Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - François Mach
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Foundation for Medical ResearchUniversity of GenevaGenevaSwitzerland
| | - Karim J. Brandt
- Endotelix Diagnostics SàrlGenevaSwitzerland
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Foundation for Medical ResearchUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
6
|
VWF, Platelets and the Antiphospholipid Syndrome. Int J Mol Sci 2021; 22:ijms22084200. [PMID: 33919627 PMCID: PMC8074042 DOI: 10.3390/ijms22084200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
The antiphospholipid syndrome (APS) is characterized by thrombosis and/or pregnancy morbidity with the persistent presence of antiphospholipid antibodies (aPLs). Laboratory criteria for the classification of APS include the detection of lupus anticoagulant (LAC), anti-cardiolipin (aCL) antibodies and anti-β2glycoprotein I (aβ2GPI) antibodies. Clinical criteria for the classification of thrombotic APS include venous and arterial thrombosis, along with microvascular thrombosis. Several aPLs, including LAC, aβ2GPI and anti-phosphatidylserine/prothrombin antibodies (aPS/PT) have been associated with arterial thrombosis. The Von Willebrand Factor (VWF) plays an important role in arterial thrombosis by mediating platelet adhesion and aggregation. Studies have shown that aPLs antibodies present in APS patients are able to increase the risk of arterial thrombosis by upregulating the plasma levels of active VWF and by promoting platelet activation. Inflammatory reactions induced by APS may also provide a suitable condition for arterial thrombosis, mostly ischemic stroke and myocardial infarction. The presence of other cardiovascular risk factors can enhance the effect of aPLs and increase the risk for thrombosis even more. These factors should therefore be taken into account when investigating APS-related arterial thrombosis. Nevertheless, the exact mechanism by which aPLs can cause thrombosis remains to be elucidated.
Collapse
|
7
|
Zhang G, Cai Q, Zhou H, He C, Chen Y, Zhang P, Wang T, Xu L, Yan J. OxLDL/β2GPI/anti‑β2GPI Ab complex induces inflammatory activation via the TLR4/NF‑κB pathway in HUVECs. Mol Med Rep 2020; 23:148. [PMID: 33355374 PMCID: PMC7789093 DOI: 10.3892/mmr.2020.11787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with antiphospholipid syndrome have been identified to have higher incidence rates of atherosclerosis (AS) due to the elevated levels of anti-β2-glycoprotein I (β2GPI) antibody (Ab). Our previous studies revealed that the anti-β2GPI Ab formed a stable oxidized low-density lipoprotein (oxLDL)/β2GPI/anti-β2GPI Ab complex, which accelerated AS development by promoting the accumulation of lipids in macrophages and vascular smooth muscle cell. However, the effects of the complex on endothelial cells, which drive the initiation and development of AS, remain unknown. Thus, the present study aimed to determine the proinflammatory roles of the oxLDL/β2GPI/anti-β2GPI Ab complex in human umbilical vein endothelial cells (HUVECs) in an attempt to determine the underlying mechanism. Reverse transcription-quantitative PCR, enzymy-linked immunosorbent assay, western blotting and immunofluorescence staining were performed to detect the expressions of inflammation related factors and adhesion molecules. Monocyte-binding assay was used to investigate the effects of oxLDL/β2GPI/anti-β2GPI Ab complex on monocyte adhesion to endothelial cells. The results demonstrated that the oxLDL/β2GPI/anti-β2GPI Ab complex upregulated the expression of Toll-like receptor (TLR)4 and the levels of NF-κB phosphorylation in HUVECs, and subsequently enhanced the expression levels of inflammatory cytokines, including TNF-α, IL-1β and IL-6, as well as those of adhesion molecules, such as intercellular adhesion molecule 1 and vascular adhesion molecule 1. In addition, the complex facilitated the recruitment of monocytes by promoting the secretion of monocyte chemotactic protein 1 in HUVECs. Notably, the described effects of the oxLDL/β2GPI/anti-β2GPI Ab complex in HUVECs were abolished by either TLR4 or NF-κB blockade. In conclusion, these findings suggested that the oxLDL/β2GPI/anti-β2GPI Ab complex may induce a hyper-inflammatory state in endothelial cells by promoting the secretion of proinflammatory cytokines and monocyte recruitment, which was discovered to be largely dependent on the TLR4/NK-κB signaling pathway.
Collapse
Affiliation(s)
- Guiting Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qianqian Cai
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yudan Chen
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Peng Zhang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Wang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
8
|
Abstract
Renal microvascular lesions, common in lupus nephritis (LN), are associated with long-term poor outcomes. There are mainly five pathological types of renal microvascular lesions in LN: (1) vascular immune complex deposits (ICD), (2) arteriosclerosis (AS), (3) thrombotic microangiopathy (TMA), (4) non-inflammatory necrotizing vasculopathy (NNV), and (5) true renal vasculitis (TRV). The pathogenesis of renal microvascular lesions in LN remains to be elucidated. The activation and dysfunction of endothelial cells, in addition to the contribution of immune system dysfunction, especially the immune complex-induced vascular inflammation and antiphospholipid antibody-associated thrombotic events, are key mechanisms in the development of vascular lesions in LN that need to be further investigated. Alteration of the microvascular environment produces an acute immunological response that recruits immune cells, such as T cells, monocytes, and macrophages, which induces platelet aggregation with microthrombus formation. There is also increased cytotoxicity caused by cytokines produced by immune cells in the kidney. Identifying the mechanism underlying the pathogenesis of renal microvascular lesions in LN might provide potential targets for the development of novel therapies.
Collapse
Affiliation(s)
- Ying Ding
- Department of Nephrology, Peking University International Hospital, Beijing, PR. China.,Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, PR. China.,Key laboratory of Renal Disease, Ministry of Health of China, Beijing, PR. China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR. China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, PR. China.,Key laboratory of Renal Disease, Ministry of Health of China, Beijing, PR. China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR. China
| | - Zhen Qu
- Department of Nephrology, Peking University International Hospital, Beijing, PR. China
| | - Feng Yu
- Department of Nephrology, Peking University International Hospital, Beijing, PR. China.,Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, PR. China.,Key laboratory of Renal Disease, Ministry of Health of China, Beijing, PR. China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR. China
| |
Collapse
|
9
|
Cifù A, Domenis R, Pistis C, Curcio F, Fabris M. Anti-β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies exert similar pro-thrombotic effects in peripheral blood monocytes and endothelial cells. AUTOIMMUNITY HIGHLIGHTS 2019; 10:3. [PMID: 32257059 PMCID: PMC6909027 DOI: 10.1186/s13317-019-0113-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/25/2019] [Indexed: 11/13/2022]
Abstract
Purpose The introduction of the anti-phosphatidylserine/prothrombin (aPS/PT) antibodies among the routinely investigated anti-phospholipid (aPL) antibodies led to an improvement in anti-phospholipid syndrome (APS) laboratory diagnostic performance; however, their pathogenic mechanism is still substantially undefined. To support clinical data and future inclusion as possible new criteria antibodies, we designed a head-to-head study to directly compare the procoagulant effects sustained in vitro by aPS/PT to those sustained by anti-β2-glycoprotein I (aβ2GpI) domain 1-specific antibodies. Methods Blood donors-derived monocytes and endothelial cells (HUVEC) were stimulated with lipopolysaccharides (LPS) alone or in combination with the IgG fractions isolated from the serum of six APS patients, positive only for aβ2GpI or for aPS/PT antibodies. As control, cells were incubated with LPS plus the IgG isolated from blood donors. Tissue factor (TF) mRNA expression was measured after four hours incubation by real-time PCR. Nitric oxide (NO) levels were measured in cells supernatant after 16 h incubation by colorimetric assay. Results aPS/PT and aβ2GpI IgG antibodies fractions showed comparable ability to enhance LPS-induced TF mRNA expression, either in monocytes and in HUVEC. Compared to LPS alone, we found that NO levels are strongly overproduced in HUVEC treated with LPS plus aβ2GpI and aPS/PT IgG fractions. Conclusions Our data support the significant and independent role of aPS/PT in the pathogenesis of the thrombotic events in APS patients, possibly adding new light to the therapeutic management of cases characterized by the sole presence of aPS/PT IgG antibodies. Electronic supplementary material The online version of this article (10.1186/s13317-019-0113-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Cifù
- 1Deparment of Medical Area (DAME), University of Udine, Udine, Italy
| | - R Domenis
- 1Deparment of Medical Area (DAME), University of Udine, Udine, Italy
| | - C Pistis
- 2Department of Laboratory Medicine, Institute of Clinical Pathology, University Hospital of Udine, Via Chiusaforte, Ingresso H, 33100 Udine, Italy
| | - F Curcio
- 1Deparment of Medical Area (DAME), University of Udine, Udine, Italy
| | - M Fabris
- 2Department of Laboratory Medicine, Institute of Clinical Pathology, University Hospital of Udine, Via Chiusaforte, Ingresso H, 33100 Udine, Italy
| |
Collapse
|
10
|
Wang M, Kong X, Xie Y, He C, Wang T, Zhou H. Role of TLR‑4 in anti‑β2‑glycoprotein I‑induced activation of peritoneal macrophages and vascular endothelial cells in mice. Mol Med Rep 2019; 19:4353-4363. [PMID: 30942412 PMCID: PMC6472140 DOI: 10.3892/mmr.2019.10084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/21/2019] [Indexed: 11/06/2022] Open
Abstract
Anti‑phospholipid syndrome (APS) is a systematic autoimmune disease that is associated with presence of antiphospholipid antibodies (aPL), recurrent thrombosis, and fetal morbidity in pregnancy. Toll‑like receptor‑4 (TLR‑4), a member of TLR family, is known to have a fundamental role in pathogen recognition and activation of innate immunity. The β2‑glycoprotein I (β2GPI), a protein circulating in the blood at a high concentration, is able of scavenging lipopolysaccharide (LPS) and clear unwanted anionic cellular remnants, such as microparticles, from the circulation. Our previous study demonstrated that TLR‑4 and its signaling pathways contribute to the upregulation of pro‑coagulant factors and pro‑inflammatory cytokines in monocytes induced by anti‑β2GPI in vitro. The present study aimed to define the roles of TLR‑4 in vivo. C3H/HeN mice (TLR‑4 intact) and C3H/HeJ mice (TLR‑4 defective) were stimulated with an intraperitoneal injection with anti‑β2GPI‑immunoglobulin G(IgG), then peritoneal macrophages and vascular endothelial cells (VECs) were extracted from treated mice, and analyses were conducted on the expression profiles of pro‑inflammatory cytokines and adhesion molecules. The results demonstrated that the expression of pro‑inflammatory cytokines, including tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6, in the peritoneal macrophages, and adhesion molecules, including intercellular cell adhesion molecule‑1 (ICAM‑1), vascular cell adhesion molecule‑1 (VCAM‑1) and E‑selectin, in VECs of C3H/HeN mice (TLR‑4 intact) were significantly higher than those of C3H/HeJ mice (TLR‑4 defective). The phosphorylation levels of p38 mitogen‑activated protein kinase (MAPK) and nuclear factor‑κB (NF‑κB) p65 in peritoneal macrophages and VECs from C3H/HeN mice stimulated with anti‑β2GPI‑IgG were significantly increased compared with those from C3H/HeJ mice (TLR‑4 defective). The isotype control antibody (NR‑IgG) had no such effects on peritoneal macrophages and VECs. Furthermore, the inhibitors of TLR‑4, p38 MAPK and NF‑κB may significantly reduce the anti‑β2GPI‑IgG‑induced TNF‑α, IL‑1β and IL‑6 mRNAs expression in the peritoneal macrophages from TLR‑4 intact mice. The results indicated that a TLR‑4 signal transduction pathway is involved in anti‑β2GPI‑IgG‑induced activation of peritoneal macrophages and VECs. This study has provided a basis for subsequent investigations to elucidate the pathological mechanisms underlying anti‑phospholipid syndrome.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Internal Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiangmin Kong
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yachao Xie
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Wang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong Zhou
- Department of Internal Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
11
|
Yang X, Zhang C, Chen G, Sun C, Li J. Antibodies: The major participants in maternal-fetal interaction. J Obstet Gynaecol Res 2018; 45:39-46. [PMID: 30338894 DOI: 10.1111/jog.13839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study is to improve our understanding of the mechanisms involved in maternal-fetal immune tolerance. We searched the related literatures and overviewed the major antibodies associated with pregnancy and described in details their possible roles in mediating maternal-fetal interactions. Antibodies classified into different types based on their functional or structural characteristics were summarized, including immunoglobulin G, blocking antibody, nonprecipitating asymmetric antibody, antiphospholipid antibody, antitrophoblast antibody and antipaternal antibody. The presence and levels of various circulating antibodies in pregnancy may play a crucial role in the occurrence, development and termination of pregnancy.
Collapse
Affiliation(s)
- Xin Yang
- Department of Clinical Lab, Yantai Yuhuangding Hospital, Yantai, China
| | - Caiji Zhang
- Department of Clinical Lab, Yantai Yuhuangding Hospital, Yantai, China
| | - Guozhen Chen
- Department of Clinical Lab, Yantai Yuhuangding Hospital, Yantai, China
| | - Chengming Sun
- Department of Clinical Lab, Yantai Yuhuangding Hospital, Yantai, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, China
| |
Collapse
|
12
|
Renal involvement in antiphospholipid syndrome. Rheumatol Int 2018; 38:1777-1789. [PMID: 29730854 DOI: 10.1007/s00296-018-4040-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
This is a review of scientific publications on renal involvement in antiphospholipid syndrome (APS), with focus on clinical and histopathological findings and treatment. A search for English-language articles on renal involvement in APS covering the period 1980-2017 was conducted in Medline/PubMed and Scopus databases using the MeSH terms "antiphospholipid syndrome", "antiphospholipid antibodies", "glomerulonephritis" and "thrombotic microangiopathy" (TMA). APS nephropathy is primarily the result of thromboses in renal arteries or veins, intraparenchymatous arteries and glomerular capillaries. On histology, APS nephropathy is characterized by TMA, but chronic vaso-occlusive lesions are also commonly observed (fibrous intimal hyperplasia, focal cortical atrophy, fibrous occlusions of arteries). Anticardiolipin and lupus anticoagulant are the most prevalent antibodies in patients with APS nephropathy. The spectrum of renal manifestations includes renal vein thrombosis, renal artery thrombosis/stenosis, TMA, increased allograft vascular thrombosis and malignant hypertension. Anticoagulation is the standard treatment of thrombotic events. In systemic lupus erythematosus (SLE) patients with antiphospholipid antibodies (aPL), kidney failure due to SLE nephritis (immune-complex disease) should be clearly distinguished from kidney failure due to APS-related TMA. In such cases, renal biopsy is mandatory. SLE nephritis requires immunosuppressive therapy, whereas APS nephropathy is usually treated with anticoagulants. Recently, eculizumab and sirolimus have been proposed as a rescue therapy. Based on our review, APS nephropathy appears to be a distinct clinical condition. TMA is a characteristic histopathological finding in APS and is strongly associated with the presence of aPL. This has important therapeutic implications and allows distinguishing APS nephropathy from lupus nephritis.
Collapse
|
13
|
Manukyan D, Müller-Calleja N, Lackner K. Pathophysiological insights into the antiphospholipid syndrome. Hamostaseologie 2017; 37:202-207. [DOI: 10.5482/hamo-16-07-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 11/05/2022] Open
Abstract
SummaryThe antiphospholipid syndrome (APS) is characterized by venous and/or arterial thrombosis and severe pregnancy morbidity in presence of antiphospholipid antibodies (aPL). While there is compelling evidence that aPL cause the clinical manifestations of APS, the underlying mechanisms are still a matter of scientific debate. This is mainly related to the broad heterogeneity of aPL. There are three major types of aPL: The first one binds to (anionic) phospholipids, e.g. cardiolipin, in absence of other factors (cofactor independent aPL). The second type binds to phospholipids only in presence of protein cofactors, e.g. ß2-glycoprotein I (ß2GPI) (cofactor dependent aPL). The third type binds to cofactor proteins directly without need for phospholipids. It is widely believed that cofactor independent aPL (type 1) are associated with infections and, more importantly, non-pathogenic, while pathogenic aPL belong to the second and in particular to the third type. This view, in particular with regard to type 1 aPL, has not been undisputed and novel research data have shown that it is in fact untenable. We summarize the available data on the pathogenetic role of aPL and the implications for diagnosis of APS and future research.
Collapse
|
14
|
de Moerloose P, Fickentscher C, Boehlen F, Tiercy JM, Kruithof EKO, Brandt KJ. Patient-derived anti-β2GP1 antibodies recognize a peptide motif pattern and not a specific sequence of residues. Haematologica 2017; 102:1324-1332. [PMID: 28550190 PMCID: PMC5541867 DOI: 10.3324/haematol.2017.170381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Antiphospholipid antibody syndrome is an autoimmune disease characterized by the presence of so-called antiphospholipid antibodies and clinical manifestations such as recurrent thromboembolic or pregnancy complications. Although the main antigenic determinant for antiphospholipid antibodies has been identified as the β-2-glycoprotein 1 (β2GP1), the precise epitope recognized by antiphospholipid antibodies still remains largely unknown. In the study herein, we wanted to identify a sequence in domain I of β2GP1 able to induce the proliferation of CD4+ T cells isolated from antiphospholipid antibody syndrome patients, but not from healthy donors, and to interact with antiphospholipid antibodies. We have characterized a sequence in domain I of β2GP1 that triggers CD4+ T-cell proliferation. A comparison of this sequence with the previously reported binding of antiphospholipid antibodies to discontinuous epitope R39-R43 reveals the presence of an indeterminate motif in β2GP1, in which the polarity determines the characteristics and specificity of antiphospholipid antibodies-interacting motifs. Using point mutations, we characterized the main antiphospholipid antibodies-interacting motif as ϕϕϕζζFxC, but also established ϕϕϕζζFxϕ-related motifs as potential antiphospholipid antibodies epitopes, in which ϕ represents nonpolar residues and ζ polar residues, with charges of the residues not being involved. Of specific importance, these different motifs are present at least once in all antiphospholipid antibodies-related receptors described so far. We have further demonstrated, in vitro, that peptides and domains of β2GP1 containing these motifs were able to interact with antiphospholipid antibodies and inhibit their monocyte activating activity. These results established that the antiphospholipid antibodies-interacting motifs are determined by the polarity, but not by the sequence or charge, of amino acids. These data could also contribute to the future development of more sensitive and specific diagnostic tools for antiphospholipid antibody syndrome determination and potential peptide- or β2GP1 domain-based clinical therapies.
Collapse
Affiliation(s)
- Philippe de Moerloose
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Switzerland
| | - Céline Fickentscher
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Switzerland
| | - Françoise Boehlen
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Switzerland
| | - Jean-Marie Tiercy
- National Reference Laboratory for Histocompatibility, Transplantation Immunology Unit, Department of Genetic and Laboratory Medicine, University Hospital of Geneva and Faculty of Medicine, Switzerland
| | - Egbert K O Kruithof
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Switzerland
| | - Karim J Brandt
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Switzerland
| |
Collapse
|
15
|
Immunity and early atherosclerosis in the course of systemic lupus erythematosus, mixed connective tissue disease and antiphospholipid syndrome. Reumatologia 2016; 54:187-195. [PMID: 27826173 PMCID: PMC5090027 DOI: 10.5114/reum.2016.62473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries associated with various risk factors that promote lipid abnormalities, development and progression of atherosclerotic lesions, plaque rupture, and vascular thrombosis. Atherosclerosis is accelerated in autoimmune diseases. Non-invasive investigations showed increased intima-media thickness (IMT), carotid plaque, and coronary artery calcifications in patients with antiphospholipid syndrome, systemic lupus erythematosus and mixed connective tissue disease compared to controls. The balance between the proinflammatory and anti-inflammatory cytokines allows the immune equilibrium to be maintained. In autoimmune diseases the prevalence of proinflammatory factors leads to premature atherosclerosis. This review presents complementary knowledge on innate and adaptive immunity, cytokines and the role of inflammasomes in progression of early atherosclerosis.
Collapse
|
16
|
The Role of TLR4 on B Cell Activation and Anti- β2GPI Antibody Production in the Antiphospholipid Syndrome. J Immunol Res 2016; 2016:1719720. [PMID: 27868072 PMCID: PMC5102736 DOI: 10.1155/2016/1719720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023] Open
Abstract
High titer of anti-β2-glycoprotein I antibodies (anti-β2GPI Ab) plays a pathogenic role in antiphospholipid syndrome (APS). Numerous studies have focused on the pathological mechanism in APS; however, little attention is paid to the immune mechanism of production of anti-β2GPI antibodies in APS. Our previous study demonstrated that Toll-like receptor 4 (TLR4) plays a vital role in the maturation of bone marrow-derived dendritic cells (BMDCs) from the mice immunized with human β2-glycoprotein I (β2GPI). TLR4 is required for the activation of B cells and the production of autoantibody in mice treated with β2GPI. However, TLR4 provides a third signal for B cell activation and then promotes B cells better receiving signals from both B cell antigen receptor (BCR) and CD40, thus promoting B cell activation, surface molecules expression, anti-β2GPI Ab production, and cytokines secretion and making B cell functioning like an antigen presenting cell (APC). At the same time, TLR4 also promotes B cells producing antibodies by upregulating the expression of B-cell activating factor (BAFF). In this paper, we aim to review the functions of TLR4 in B cell immune response and antibody production in autoimmune disease APS and try to find a new way for the prevention and treatment of APS.
Collapse
|
17
|
TNF-alpha and annexin A2: inflammation in thrombotic primary antiphospholipid syndrome. Rheumatol Int 2016; 36:1649-1656. [PMID: 27704162 DOI: 10.1007/s00296-016-3569-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
Antiphospholipid syndrome (APS) is characterized by thromboses and/or pregnancy losses. Laboratory criterion for the diagnosis of APS is the presence of antiphospholipid antibodies (anticardiolipin, anti-beta2-glycoprotein I (aβ2gpI) and lupus anticoagulant). On the one hand, the latest classification criteria for the diagnosis of APS emphasized that thrombotic manifestations of the syndrome should be without any signs of an inflammatory process, while on the other hand, some recent reports have suggested that APS is a "pro-inflammatory state." This article is focused on the importance of TNF-alpha and annexin A2 (anxA2) for patients with vascular (thrombotic) manifestations of the primary APS. The classic antithrombotic and antiplatelet therapy does not protect APS patients from the development of recurrent thrombosis. Therefore, an urgent need for the introduction of new therapeutic approaches in the treatment of APS patients is obvious. This review provides a rationale for the necessity for the use of immunomodulatory medications that could interfere with β2gpI binding to its receptor(s), such as anxA2, and/or inhibit TNF-alpha activity.
Collapse
|
18
|
Bienaimé F, Legendre C, Terzi F, Canaud G. Antiphospholipid syndrome and kidney disease. Kidney Int 2016; 91:34-44. [PMID: 27555120 DOI: 10.1016/j.kint.2016.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
Abstract
The antiphospholipid syndrome is a common autoimmune disease caused by pathogenic antiphospholipid antibodies, leading to recurrent thrombosis and/or obstetrical complications. Importantly for nephrologists, antiphospholipid antibodies are associated with various renal manifestations including large renal vessel thrombosis, renal artery stenosis, and a constellation of intrarenal lesions that has been termed antiphospholipid nephropathy. This last condition associates various degrees of acute thrombotic microangiopathy, proliferative and fibrotic lesions of the intrarenal vessels, and ischemic modifications of the renal parenchyma. The course of the disease can range from indolent nephropathy to devastating acute renal failure. The pejorative impact of antiphospholipid antibody-related renal complication is well established in the context of systemic lupus erythematous or after renal transplantation. In contrast, the exact significance of isolated antiphospholipid nephropathy remains uncertain. The evidence to guide management of the renal complications of antiphospholipid syndrome is limited. However, the recent recognition of the heterogeneous molecular mechanisms underlying the progression of intrarenal vascular lesions in antiphospholipid syndrome have opened promising tracks for patient monitoring and targeted therapeutic intervention.
Collapse
Affiliation(s)
- Frank Bienaimé
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; Service d'Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France
| | - Christophe Legendre
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France; Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Fabiola Terzi
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France
| | - Guillaume Canaud
- Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, Paris, France; Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
19
|
Lackner KJ, Müller-Calleja N. Pathogenesis of the antiphospholipid syndrome revisited: time to challenge the dogma. J Thromb Haemost 2016; 14:1117-20. [PMID: 26998919 DOI: 10.1111/jth.13320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/10/2016] [Indexed: 01/27/2023]
Abstract
For more than a decade the antiphospholipid syndrome (APS) has been reported to be caused mainly by antiphospholipid antibodies (aPL), which are not directed against phospholipids but against a complex of phospholipids and phospholipid binding proteins, so called cofactors (e.g. β2-glycoprotein I [β2GPI]). In fact, many researchers propose that the only relevant antigens in the APS are the cofactors themselves, with β2GPI being the most important. Antibodies that bind to phospholipids in a cofactor-independent manner are considered insignificant for the pathogenesis of the APS. We review the evidence for this current pathophysiologic concept and argue that it has never been proven and is now clearly no longer tenable. First, there is undisputable evidence that cofactor-independent aPL are pathogenic and present in the blood of APS patients. Second, available epidemiologic and clinical studies do not support a dominant pathogenic role for anti-β2GPI.
Collapse
Affiliation(s)
- K J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
| | - N Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
| |
Collapse
|
20
|
The clinical relevance of the IgM isotype of antiphospholipid antibodies in the vascular antiphospholipid syndrome. Thromb Res 2015; 136:883-6. [PMID: 26410418 DOI: 10.1016/j.thromres.2015.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Because it has been suggested that the IgM isotype of antiphospholipid (aPL) antibodies should no longer be included in the laboratory criteria for antiphospholipid syndrome (APS) classification, we assess the clinical relevance of IgM isotype of aPL in a cohort of patients with vascular APS. PATIENTS/METHODS Mean age, sex, the presence of autoimmune diseases other than systemic lupus erythematosus, risk factors for thrombosis, the type/s and site/s of thromboembolic events, the levels of C3 and C4, and autoantibody profile were evaluated in a large cohort of persistently aPL positive patients fulfilling the Sydney criteria for APS. Patients with isolated IgM isotype were compared for each variable with those with any other aPL antibody combination. RESULTS One hundred six patients were assessed; of these 55 (51.9%) had venous thromboembolism, 48 (45.3%) arterial thrombosis, and 3 (2.8%) small vessel thrombosis. Positivity to only IgM aPL made possible to classify 13 patients (12.3%) as vascular APS. In all cases the presence of IgM aPL was at medium-high titer, confirmed, and found to be stable in the time. There were four patients with retinal thrombosis (3.8%) and the prevalence of this event was significant in the isolated IgM isotype positive patients (p=0.005). CONCLUSIONS Data from this investigation give clinical value to the IgM isotype of aPL and suggest to consider aCL and anti-β2GPI of IgM class as valid laboratory criteria for APS classification, especially when they are associated and stable overtime.
Collapse
|
21
|
van den Hoogen LL, van Roon JAG, Radstake TRDJ, Fritsch-Stork RDE, Derksen RHWM. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev 2015; 15:50-60. [PMID: 26318678 DOI: 10.1016/j.autrev.2015.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
The antiphospholipid syndrome (APS) is a systemic autoimmune disease that is characterized serologically by the presence of antiphospholipid antibodies (aPL) and clinically by vascular thrombosis and obstetric complications. The protein β2 glycoprotein I (β2GPI) is identified as the most important autoantigen in this syndrome. Activation of endothelial cells, thrombocytes and placental tissue by anti-β2GPI antibodies relates to the clinical manifestations of APS. This review describes genetic and environmental factors in relation to APS and summarizes the current knowledge on abnormalities in components of both the innate and adaptive immune system in APS. The role of dendritic cells, T-cells, B-cells, monocytes, neutrophils and NK-cells as well as the complement system in APS are discussed. Several gaps in our knowledge on the pathophysiology of APS are identified and a plea is made for future extensive immune cell profiling by a systems medicine approach in order to better unravel the pathogenesis of APS, to gain more insight in the role of the immune system in APS as well as having the potential to reveal biomarkers or novel therapeutic targets.
Collapse
Affiliation(s)
- Lucas L van den Hoogen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Joël A G van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ronald H W M Derksen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
22
|
Sánchez Guiu IM, Martínez-Martinez I, Martínez C, Navarro-Fernandez J, García-Candel F, Ferrer-Marín F, Vicente V, Watson SP, Andrews RK, Gardiner EE, Lozano ML, Rivera J. An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets. Thromb Haemost 2015; 114:313-24. [PMID: 25994029 DOI: 10.1160/th14-11-0945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/15/2015] [Indexed: 12/12/2022]
Abstract
Platelet cold agglutinins (PCA) cause pseudothrombocytopenia, spurious thrombocytopenia due to ex vivo platelet clumping, complicating clinical diagnosis, but mechanisms and consequences of PCA are not well defined. Here, we characterised an atypical immunoglobulin (Ig)M PCA in a 37-year-old woman with lifelong bleeding and chronic moderate thrombocytopenia, that induces activation and aggregation of autologous or allogeneic platelets via interaction with platelet glycoprotein (GP)VI. Patient temperature-dependent pseudothrombocytopenia was EDTA-independent, but was prevented by integrin αIIbβ3 blockade. Unstimulated patient platelets revealed elevated levels of bound IgM, increased expression of activation markers (P-selectin and CD63), low GPVI levels and abnormally high thromboxane (TX)A2 production. Patient serum induced temperature- and αIIbβ3-dependent decrease of platelet count in allogeneic donor citrated platelet-rich plasma (PRP), but not in PRP from Glanzmann's thrombasthenia or afibrinogenaemia patients. In allogeneic platelets, patient plasma induced shape change, P-selectin and CD63 expression, (14)C-serotonin release, and TXA2 production. Activation was not inhibited by aspirin, cangrelor or blocking anti-Fc receptor (FcγRIIA) antibody, but was abrogated by inhibitors of Src and Syk, and by a soluble GPVI-Fc fusion protein. GPVI-deficient platelets were not activated by patient plasma. These data provide the first evidence for an IgM PCA causing platelet activation/aggregation via GPVI. The PCA activity persisted over a five-year follow-up period, supporting a causative role in patient chronic thrombocytopenia and bleeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - M L Lozano
- María Luisa Lozano, MD, PhD, Centro Regional de Hemodonación, C/ Ronda de Garay s/n, Murcia, 30003, Spain, Tel.: +34 968341990, Fax: +34 96826191, E-mail:
| | | |
Collapse
|
23
|
Morales JM, Martinez-Flores JA, Serrano M, Castro MJ, Alfaro FJ, García F, Martínez MA, Andrés A, González E, Praga M, Paz-Artal E, Serrano A. Association of early kidney allograft failure with preformed IgA antibodies to β2-glycoprotein I. J Am Soc Nephrol 2014; 26:735-45. [PMID: 25071084 DOI: 10.1681/asn.2014030228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the current immunosuppressive therapy era, vessel thrombosis is the most common cause of early graft loss after renal transplantation. The prevalence of IgA anti-β2-glycoprotein I antibodies (IgA-aB2GPI-ab) in patients on dialysis is elevated (>30%), and these antibodies correlate with mortality and cardiovascular morbidity. To evaluate the effect of IgA-aB2GPI-ab in patients with transplants, we followed all patients transplanted from 2000 to 2002 in the Hospital 12 de Octubre prospectively for 10 years. Presence of IgA-aB2GPI-ab in pretransplant serum was examined retrospectively. Of 269 patients, 89 patients were positive for IgA-aB2GPI-ab (33%; group 1), and the remaining patients were negative (67%; group 2). Graft loss at 6 months post-transplant was significantly higher in group 1 (10 of 89 versus 3 of 180 patients in group 2; P=0.002). The most frequent cause of graft loss was thrombosis of the vessels, which was observed only in group 1 (8 of 10 versus 0 of 3 patients in group 2; P=0.04). Multivariate analysis showed that the presence of IgA-aB2GPI-ab was an independent risk factor for early graft loss (P=0.04) and delayed graft function (P=0.04). There were no significant differences regarding patient survival between the two groups. Graft survival was similar in both groups after 6 months. In conclusion, patients with pretransplant IgA-aB2GPI-ab have a high risk of early graft loss caused by thrombosis and a high risk of delayed graft function. Therefore, pretransplant IgA-aB2GPI-ab may have a detrimental effect on early clinical outcomes after renal transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miguel Angel Martínez
- Pathology, Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | - Estela Paz-Artal
- Immunology, and Immunology Section, Universidad San Pablo-CEU, Madrid, Spain; and Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Antonio Serrano
- Immunology, and Immunology Section, Universidad San Pablo-CEU, Madrid, Spain; and
| |
Collapse
|
24
|
Marchetti T, Ruffatti A, Wuillemin C, de Moerloose P, Cohen M. Hydroxychloroquine restores trophoblast fusion affected by antiphospholipid antibodies. J Thromb Haemost 2014; 12:910-20. [PMID: 24656088 DOI: 10.1111/jth.12570] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/13/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Obstetric antiphospholipid syndrome (APS) is defined by pregnancy complications associated with antiphospholipid antibodies (aPL). The mechanisms of the pathogenic effects of aPL in pregnancy are poorly understood. Toll-like receptors (TLR) have been implicated previously in APS. OBJECTIVES The aims of our study were (1) to determine aPL effects on trophoblastic cell fusion and differentiation, (2) to identify which TLR is involved in this process, and (3) to evaluate the efficacy of hydroxychloroquine (HCQ) to counteract the effects of aPL. METHODS BeWo cells are a model for trophoblast fusion and differentiation. Fusion index was assessed by immunocytochemical examination, and biochemical differentiation by using ELISA-measured β-human choronic gonadotropin hormone (β-hCG) secretion. We used three types of aPL to study their effect on cell fusion and differentiation: aPL derived from obstetric APS patients and affinity purified and polyclonal rabbit anti-β2-glycoprotein-1 (anti-β2GP1) antibodies. Experiments on fusion were confirmed using primary cytotrophoblastic cells. RESULTS All of the types of aPL used decreased the fusion index in BeWo and primary trophoblastic cells (64%, 52%, and 41% for BeWo cells and 67% and 62% for primary cells, respectively), and anti-β2GP1 antibodies decreased hCG secretion in BeWo cells (41%). To block TLR4 antibodies or to abolish TLR4 cell surface expression restored fusion index in both cell types and β-human choronic gonadotropin hormone excretion in BeWo cells. HCQ treatment induced the same effect and decreased TLR4 mRNA (40% and 35%, respectively) and protein expressions (62% and 42%, respectively) in BeWo cells. CONCLUSION Anti-β2GP1 antibodies decrease trophoblastic differentiation via TLR4. This effect is restored by HCQ, suggesting its therapeutic interest in APS pregnancies.
Collapse
Affiliation(s)
- T Marchetti
- Laboratory of Hormonology, Maternity, Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland; Angiology and Haemostasis Division, Geneva University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Gris JC. The hidden activism of the misnamed. J Thromb Haemost 2014; 12:776-8. [PMID: 24636043 DOI: 10.1111/jth.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J-C Gris
- Department of Hematology, University Hospital, Nîmes and research team EA2992, University of Montpellier, France
| |
Collapse
|
26
|
Brandt KJ, Fickentscher C, Boehlen F, Kruithof EKO, de Moerloose P. NF-κB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J Thromb Haemost 2014; 12:779-91. [PMID: 24612386 DOI: 10.1111/jth.12536] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/12/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The antiphospholipid antibody syndrome (APS) is an autoimmune disease associated with arterial or venous thrombosis and/or recurrent fetal loss and is caused by pathogenic antiphospholipid antibodies (aPLA). We recently demonstrated that Toll-like receptor 2 (TLR2) and CD14 contribute to monocyte activation of aPLA. OBJECTIVE To study the mechanisms of cell activation by aPLA, leading to pro-coagulant and pro-inflammatory responses. METHODS AND RESULTS For this study, we used purified antibodies from the plasmas of 10 different patients with APS and healthy donors. We demonstrate that aPLA, but not control IgG, co-localizes with TLR2 and TLR1 or TLR6 on human monocytes. Blocking antibodies to TLR2, TLR1 or TLR6, but not to TLR4, decreased TNF and tissue factor (TF) responses to aPLA. Pharmacological and siRNA approaches revealed the importance of the clathrin/dynamin-dependent endocytic pathway in cell activation by aPLA. In addition, soluble aPLA induced NF-κB activation, while bead-immobilized aPLA beads, which cannot be internalized, were unable to activate NF-κB. Internalization of aPLA in monocytes and NF-κB activation were dependent on the presence of CD14. CONCLUSION We show that TLR2 and its co-receptors, TLR1 and TLR6, contribute to the pathogenicity of aPLA, that aPLA are internalized via clathrin- and CD14-dependent endocytosis and that endocytosis is required for NF-κB activation. Our results contribute to a better understanding of the APS and provide a possible therapeutic approach.
Collapse
Affiliation(s)
- K J Brandt
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Isolated IgA anti- β2 glycoprotein I antibodies in patients with clinical criteria for antiphospholipid syndrome. J Immunol Res 2014; 2014:704395. [PMID: 24741618 PMCID: PMC3987939 DOI: 10.1155/2014/704395] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/03/2014] [Accepted: 02/17/2014] [Indexed: 01/06/2023] Open
Abstract
Seronegative antiphospholipid syndrome (SNAPS) is an autoimmune disease present in patients with clinical manifestations highly suggestive of Antiphospholipid Syndrome (APS) but with persistently negative consensus antiphospholipid antibodies (a-PL). IgA anti-β2 Glycoprotein I (aB2-GPI) antibodies are associated with APS. However, they are not currently considered to be laboratory criteria due to the heterogeneity of published works and the use of poor standardized diagnostic systems. We have aimed to assess aPL antibodies in a group of patients with clinical manifestations of APS (C-APS) to evaluate the importance of the presence of IgA aB2GPI antibodies in APS and its relation with other aPL antibodies. Only 14% of patients with C-APS were positive for any consensus antibody, whereas the presence of isolated IgA aB2GPI antibodies was found in 22% of C-APS patients. In patients with arterial thrombosis IgA aB2GPI, antibodies were the only aPL antibodies present. Serologic profile in primary APS (PAPS) is different from systemic autoimmune disorders associated APS (SAD-APS). IgA aB2GPI antibodies are more prevalent in PAPS and IgG aB2GPI antibodies are predominant in SAD-APS. The analysis of IgA aB2GPI antibodies in patients with clinical manifestations of PAPS might avoid underdiagnosed patients and provide a better diagnosis in patients with SAD-APS. Laboratory consensus criteria might consider including analysis of IgA aB2GPI for APS diagnosis.
Collapse
|