1
|
Qian Y, Zhu G, Zhang Z, Modepalli S, Zheng Y, Zheng X, Frydman G, Li H. Coagulo-Net: Enhancing the mathematical modeling of blood coagulation using physics-informed neural networks. Neural Netw 2024; 180:106732. [PMID: 39305783 PMCID: PMC11578045 DOI: 10.1016/j.neunet.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
Blood coagulation, which involves a group of complex biochemical reactions, is a crucial step in hemostasis to stop bleeding at the injury site of a blood vessel. Coagulation abnormalities, such as hypercoagulation and hypocoagulation, could either cause thrombosis or hemorrhage, resulting in severe clinical consequences. Mathematical models of blood coagulation have been widely used to improve the understanding of the pathophysiology of coagulation disorders, guide the design and testing of new anticoagulants or other therapeutic agents, and promote precision medicine. However, estimating the parameters in these coagulation models has been challenging as not all reaction rate constants and new parameters derived from model assumptions are measurable. Although various conventional methods have been employed for parameter estimation for coagulation models, the existing approaches have several shortcomings. Inspired by the physics-informed neural networks, we propose Coagulo-Net, which synergizes the strengths of deep neural networks with the mechanistic understanding of the blood coagulation processes to enhance the mathematical models of the blood coagulation cascade. We assess the performance of the Coagulo-Net using two existing coagulation models with different extents of complexity. Our simulation results illustrate that Coagulo-Net can efficiently infer the unknown model parameters and dynamics of species based on sparse measurement data and data contaminated with noise. In addition, we show that Coagulo-Net can process a mixture of synthetic and experimental data and refine the predictions of existing mathematical models of coagulation. These results demonstrate the promise of Coagulo-Net in enhancing current coagulation models and aiding the creation of novel models for physiological and pathological research. These results showcase the potential of Coagulo-Net to advance computational modeling in the study of blood coagulation, improving both research methodologies and the development of new therapies for treating patients with coagulation disorders.
Collapse
Affiliation(s)
- Ying Qian
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA
| | - Ge Zhu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, USA
| | - Zhen Zhang
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | | | - Yihao Zheng
- Department of Mechanical and Material Engineering, Worcester Polytechnic Institute, Worcester, USA
| | - Xiaoning Zheng
- Department of Mathematics, College of Information Science & Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Galit Frydman
- Division of Trauma, Emergency Surgery and Surgical Critical Care at the Massachusetts General Hospital, Boston, MA, USA; Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA.
| |
Collapse
|
2
|
Santiago F, Kaur A, Bride S, Monroe D, Leiderman K, Sindi S. A new look at TFPI inhibition of factor X activation. PLoS Comput Biol 2024; 20:e1012509. [PMID: 39546494 PMCID: PMC11567595 DOI: 10.1371/journal.pcbi.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024] Open
Abstract
Blood coagulation is a vital physiological process involving a complex network of biochemical reactions, which converge to form a blood clot that repairs vascular injury. This process unfolds in three phases: initiation, amplification, and propagation, ultimately leading to thrombin formation. Coagulation begins when tissue factor (TF) is exposed on an injured vessel's wall. The first step is when activated factor VII (VIIa) in the plasma binds to TF, forming complex TF:VIIa, which activates factor X. Activated factor X (Xa) is necessary for coagulation, so the regulation of its activation is crucial. Tissue Factor Pathway Inhibitor (TFPI) is a critical regulator of the initiation phase as it inhibits the activation of factor X. While previous studies have proposed two pathways-direct and indirect binding-for TFPI's inhibitory role, the specific biochemical reactions and their rates remain ambiguous. Many existing mathematical models only assume an indirect pathway, which may be less effective under physiological flow conditions. In this study, we revisit datasets from two experiments focused on activated factor X formation in the presence of TFPI. We employ an adaptive Metropolis method for parameter estimation to reinvestigate a previously proposed biochemical scheme and corresponding rates for both inhibition pathways. Our findings show that both pathways are essential to replicate the static experimental results. Previous studies have suggested that flow itself makes a significant contribution to the inhibition of factor X activation. We added flow to this model with our estimated parameters to determine the contribution of the two inhibition pathways under these conditions. We found that direct binding of TFPI is necessary for inhibition under flow. The indirect pathway has a weaker inhibitory effect due to removal of solution phase inhibitory complexes by flow.
Collapse
Affiliation(s)
- Fabian Santiago
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
| | - Amandeep Kaur
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
| | - Shannon Bride
- Department of Applied Mathematics & Statistics, Colorado School of Mines, Golden, Colorado, United States of America
| | - Dougald Monroe
- UNC Blood Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karin Leiderman
- UNC Blood Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Mathematics Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Computational Medicine Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
| |
Collapse
|
3
|
Teeraratkul C, Tomaiuolo M, Stalker TJ, Mukherjee D. Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces. Sci Rep 2024; 14:696. [PMID: 38184693 PMCID: PMC10771506 DOI: 10.1038/s41598-023-49945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
As a blood clot forms, grows, deforms, and embolizes following a vascular injury, local clot-flow interactions lead to a highly dynamic flow environment. The local flow influences transport of biochemical species relevant for clotting, and determines the forces on the clot that in turn lead to clot deformation and embolization. Despite this central role, quantitative characterization of this dynamic clot-flow interaction and flow environment in the clot neighborhood remains a major challenge. Here, we propose an approach that integrates dynamic intravital imaging with computer geometric modeling and computational flow and transport modeling to develop a unified in silico framework to quantify the dynamic clot-flow interactions. We outline the development of the methodology referred to as Intravital Integrated In Silico Modeling or IVISim, and then demonstrate the method on a sample set of simulations comprising clot formation following laser injury in two mouse cremaster arteriole injury model data: one wild-type mouse case, and one diYF knockout mouse case. Simulation predictions are verified against experimental observations of transport of caged fluorescent Albumin (cAlb) in both models. Through these simulations, we illustrate how the IVISim methodology can provide insights into hemostatic processes, the role of flow and clot-flow interactions, and enable further investigations comparing and contrasting different biological model scenarios and parameter variations.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA
| | - Maurizio Tomaiuolo
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | | | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
4
|
Grande Gutiérrez N, Mukherjee D, Bark D. Decoding thrombosis through code: a review of computational models. J Thromb Haemost 2024; 22:35-47. [PMID: 37657562 PMCID: PMC11064820 DOI: 10.1016/j.jtha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
From the molecular level up to a blood vessel, thrombosis and hemostasis involves many interconnected biochemical and biophysical processes over a wide range of length and time scales. Computational modeling has gained eminence in offering insights into these processes beyond what can be obtained from in vitro or in vivo experiments, or clinical measurements. The multiscale and multiphysics nature of thrombosis has inspired a wide range of modeling approaches that aim to address how a thrombus forms and dismantles. Here, we review recent advances in computational modeling with a focus on platelet-based thrombosis. We attempt to summarize the diverse range of modeling efforts straddling the wide-spectrum of physical phenomena, length scales, and time scales; highlighting key advancements and insights from existing studies. Potential information gleaned from models is discussed, ranging from identification of thrombus-prone regions in patient-specific vasculature to modeling thrombus deformation and embolization in response to fluid forces. Furthermore, we highlight several limitations of current models, future directions in the field, and opportunities for clinical translation, to illustrate the state-of-the-art. There are a plethora of opportunity areas for which models can be expanded, ranging from topics of thromboinflammation to platelet production and clearance. Through successes demonstrated in existing studies described here, as well as continued advancements in computational methodologies and computer processing speeds and memory, in silico investigations in thrombosis are poised to bring about significant knowledge growth in the years to come.
Collapse
Affiliation(s)
- Noelia Grande Gutiérrez
- Carnegie Mellon University, Department of Mechanical Engineering Pittsburgh, PA, USA. https://twitter.com/ngrandeg
| | - Debanjan Mukherjee
- University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering Boulder, CO, USA. https://twitter.com/debanjanmukh
| | - David Bark
- Washington University in St Louis, Department of Pediatrics, Division of Hematology and Oncology St Louis, MO, USA; Washington University in St Louis, Department of Biomedical Engineering St Louis, MO, USA.
| |
Collapse
|
5
|
Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh E, Bermejo J, del Alamo JC, Flores O. Efficient multi-fidelity computation of blood coagulation under flow. PLoS Comput Biol 2023; 19:e1011583. [PMID: 37889899 PMCID: PMC10659216 DOI: 10.1371/journal.pcbi.1011583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, [Formula: see text], and provide the governing PDEs for [Formula: see text]. This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order (p) allows balancing accuracy and computational cost providing a speedup of over N/p compared to high-fidelity models. Moreover, this cost becomes independent of the number of chemical species in the large computational meshes typical of the arterial and cardiac chamber simulations. Using a coagulation network with N = 9 and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. The thrombin concentration in these models departs from the high-fidelity solution by under 20% (p = 1) and 2% (p = 2) after 20 cardiac cycles. These multi-fidelity models could enable new coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it could be generalized to advance our understanding of other reacting systems affected by flow.
Collapse
Affiliation(s)
| | | | - Alejandro Gonzalo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Pablo Martinez-Legazpi
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Spain
- CIBERCV, Madrid, Spain
| | - Andrew M. Kahn
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Elliot McVeigh
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Javier Bermejo
- CIBERCV, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan C. del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Division of Cardiology, University of Washington, Seattle, Washington, United States of America
| | - Oscar Flores
- Department of Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
6
|
Telle Å, Bargellini C, Chahine Y, del Álamo JC, Akoum N, Boyle PM. Personalized biomechanical insights in atrial fibrillation: opportunities & challenges. Expert Rev Cardiovasc Ther 2023; 21:817-837. [PMID: 37878350 PMCID: PMC10841537 DOI: 10.1080/14779072.2023.2273896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Atrial fibrillation (AF) is an increasingly prevalent and significant worldwide health problem. Manifested as an irregular atrial electrophysiological activation, it is associated with many serious health complications. AF affects the biomechanical function of the heart as contraction follows the electrical activation, subsequently leading to reduced blood flow. The underlying mechanisms behind AF are not fully understood, but it is known that AF is highly correlated with the presence of atrial fibrosis, and with a manifold increase in risk of stroke. AREAS COVERED In this review, we focus on biomechanical aspects in atrial fibrillation, current and emerging use of clinical images, and personalized computational models. We also discuss how these can be used to provide patient-specific care. EXPERT OPINION Understanding the connection betweenatrial fibrillation and atrial remodeling might lead to valuable understanding of stroke and heart failure pathophysiology. Established and emerging imaging modalities can bring us closer to this understanding, especially with continued advancements in processing accuracy, reproducibility, and clinical relevance of the associated technologies. Computational models of cardiac electromechanics can be used to glean additional insights on the roles of AF and remodeling in heart function.
Collapse
Affiliation(s)
- Åshild Telle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Clarissa Bargellini
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Juan C. del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Nazem Akoum
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh E, Bermejo J, Del Alamo JC, Flores O. Efficient multi-fidelity computation of blood coagulation under flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542763. [PMID: 37398367 PMCID: PMC10312426 DOI: 10.1101/2023.05.29.542763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, , and provide the governing PDEs for . This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order( p ) allows balancing accuracy and computational cost, providing a speedup of over N/p compared to high-fidelity models. Using a simplified coagulation network and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. These models depart from the high-fidelity solution by under 16% ( p = 1) and 5% ( p = 2) after 20 cardiac cycles. The favorable accuracy and low computational cost of multi-fidelity models could enable unprecedented coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it can be generalized to advance our understanding of other systems biology networks affected by blood flow.
Collapse
|
8
|
Nicoud F. An adjoint-based method for the computation of gradients in coagulation schemes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3698. [PMID: 36929230 DOI: 10.1002/cnm.3698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/25/2022] [Accepted: 03/04/2023] [Indexed: 05/13/2023]
Abstract
An adjoint-based methodology is proposed to compute the gradient of the outcomes of mathematical models for the coagulation cascade. The method is first exposed and validated by considering a simple, analytically tractable case involving only 3 species. Its potential is further illustrated by considering a detailed model for the extrinsic pathway involving 34 chemical species interacting through 45 chemical reactions and for which the gradient of Endogeneous Thrombin Potential, clotting time, maximum rate and peak value of thrombin with respect to the initial concentrations and reactions rates are computed. It is shown that the method produces gradients estimates that are fully consistent with the finite differences approximation used so far in the literature, but at a much lower computational cost.
Collapse
Affiliation(s)
- Franck Nicoud
- IMAG, University of Montpellier, CNRS, Montpellier, 34095, France
| |
Collapse
|
9
|
Schwarz EL, Pegolotti L, Pfaller MR, Marsden AL. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. BIOPHYSICS REVIEWS 2023; 4:011301. [PMID: 36686891 PMCID: PMC9846834 DOI: 10.1063/5.0109400] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
Physics-based computational models of the cardiovascular system are increasingly used to simulate hemodynamics, tissue mechanics, and physiology in evolving healthy and diseased states. While predictive models using computational fluid dynamics (CFD) originated primarily for use in surgical planning, their application now extends well beyond this purpose. In this review, we describe an increasingly wide range of modeling applications aimed at uncovering fundamental mechanisms of disease progression and development, performing model-guided design, and generating testable hypotheses to drive targeted experiments. Increasingly, models are incorporating multiple physical processes spanning a wide range of time and length scales in the heart and vasculature. With these expanded capabilities, clinical adoption of patient-specific modeling in congenital and acquired cardiovascular disease is also increasing, impacting clinical care and treatment decisions in complex congenital heart disease, coronary artery disease, vascular surgery, pulmonary artery disease, and medical device design. In support of these efforts, we discuss recent advances in modeling methodology, which are most impactful when driven by clinical needs. We describe pivotal recent developments in image processing, fluid-structure interaction, modeling under uncertainty, and reduced order modeling to enable simulations in clinically relevant timeframes. In all these areas, we argue that traditional CFD alone is insufficient to tackle increasingly complex clinical and biological problems across scales and systems. Rather, CFD should be coupled with appropriate multiscale biological, physical, and physiological models needed to produce comprehensive, impactful models of mechanobiological systems and complex clinical scenarios. With this perspective, we finally outline open problems and future challenges in the field.
Collapse
Affiliation(s)
- Erica L. Schwarz
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Luca Pegolotti
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Martin R. Pfaller
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alison L. Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Zhu G, Modepalli S, Anand M, Li H. Computational modeling of hypercoagulability in COVID-19. Comput Methods Biomech Biomed Engin 2023; 26:338-349. [PMID: 36154346 DOI: 10.1080/10255842.2022.2124858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 100 million people worldwide and claimed millions of lives. While the leading cause of mortality in COVID-19 patients is the hypoxic respiratory failure from acute respiratory distress syndrome, there is accumulating evidence that shows excessive coagulation also increases the fatalities in COVID-19. Thus, there is a pressing demand to understand the association between COVID-19-induced hypercoagulability and the extent of formation of undesired blood clots. Mathematical modeling of coagulation has been used as an important tool to identify novel reaction mechanisms and to identify targets for new drugs. Here, we employ the coagulation factor data of COVID-19 patients reported from published studies as inputs for two mathematical models of coagulation to identify how the concentrations of coagulation factors change in these patients. Our simulation results show that while the levels of many of the abnormal coagulation factors measured in COVID-19 patients promote the generation of thrombin and fibrin, two key components of blood clots, the increased level of fibrinogen and then the reduced level of antithrombin are the factors most responsible for boosting the level of fibrin and thrombin, respectively. Altogether, our study demonstrates the potential of mathematical modeling to identify coagulation factors responsible for the increased clot formation in COVID-19 patients where clinical data is scarce.
Collapse
Affiliation(s)
- Ge Zhu
- Center for Biomedical Engineering, Brown University, Providence, USA
| | | | - Mohan Anand
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - He Li
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, USA
| |
Collapse
|
11
|
Zhussupbekov M, Méndez Rojano R, Wu WT, Antaki JF. von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis. Biophys J 2022; 121:4033-4047. [PMID: 36196057 PMCID: PMC9675031 DOI: 10.1016/j.bpj.2022.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis. We recently presented a continuum model for the unfolding of vWF, where we represented vWF transport and its flow-induced conformational change using convection-diffusion-reaction equations. Here, we incorporate the vWF component into our multi-constituent model of thrombosis, where the local concentration of stretched vWF amplifies the deposition rate of free-flowing platelets and reduces the shear cleaning of deposited platelets. We validate the model using three benchmarks: in vitro model of atherothrombosis, a stagnation point flow, and the PFA-100, a clinical blood test commonly used for screening for von Willebrand disease (vWD). The simulations reproduced the key aspects of vWF-mediated thrombosis observed in these experiments, such as the thrombus location, thrombus growth dynamics, and the effect of blocking platelet-vWF interactions. The PFA-100 simulations closely matched the reported occlusion times for normal blood and several hemostatic deficiencies, namely, thrombocytopenia, vWD type 1, and vWD type 3. Overall, this multi-constituent model of thrombosis enables macro-scale 3D simulations of thrombus formation in complex geometries over a wide range of shear rates and accounts for qualitative and quantitative hemostatic deficiencies in patient blood.
Collapse
Affiliation(s)
- Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Wei-Tao Wu
- Department of Aerospace Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
12
|
Combining mathematical modelling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow. Math Biosci 2022; 349:108830. [DOI: 10.1016/j.mbs.2022.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
|
13
|
Deng YX, Chang HY, Li H. Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes. Biomimetics (Basel) 2022; 7:15. [PMID: 35076493 PMCID: PMC8788472 DOI: 10.3390/biomimetics7010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90-95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.
Collapse
Affiliation(s)
- Yi-Xiang Deng
- School of Engineering, Brown University, Providence, RI 02912, USA;
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA;
| | - He Li
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
Shankar KN, Zhang Y, Sinno T, Diamond SL. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution. PLoS Comput Biol 2022; 18:e1009850. [PMID: 35089923 PMCID: PMC8827456 DOI: 10.1371/journal.pcbi.1009850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Modeling thrombus growth in pathological flows allows evaluation of risk under patient-specific pharmacological, hematological, and hemodynamical conditions. We have developed a 3D multiscale framework for the prediction of thrombus growth under flow on a spatially resolved surface presenting collagen and tissue factor (TF). The multiscale framework is composed of four coupled modules: a Neural Network (NN) that accounts for platelet signaling, a Lattice Kinetic Monte Carlo (LKMC) simulation for tracking platelet positions, a Finite Volume Method (FVM) simulator for solving convection-diffusion-reaction equations describing agonist release and transport, and a Lattice Boltzmann (LB) flow solver for computing the blood flow field over the growing thrombus. A reduced model of the coagulation cascade was embedded into the framework to account for TF-driven thrombin production. The 3D model was first tested against in vitro microfluidics experiments of whole blood perfusion with various antiplatelet agents targeting COX-1, P2Y1, or the IP receptor. The model was able to accurately capture the evolution and morphology of the growing thrombus. Certain problems of 2D models for thrombus growth (artifactual dendritic growth) were naturally avoided with realistic trajectories of platelets in 3D flow. The generalizability of the 3D multiscale solver enabled simulations of important clinical situations, such as cylindrical blood vessels and acute flow narrowing (stenosis). Enhanced platelet-platelet bonding at pathologically high shear rates (e.g., von Willebrand factor unfolding) was required for accurately describing thrombus growth in stenotic flows. Overall, the approach allows consideration of patient-specific platelet signaling and vascular geometry for the prediction of thrombotic episodes. The excessive formation of blood clots under flow within the circulatory system (thrombosis) is known to initiate heart attacks and strokes. Therefore, obtaining insights into the formation and progression of these clots will be useful in evaluating pharmacological options. To this end, we have developed a 3D computational model that tracks the growth of a blood clot under flow from initial platelet deposition to full vessel occlusion in the presence of soluble platelet agonists. We first validated the model against experimental predictions of blood clots formed in vitro. Due to the construction of the model in 3D, we were able to carry out simulations of clot formation under important clinical situations, namely cylindrical blood vessels and acute flow narrowings (stenoses). To our knowledge, our model is the first of its kind that can account for patient-specific platelet phenotypes to perform robust 3D simulations of thrombus growth in geometries of clinical relevance.
Collapse
Affiliation(s)
- Kaushik N. Shankar
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yiyuan Zhang
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen J, Diamond SL. Sensitivity analysis of a reduced model of thrombosis under flow: Roles of Factor IX, Factor XI, and γ'-Fibrin. PLoS One 2021; 16:e0260366. [PMID: 34813608 PMCID: PMC8610249 DOI: 10.1371/journal.pone.0260366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
A highly reduced extrinsic pathway coagulation model (8 ODEs) under flow considered a thin 15-micron platelet layer where transport limitations were largely negligible (except for fibrinogen) and where cofactors (FVIIa, FV, FVIII) were not rate-limiting. By including thrombin feedback activation of FXI and the antithrombin-I activities of fibrin, the model accurately simulated measured fibrin formation and thrombin fluxes. Using this reduced model, we conducted 10,000 Monte Carlo (MC) simulations for ±50% variation of 5 plasma zymogens and 2 fibrin binding sites for thrombin. A sensitivity analysis of zymogen concentrations indicated that FIX activity most influenced thrombin generation, a result expected from hemophilia A and B. Averaging all MC simulations confirmed both the mean and standard deviation of measured fibrin generation on 1 tissue factor (TF) molecule per μm2. Across all simulations, free thrombin in the layer ranged from 20 to 300 nM (mean: 50 nM). The top 2% of simulations that produced maximal fibrin were dominated by conditions with low antithrombin-I activity (decreased weak and strong sites) and high FIX concentration. In contrast, the bottom 2% of simulations that produced minimal fibrin were dominated by low FIX and FX. The percent reduction of fibrin by an ideal FXIa inhibitor (FXI = 0) ranged from 71% fibrin reduction in the top 2% of MC simulations to only 34% fibrin reduction in the bottom 2% of MC simulations. Thus, the antithrombotic potency of FXIa inhibitors may vary depending on normal ranges of zymogen concentrations. This reduced model allowed efficient multivariable sensitivity analysis.
Collapse
Affiliation(s)
- Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
16
|
Shankar V, Wright GB, Fogelson AL. An Efficient High-Order Meshless Method for Advection-Diffusion Equations on Time-Varying Irregular Domains. JOURNAL OF COMPUTATIONAL PHYSICS 2021; 445:110633. [PMID: 34538887 PMCID: PMC8445206 DOI: 10.1016/j.jcp.2021.110633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a high-order radial basis function finite difference (RBF-FD) framework for the solution of advection-diffusion equations on time-varying domains. Our framework is based on a generalization of the recently developed Overlapped RBF-FD method that utilizes a novel automatic procedure for computing RBF-FD weights on stencils in variable-sized regions around stencil centers. This procedure eliminates the overlap parameter δ, thereby enabling tuning-free assembly of RBF-FD differentiation matrices on moving domains. In addition, our framework utilizes a simple and efficient procedure for updating differentiation matrices on moving domains tiled by node sets of time-varying cardinality. Finally, advection-diffusion in time-varying domains is handled through a combination of rapid node set modification, a new high-order semi-Lagrangian method that utilizes the new tuning-free overlapped RBF-FD method, and a high-order time-integration method. The resulting framework has no tuning parameters and has O(N logN) time complexity. We demonstrate high-orders of convergence for advection-diffusion equations on time-varying 2D and 3D domains for both small and large Peclet numbers. We also present timings that verify our complexity estimates. Finally, we utilize our method to solve a coupled 3D problem motivated by models of platelet aggregation and coagulation, once again demonstrating high-order convergence rates on a moving domain.
Collapse
Affiliation(s)
| | | | - Aaron L. Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, UT, USA
| |
Collapse
|
17
|
Teeraratkul C, Mukherjee D. Microstructure aware modeling of biochemical transport in arterial blood clots. J Biomech 2021; 127:110692. [PMID: 34479090 DOI: 10.1016/j.jbiomech.2021.110692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Flow-mediated transport of biochemical species is central to thrombotic phenomena. Comprehensive three-dimensional modeling of flow-mediated transport around realistic macroscale thrombi poses challenges owing to their arbitrary heterogeneous microstructure. Here, we develop a microstructure aware model for species transport within and around a macroscale thrombus by devising a custom preconditioned fictitious domain formulation for thrombus-hemodynamics interactions, and coupling it with a fictitious domain advection-diffusion formulation for transport. Microstructural heterogeneities are accounted through a hybrid discrete particle-continuum approach for the thrombus interior. We present systematic numerical investigations on unsteady arterial flow within and around a three-dimensional macroscale thrombus; demonstrate the formation of coherent flow structures around the thrombus which organize advective transport; illustrate the role of the permeation processes at the thrombus boundary and subsequent intra-thrombus transport; and characterize species transport from bulk flow to the thrombus boundary and vice versa.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, United States of America.
| | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, United States of America.
| |
Collapse
|
18
|
Leiderman K, Sindi SS, Monroe DM, Fogelson AL, Neeves KB. The Art and Science of Building a Computational Model to Understand Hemostasis. Semin Thromb Hemost 2021; 47:129-138. [PMID: 33657623 PMCID: PMC7920145 DOI: 10.1055/s-0041-1722861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computational models of various facets of hemostasis and thrombosis have increased substantially in the last decade. These models have the potential to make predictions that can uncover new mechanisms within the complex dynamics of thrombus formation. However, these predictions are only as good as the data and assumptions they are built upon, and therefore model building requires intimate coupling with experiments. The objective of this article is to guide the reader through how a computational model is built and how it can inform and be refined by experiments. This is accomplished by answering six questions facing the model builder: (1) Why make a model? (2) What kind of model should be built? (3) How is the model built? (4) Is the model a “good” model? (5) Do we believe the model? (6) Is the model useful? These questions are answered in the context of a model of thrombus formation that has been successfully applied to understanding the interplay between blood flow, platelet deposition, and coagulation and in identifying potential modifiers of thrombin generation in hemophilia A.
Collapse
Affiliation(s)
- Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, California
| | - Dougald M Monroe
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aaron L Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Keith B Neeves
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado, Denver, Colorado
| |
Collapse
|
19
|
Yazdani A, Deng Y, Li H, Javadi E, Li Z, Jamali S, Lin C, Humphrey JD, Mantzoros CS, Em Karniadakis G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J R Soc Interface 2021; 18:20200834. [PMID: 33530862 PMCID: PMC8086870 DOI: 10.1098/rsif.2020.0834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/12/2022] Open
Abstract
Normal haemostasis is an important physiological mechanism that prevents excessive bleeding during trauma, whereas the pathological thrombosis especially in diabetics leads to increased incidence of heart attacks and strokes as well as peripheral vascular events. In this work, we propose a new multiscale framework that integrates seamlessly four key components of blood clotting, namely transport of coagulation factors, coagulation kinetics, blood cell mechanics and platelet adhesive dynamics, to model the development of thrombi under physiological and pathological conditions. We implement this framework to simulate platelet adhesion due to the exposure of tissue factor in a three-dimensional microchannel. Our results show that our model can simulate thrombin-mediated platelet activation in the flowing blood, resulting in platelet adhesion to the injury site of the channel wall. Furthermore, we simulate platelet adhesion in diabetic blood, and our results show that both the pathological alterations in the biomechanics of blood cells and changes in the amount of coagulation factors contribute to the excessive platelet adhesion and aggregation in diabetic blood. Taken together, this new framework can be used to probe synergistic mechanisms of thrombus formation under physiological and pathological conditions, and open new directions in modelling complex biological problems that involve several multiscale processes.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Chensen Lin
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
20
|
Teeraratkul C, Irwin Z, Shadden SC, Mukherjee D. Computational investigation of blood flow and flow-mediated transport in arterial thrombus neighborhood. Biomech Model Mechanobiol 2021; 20:701-715. [PMID: 33438148 DOI: 10.1007/s10237-020-01411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
A pathologically formed blood clot or thrombus is central to major cardiovascular diseases like heart attack and stroke. Detailed quantitative evaluation of flow and flow-mediated transport processes in the thrombus neighborhood within large artery hemodynamics is crucial for understanding disease progression and assessing treatment efficacy. This, however, remains a challenging task owing to the complexity of pulsatile viscous flow interactions with arbitrary shape and heterogeneous microstructure of realistic thrombi. Here, we address this challenge by conducting a systematic parametric simulation-based study on characterizing unsteady hemodynamics and flow-mediated transport in the neighborhood of an arterial thrombus. We use a hybrid particle-continuum-based finite element approach to handle arbitrary thrombus shape and microstructural variations. Results from a cohort of 50 different unsteady flow scenarios are presented, including unsteady vortical structures, pressure gradient across the thrombus boundary, finite time Lyapunov exponents, and dynamic coherent structures that organize advective transport. We clearly illustrate the combined influence of three key parameters-thrombus shape, microstructure, and extent of wall disease-in terms of: (a) determining hemodynamic features in the thrombus neighborhood and (b) governing the balance between advection, permeation, and diffusion to regulate transport processes in the thrombus neighborhood.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Zachariah Irwin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, United States of America
| | - Debanjan Mukherjee
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America.
| |
Collapse
|
21
|
Zheng X, Yazdani A, Li H, Humphrey JD, Karniadakis GE. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput Biol 2020; 16:e1007709. [PMID: 32343724 PMCID: PMC7224566 DOI: 10.1371/journal.pcbi.1007709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/14/2020] [Accepted: 02/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mechanical interactions between flowing and coagulated blood (thrombus) are crucial in dictating the deformation and remodeling of a thrombus after its formation in hemostasis. We propose a fully-Eulerian, three-dimensional, phase-field model of thrombus that is calibrated with existing in vitro experimental data. This phase-field model considers spatial variations in permeability and material properties within a single unified mathematical framework derived from an energy perspective, thereby allowing us to study effects of thrombus microstructure and properties on its deformation and possible release of emboli under different hemodynamic conditions. Moreover, we combine this proposed thrombus model with a particle-based model which simulates the initiation of the thrombus. The volume fraction of a thrombus obtained from the particle simulation is mapped to an input variable in the proposed phase-field thrombus model. The present work is thus the first computational study to integrate the initiation of a thrombus through platelet aggregation with its subsequent viscoelastic responses to various shear flows. This framework can be informed by clinical data and potentially be used to predict the risk of diverse thromboembolic events under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoning Zheng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - George E. Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
22
|
Chen J, Diamond SL. Reduced model to predict thrombin and fibrin during thrombosis on collagen/tissue factor under venous flow: Roles of γ'-fibrin and factor XIa. PLoS Comput Biol 2019; 15:e1007266. [PMID: 31381558 PMCID: PMC6695209 DOI: 10.1371/journal.pcbi.1007266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/15/2019] [Accepted: 07/08/2019] [Indexed: 01/29/2023] Open
Abstract
During thrombosis, thrombin generates fibrin, however fibrin reversibly binds thrombin with low affinity E-domain sites (KD = 2.8 μM) and high affinity γ’-fibrin sites (KD = 0.1 μM). For blood clotting on collagen/tissue factor (1 TF-molecule/μm2) at 200 s-1 wall shear rate, high μM-levels of intraclot thrombin suggest robust prothrombin penetration into clots. Setting intraclot zymogen concentrations to plasma levels (and neglecting cofactor rate limitations) allowed the linearization of 7 Michaelis-Menton reactions between 6 species to simulate intraclot generation of: Factors FXa (via TF/VIIa or FIXa), FIXa (via TF/FVIIa or FXIa), thrombin, fibrin, and FXIa. This reduced model [7 rates, 2 KD’s, enzyme half-lives~1 min] predicted the measured clot elution rate of thrombin-antithrombin (TAT) and fragment F1.2 in the presence and absence of the fibrin inhibitor Gly-Pro-Arg-Pro. To predict intraclot fibrin reaching 30 mg/mL by 15 min, the model required fibrinogen penetration into the clot to be strongly diffusion-limited (actual rate/ideal rate = 0.05). The model required free thrombin in the clot (~100 nM) to have an elution half-life of ~2 sec, consistent with measured albumin elution, with most thrombin (>99%) being fibrin-bound. Thrombin-feedback activation of FXIa became prominent and reached 5 pM FXIa at >500 sec in the simulation, consistent with anti-FXIa experiments. In predicting intrathrombus thrombin and fibrin during 15-min microfluidic experiments, the model revealed “cascade amplification” from 30 pM levels of intrinsic tenase to 15 nM prothrombinase to 15 μM thrombin to 90 μM fibrin. Especially useful for multiscale simulation, this reduced model predicts thrombin and fibrin co-regulation during thrombosis under flow. During blood clotting events, a complex series of reaction are involved. Simulation gives insights to the concentration of different enzymes which are at too low of concentration to be detected. However, the models are often large and difficult to solve for clotting under flow conditions. With a thin film approximation, we were able to simplify clotting under flow with parameters from literature, with only 3 adjusted in order to fit the experimental data. This model gave insights into the dynamics of the species involved, and the roles of γ’-fibrin and thrombin feedback activation. This reduced model may be useful in further multiscale simulations.
Collapse
Affiliation(s)
- Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lakshmanan HHS, Shatzel JJ, Olson SR, McCarty OJT, Maddala J. Modeling the effect of blood vessel bifurcation ratio on occlusive thrombus formation. Comput Methods Biomech Biomed Engin 2019; 22:972-980. [PMID: 31066295 DOI: 10.1080/10255842.2019.1610744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular geometry is a major determinant of the hemodynamics that promote or prevent unnecessary vessel occlusion from thrombus formation. Bifurcations in the vascular geometry are repeating structures that introduce flow separation between parent and daughter vessels. We modelled the blood flow and shear rate in a bifurcation during thrombus formation and show that blood vessel bifurcation ratios determine the maximum shear rate on the surface of a growing thrombus. We built an analytical model that may aid in predicting microvascular bifurcation ratios that are prone to occlusive thrombus formation. We also observed that bifurcation ratios that adhere to Murray's law of bifurcations may be protected from occlusive thrombus formation. These results may be useful in the rational design of diagnostic microfluidic devices and microfluidic blood oxygenators.
Collapse
Affiliation(s)
- Hari Hara Sudhan Lakshmanan
- a Biomedical Engineering, School of Medicine , Oregon Health & Science University , Portland , OR , USA.,b Chemical and Biomedical Engineering , West Virginia University , Morgantown , WV , USA
| | - Joseph J Shatzel
- a Biomedical Engineering, School of Medicine , Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology-Oncology, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Sven R Olson
- c Division of Hematology-Oncology, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine , Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology-Oncology, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Jeevan Maddala
- a Biomedical Engineering, School of Medicine , Oregon Health & Science University , Portland , OR , USA.,b Chemical and Biomedical Engineering , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
24
|
Shankar V, Fogelson AL. Hyperviscosity-Based Stabilization for Radial Basis Function-Finite Difference (RBF-FD) Discretizations of Advection-Diffusion Equations. JOURNAL OF COMPUTATIONAL PHYSICS 2018; 372:616-639. [PMID: 31011233 PMCID: PMC6474420 DOI: 10.1016/j.jcp.2018.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present a novel hyperviscosity formulation for stabilizing RBF-FD discretizations of the advectiondiffusion equation. The amount of hyperviscosity is determined quasi-analytically for commonly-used explicit, implicit, and implicit-explicit (IMEX) time integrators by using a simple 1D semi-discrete Von Neumann analysis. The analysis is applied to an analytical model of spurious growth in RBF-FD solutions that uses auxiliary differential operators mimicking the undesirable properties of RBF-FD differentiation matrices. The resulting hyperviscosity formulation is a generalization of existing ones in the literature, but is free of any tuning parameters and can be computed efficiently. To further improve robustness, we introduce a simple new scaling law for polynomial-augmented RBF-FD that relates the degree of polyharmonic spline (PHS) RBFs to the degree of the appended polynomial. When used in a novel ghost node formulation in conjunction with the recently-developed overlapped RBF-FD method, the resulting method is robust and free of stagnation errors. We validate the high-order convergence rates of our method on 2D and 3D test cases over a wide range of Peclet numbers (1-1000). We then use our method to solve a 3D coupled problem motivated by models of platelet aggregation and coagulation, again demonstrating high-order convergence rates.
Collapse
Affiliation(s)
- Varun Shankar
- Department of Mathematics and School of Computing, University of Utah, UT, USA
| | - Aaron L. Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, UT, USA
| |
Collapse
|
25
|
Xu S, Xu Z, Kim OV, Litvinov RI, Weisel JW, Alber M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J R Soc Interface 2018; 14:rsif.2017.0441. [PMID: 29142014 DOI: 10.1098/rsif.2017.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.
Collapse
Affiliation(s)
- Shixin Xu
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oleg V Kim
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Alber
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA .,Department of Internal Medicine, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Hemodynamics after Carotid Artery Stenosis Operation: A Case Study. ACTA ACUST UNITED AC 2018; 54:medicina54030042. [PMID: 30344273 PMCID: PMC6122108 DOI: 10.3390/medicina54030042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
Background and objectives: Brain ischemic stroke is caused by impaired or absolutely blocked blood flow into the brain regions. Despite the large number of possible origins, there is no general strategy for preventive treatment. In this paper, we aimed to predict the hemodynamics in a patient who experienced a critical stenosis operation in the carotid artery. This is a unique study where we used medical data together with the computational fluid (CFD) technique not to plan the surgery, but to predict its outcome. Materials and Methods: AngioCT data and blood perfusion of brain tissue (CT-perfusion) together with CFD technique were applied for stroke formation reconstruction in different clinical conditions. With the use of self-made semiautomatic algorithm for image processing and 3DDoctror software, 3D-vascular geometries before and after surgical intervention were reconstructed. As the paper is focused on the analysis of stroke appearance, apparent stroke was simulated as higher and lower pressure values in the cranial part due to different outcomes of the surgical intervention. This allowed to investigate the influence of spatial configuration and pressure values on blood perfusion in the analyzed circulatory system. Results: Application of CFD simulations for blood flow reconstruction for clinical conditions in the circulatory system accomplished on average 98.5% and 98.7% accuracy for CFD results compared to US-Doppler before and after surgical intervention, respectively. Meanwhile, CFD results compared to CT-perfusion indicated an average 89.7% and 92.8% accuracy before and after surgical intervention, respectively. Thus, the CFD is a reliable approach for predicting the patient hemodynamics, as it was confirmed by postoperative data. Conclusions: Our study indicated that the application of CFD simulations for blood flow reconstruction for clinical conditions in circulatory system reached 98% and 90% accuracy for US-Doppler and CT-perfusion, respectively. Therefore, the proposed method might be used as a tool for reconstruction of specific patients' hemodynamics after operation of critical stenosis in the carotid artery. However, further studies are necessary to confirm its usefulness in clinical practice.
Collapse
|
27
|
A Short Review of Advances in the Modelling of Blood Rheology and Clot Formation. FLUIDS 2017. [DOI: 10.3390/fluids2030035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Bhattacharya P, Viceconti M. Multiscale modeling methods in biomechanics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:e1375. [PMID: 28102563 PMCID: PMC5412936 DOI: 10.1002/wsbm.1375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023]
Abstract
More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Pinaki Bhattacharya
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| | - Marco Viceconti
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
29
|
|
30
|
García Carrascal P, García García J, Sierra Pallares J, Castro Ruiz F, Manuel Martín FJ. Numerical Study of Blood Clots Influence on the Flow Pattern and Platelet Activation on a Stented Bifurcation Model. Ann Biomed Eng 2016; 45:1279-1291. [DOI: 10.1007/s10439-016-1782-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
|
31
|
Development of a platelet adhesion transport equation for a computational thrombosis model. J Biomech 2016; 50:114-120. [PMID: 27855988 DOI: 10.1016/j.jbiomech.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/17/2023]
Abstract
Thrombosis is a significant issue for cardiovascular device development and use. While thrombosis models are available, very few are device-related and none have been thoroughly validated experimentally. Here, we introduce a surface adherent platelet transport equation into a continuum model to account for the biomaterial interface/blood interaction. Using a rotating disc system and polyurethane-urea material, we characterize steady and pulsatile flow fields using laser Doppler velocimetry. In vitro measurements of platelet adhesion are used in combination with the LDV data to provide further experimental validation. The rotating disc system is computationally studied using the device-induced thrombosis model with the surface platelet adherent transport equation. The results indicate that the flow field is in excellent agreement to the experimental LDV data and that the platelet adhesion simulations are in good agreement with the in vitro platelet data. These results provide good evidence that this transport equation can be used to express the relationship between blood and a biomaterial if the correct platelet adhesion characteristics are known for the biomaterial. Further validation is necessary with other materials.
Collapse
|
32
|
Taylor JO, Meyer RS, Deutsch S, Manning KB. Development of a computational model for macroscopic predictions of device-induced thrombosis. Biomech Model Mechanobiol 2016; 15:1713-1731. [PMID: 27169403 DOI: 10.1007/s10237-016-0793-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
While cardiovascular device-induced thrombosis is associated with negative patient outcomes, the convoluted nature of the processes resulting in a thrombus makes the full thrombotic network too computationally expensive to simulate in the complex geometries and flow fields associated with devices. A macroscopic, continuum computational model is developed based on a simplified network, which includes terms for platelet activation (chemical and mechanical) and thrombus deposition and growth in regions of low wall shear stress (WSS). Laminar simulations are performed in a two-dimensional asymmetric sudden expansion geometry and compared with in vitro thrombus size data collected using whole bovine blood. Additionally, the predictive power of the model is tested in a flow cell containing a series of symmetric sudden expansions and contractions. Thrombi form in the low WSS area downstream of the asymmetric expansion and grow into the nearby recirculation region, and thrombus height and length largely remain within 95 % confidence intervals calculated from the in vitro data for 30 min of blood flow. After 30 min, predicted thrombus height and length are 0.94 and 4.32 (normalized by the 2.5 mm step height). Importantly, the model also correctly predicts locations of thrombus deposition observed in the in vitro flow cell of expansions and contractions. As the simulation results, which rely on a greatly reduced model of the thrombotic network, are still able to capture the macroscopic behavior of the full network, the model shows promise for timely predictions of device-induced thrombosis toward optimizing and expediting the device development process.
Collapse
Affiliation(s)
- Joshua O Taylor
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA, 16802, USA.,Applied Research Laboratory, The Pennsylvania State University, State College, PA, USA
| | - Richard S Meyer
- Applied Research Laboratory, The Pennsylvania State University, State College, PA, USA
| | - Steven Deutsch
- Applied Research Laboratory, The Pennsylvania State University, State College, PA, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA, 16802, USA. .,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
33
|
Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach. PLoS Comput Biol 2015; 11:e1004589. [PMID: 26584182 PMCID: PMC4652868 DOI: 10.1371/journal.pcbi.1004589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation.
Collapse
|
34
|
Continuous Modeling of Arterial Platelet Thrombus Formation Using a Spatial Adsorption Equation. PLoS One 2015; 10:e0141068. [PMID: 26517377 PMCID: PMC4627739 DOI: 10.1371/journal.pone.0141068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023] Open
Abstract
In this study, we considered a continuous model of platelet thrombus growth in an arteriole. A special model describing the adhesion of platelets in terms of their concentration was derived. The applications of the derived model are not restricted to only describing arterial platelet thrombus formation; the model can also be applied to other similar adhesion processes. The model reproduces an auto-wave solution in the one-dimensional case; in the two-dimensional case, in which the surrounding flow is taken into account, the typical torch-like thrombus is reproduced. The thrombus shape and the growth velocity are determined by the model parameters. We demonstrate that the model captures the main properties of the thrombus growth behavior and provides us a better understanding of which mechanisms are important in the mechanical nature of the arterial thrombus growth.
Collapse
|
35
|
Bogdanov VY, Versteeg HH. "Soluble Tissue Factor" in the 21st Century: Definitions, Biochemistry, and Pathophysiological Role in Thrombus Formation. Semin Thromb Hemost 2015; 41:700-7. [PMID: 26408917 DOI: 10.1055/s-0035-1556049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue factor (TF), the main trigger of blood coagulation, is essential for normal hemostasis. Over the past 20 years, heightened intravascular levels and activity of TF have been increasingly perceived as an entity that significantly contributes to venous as well as arterial thrombosis. Various forms of the TF protein in the circulation have been described and proposed to be thrombogenic. Aside from cell and vessel wall-associated TF, several forms of non-cell-associated TF circulate in plasma and may serve as a causative factor in thrombosis. At the present time, no firm consensus exists regarding the extent, the vascular setting(s), and/or the mechanisms by which such TF forms contribute to thrombus initiation and propagation. Here, we summarize the existing paradigms and recent, sometimes paradigm-shifting findings elucidating the structural, mechanistic, and pathophysiological characteristics of plasma-borne TF.
Collapse
Affiliation(s)
- Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Henri H Versteeg
- Department of Internal Medicine, Section of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
Shibeko AM, Panteleev MA. Untangling the complexity of blood coagulation network: use of computational modelling in pharmacology and diagnostics. Brief Bioinform 2015; 17:429-39. [DOI: 10.1093/bib/bbv040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 01/22/2023] Open
|
37
|
Tosenberger A, Ataullakhanov F, Bessonov N, Panteleev M, Tokarev A, Volpert V. Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method. J Math Biol 2015; 72:649-81. [PMID: 26001742 DOI: 10.1007/s00285-015-0891-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/22/2015] [Indexed: 01/04/2023]
Abstract
The paper is devoted to mathematical modelling of clot growth in blood flow. Great complexity of the hemostatic system dictates the need of usage of the mathematical models to understand its functioning in the normal and especially in pathological situations. In this work we investigate the interaction of blood flow, platelet aggregation and plasma coagulation. We develop a hybrid DPD-PDE model where dissipative particle dynamics (DPD) is used to model plasma flow and platelets, while the regulatory network of plasma coagulation is described by a system of partial differential equations. Modelling results confirm the potency of the scenario of clot growth where at the first stage of clot formation platelets form an aggregate due to weak inter-platelet connections and then due to their activation. This enables the formation of the fibrin net in the centre of the platelet aggregate where the flow velocity is significantly reduced. The fibrin net reinforces the clot and allows its further growth. When the clot becomes sufficiently large, it stops growing due to the narrowed vessel and the increase of flow shear rate at the surface of the clot. Its outer part is detached by the flow revealing the inner part covered by fibrin. This fibrin cap does not allow new platelets to attach at the high shear rate, and the clot stops growing. Dependence of the final clot size on wall shear rate and on other parameters is studied.
Collapse
Affiliation(s)
- A Tosenberger
- Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France.
| | - F Ataullakhanov
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - N Bessonov
- Institute of Mechanical Engineering Problems, Saint Petersburg, Russian Federation
| | - M Panteleev
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - A Tokarev
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - V Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Lyon, France
| |
Collapse
|
38
|
Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models. Processes (Basel) 2015. [DOI: 10.3390/pr3010178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Polanczyk A, Podyma M, Stefanczyk L, Szubert W, Zbicinski I. A 3D model of thrombus formation in a stent-graft after implantation in the abdominal aorta. J Biomech 2014; 48:425-31. [PMID: 25543277 DOI: 10.1016/j.jbiomech.2014.12.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/22/2014] [Accepted: 12/10/2014] [Indexed: 11/25/2022]
Abstract
Here we present a 3D kinetic model of thrombus formation in an endovascular prosthesis after implantation in an abdominal aorta with an aneurysm. The computational fluid dynamic technique (CFD) was used to determine the process of thrombus formation and growth in the stent-graft on the basis of the medical data from computed tomography angiography and Doppler ultrasound examination of 10 patients. The Quemada model was used to describe rheological properties of blood. Results of the CFD simulations were validated based on actual data from patients with diagnosed thrombi in aortic implants. The results show that the elaborated CFD model correctly predicted thrombus formation, shape and deposition site in an endovascular prosthesis. The developed CFD model of thrombus growth can be applied to predict the risk of thrombus formation in stent-grafts and assist in selection of geometry of the endovascular prosthesis to reduce possible complications after stent-graft implantation using only basic medical data.
Collapse
Affiliation(s)
- Andrzej Polanczyk
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Heat and Mass Transfer, Poland.
| | - Marek Podyma
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Heat and Mass Transfer, Poland
| | - Ludomir Stefanczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Poland
| | - Wojciech Szubert
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Poland
| | - Ireneusz Zbicinski
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Heat and Mass Transfer, Poland
| |
Collapse
|
40
|
Storti F, van de Vosse FN. A continuum model for platelet plug formation, growth and deformation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1541-1557. [PMID: 25250915 DOI: 10.1002/cnm.2688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
A numerical framework for modelling platelet plug dynamics is presented in this work. It consists of an extension of a biochemical and plug growth model with a solid mechanics model for the plug coupled with a fluid-structure interaction model for the blood flow-plug system. The platelet plug is treated as a neo-Hookean elastic solid, of which the implementation is based on an updated Lagrangian approach. The framework is applied to different haemodynamic configurations coupled with different shear moduli of the plug. Results about plug growth, shape and size, as well as the stress distribution, are shown. Based on the simulations performed, we conclude that the deformability of the platelet plug is essential for its growth.
Collapse
Affiliation(s)
- F Storti
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | | |
Collapse
|
41
|
Systems biology of platelet-vessel wall interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:85-98. [PMID: 25480638 DOI: 10.1007/978-1-4939-2095-2_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic plug at the site of a blood vessel's breach, preventing blood loss. However, hemostatic events can lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. Development of multi-scale models coupling processes at several scales and running predictive model simulations on powerful computer clusters can help interdisciplinary groups of researchers to suggest and test new patient-specific treatment strategies.
Collapse
|