1
|
Drygiannakis I, Valatas V, Filidou E, Tzenaki N, Archontoulaki E, Dovrolis N, Kandilogiannakis L, Kefalogiannis G, Sidiropoulos P, Kolios G, Koutroubakis IE. Low-Grade Activation of the Extrinsic Coagulation Pathway in Patients with Ulcerative Colitis. Dig Dis Sci 2024; 69:3773-3785. [PMID: 39322807 DOI: 10.1007/s10620-024-08640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) increases the risk for venous thromboembolism. Tissue factor (TF) initiates the extrinsic coagulation pathway (ECP). AIMS To investigate the correlation of UC severity with latent ECP activation and TF expression in primary colonic stromal cells (PCSC). METHODS In plasma of 38 UC patients (31 males, disease duration 151 ± 25 months) and 28 healthy controls, exosomes and microparticles (EM) were counted. Moreover, TF protein concentration, activities of EM-bound TF (EM-TFa) and coagulation factor VII (FVIIa) were assessed. In PCSC in culture, TF mRNA (F3) from 12 patients with active UC and 7 controls was evaluated. RESULTS UC patients had 4- and 3.7- times more exosomes and microparticles, respectively, than controls. TF protein in UC was correlated with several disease severity indices, such as partial Mayo score (pMs; r 0.443), albumin (- 0.362), ESR (0.353), PLT (0.575), and endoscopic Ms (eMs 0.468). EM-TFa was also significantly higher in UC and was correlated to SIBDQ (- 0.64), albumin (- 0.624), disease extent and eMs (0.422). Refractory-to-treatment patients had significantly higher TF protein, EM-TFa and FVIIa. Even within responders, the need for steroids or biologics correlated with a 2.2-times higher EM-TFa. PCSC from active UC maintained higher F3 than controls, which was correlated to pMs (0.56), albumin (- 0.543) and eMs. Treatment with cytokines further upregulated F3. P for all comparisons was < 0.05. CONCLUSION Low-grade activation of the ECP associates with clinical, endoscopic UC activity and response to treatment. TF in PCSC mirrors its systemic activity and points to them as a source.
Collapse
Affiliation(s)
- Ioannis Drygiannakis
- Gastroenterology Research Laboratory, School of Medicine, University of Crete, 71500, Heraklion, Crete, Greece
- Department of Gastroenterology, University Hospital, P.O. BOX 1352, 71110, Heraklion, Crete, Greece
| | - Vassilis Valatas
- Gastroenterology Research Laboratory, School of Medicine, University of Crete, 71500, Heraklion, Crete, Greece
- Department of Gastroenterology, University Hospital, P.O. BOX 1352, 71110, Heraklion, Crete, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Niki Tzenaki
- Gastroenterology Research Laboratory, School of Medicine, University of Crete, 71500, Heraklion, Crete, Greece
| | - Evangelia Archontoulaki
- Gastroenterology Research Laboratory, School of Medicine, University of Crete, 71500, Heraklion, Crete, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | | | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, School of Medicine, University of Crete, 71500, Heraklion, Crete, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis E Koutroubakis
- Gastroenterology Research Laboratory, School of Medicine, University of Crete, 71500, Heraklion, Crete, Greece.
- Department of Gastroenterology, University Hospital, P.O. BOX 1352, 71110, Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Zajc Avramovic M, Avcin T. Antiphospholipid syndrome in children. Best Pract Res Clin Rheumatol 2024; 38:101986. [PMID: 39138042 DOI: 10.1016/j.berh.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Antiphospholipid syndrome (APS) in children is a rare disease associated with significant morbidity and mortality. In comparison with APS in adults, pediatric APS has a more severe presentation with frequent recurrences of thrombotic events and a higher probability of life-threatening catastrophic APS. Nonthrombotic manifestations are also more common in the pediatric age group and can precede thrombosis. New classification criteria have been introduced recently and have not yet been assessed in pediatric patients with APS. In addition to anticoagulation drugs, other novel therapies have emerged including the use of B cell and complement inhibitors, especially in catastrophic APS. The purpose of this review is to provide a broad overview of aPL-related clinical manifestations in pediatric patients based on the analysis of published cohorts and data from the international pediatric APS registry. We also aim to illustrate APS in infants caused by transplacentally transferred maternal aPL, which is very rarely associated with acute thrombotic events in the perinatal period and more frequently with long-term neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Mojca Zajc Avramovic
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center Ljubljana, Slovenia; Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Slovenia.
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center Ljubljana, Slovenia; Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
3
|
Haga Y, Ohara A, Yakuwa T, Yamashita A, Udo M, Matsuoka M, Ohara H, Yasumoto A, Takahashi H. Persistently High Platelet Factor 4 Levels in an Adolescent with Recurrent Late Thrombotic Complications after SARS-CoV-2 mRNA Vaccination. Hematol Rep 2024; 16:504-511. [PMID: 39189244 PMCID: PMC11348110 DOI: 10.3390/hematolrep16030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Thrombosis after severe acute respiratory syndrome coronavirus 2 vaccination is a serious complication in patients with a thrombophilic predisposition. Herein, we present a 17-year-old female who had underlying antiphospholipid syndrome (APS) and developed deep vein thrombosis (DVT) 6 months after her second BNT162b2 vaccine dose. Although she had no family history of thrombosis, she had previously developed DVT at 6 years of age, with thrombus formation in the right common iliac vein and the inferior vena cava, along with concomitant left pulmonary infarction. The patient had received anticoagulant therapy for 6 years after DVT onset, with subsequent treatment cessation for 5 years without recurrence. She received the BNT162b2 vaccine at 17 years of age, 1 week before a routine outpatient visit. Platelet factor 4 elevation was detected 14 days after the first vaccination, persisting for 5 months without thrombotic symptoms. Six months after the second vaccine dose, the DVT recurred and was treated with a direct oral anticoagulant. The vaccine was hypothesized to exacerbate the patient's APS by activating coagulation. Platelet factor 4 levels may indicate coagulation status. When patients predisposed to thrombosis are vaccinated, coagulation status and platelet activation markers should be monitored to prevent DVT development.
Collapse
Affiliation(s)
- Yoichi Haga
- Department of Pediatrics, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan (M.M.); (H.T.)
| | - Akira Ohara
- Department of Pediatrics, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan (M.M.); (H.T.)
| | - Tsuneyoshi Yakuwa
- Department of Clinical Laboratory, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Akari Yamashita
- Department of Pediatrics, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan (M.M.); (H.T.)
| | - Midori Udo
- Department of Pediatrics, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan (M.M.); (H.T.)
| | - Masaki Matsuoka
- Department of Pediatrics, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan (M.M.); (H.T.)
| | - Hiroshi Ohara
- Department of Cardiovascular Medicine, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan;
| | - Atsushi Yasumoto
- Department of Laboratory Medicine and Blood Transfusion, Hokkaido University Hospital, North-14, West-5, Kita-ku, Sapporo-shi 060-8648, Hokkaido, Japan;
| | - Hiroyuki Takahashi
- Department of Pediatrics, Toho University Medical Center Omori Hospital, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan (M.M.); (H.T.)
| |
Collapse
|
4
|
Celia AI, Galli M, Mancuso S, Alessandri C, Frati G, Sciarretta S, Conti F. Antiphospholipid Syndrome: Insights into Molecular Mechanisms and Clinical Manifestations. J Clin Med 2024; 13:4191. [PMID: 39064231 PMCID: PMC11277906 DOI: 10.3390/jcm13144191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Antiphospholipid syndrome (APS) is a complex systemic autoimmune disorder characterized by a hypercoagulable state, leading to severe vascular thrombosis and obstetric complications. The 2023 ACR/EULAR guidelines have revolutionized the classification and understanding of APS, introducing broader diagnostic criteria that encompass previously overlooked cardiac, renal, and hematologic manifestations. Despite these advancements, diagnosing APS remains particularly challenging in seronegative patients, where traditional tests fail, yet clinical symptoms persist. Emerging non-criteria antiphospholipid antibodies offer promising new diagnostic and management avenues for these patients. Managing APS involves a strategic balance of cardiovascular risk mitigation and long-term anticoagulation therapy, though the use of direct oral anticoagulants remains contentious due to varying efficacy and safety profiles. This article delves into the intricate pathogenesis of APS, explores the latest classification criteria, and evaluates cutting-edge diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Ida Celia
- Rheumatology, Department of Clinical Internal, Anesthesiological e Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.I.C.); (S.M.); (C.A.); (F.C.)
| | - Mattia Galli
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.F.); (S.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
| | - Silvia Mancuso
- Rheumatology, Department of Clinical Internal, Anesthesiological e Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.I.C.); (S.M.); (C.A.); (F.C.)
| | - Cristiano Alessandri
- Rheumatology, Department of Clinical Internal, Anesthesiological e Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.I.C.); (S.M.); (C.A.); (F.C.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.F.); (S.S.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.F.); (S.S.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Fabrizio Conti
- Rheumatology, Department of Clinical Internal, Anesthesiological e Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.I.C.); (S.M.); (C.A.); (F.C.)
| |
Collapse
|
5
|
Solé C, Royo M, Sandoval S, Moliné T, Cortés-Hernández J. Small-Extracellular-Vesicle-Derived miRNA Profile Identifies miR-483-3p and miR-326 as Regulators in the Pathogenesis of Antiphospholipid Syndrome (APS). Int J Mol Sci 2023; 24:11607. [PMID: 37511365 PMCID: PMC10380201 DOI: 10.3390/ijms241411607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease associated with recurrent thrombosis and/or obstetric morbidity with persistent antiphospholipid antibodies (aPL). Although these antibodies drive endothelial injury and thrombophilia, the underlying molecular mechanism is still unclear. Small extracellular vesicles (sEVs) contain miRNAs, key players in intercellular communication. To date, the effects of miRNA-derived sEVs in PAPS are not well understood. We characterised the quantity, cellular origin and miRNA profile of sEVs isolated from thrombotic APS patients (PAPS, n = 50), aPL-carrier patients (aPL, n = 30) and healthy donors (HD, n = 30). We found higher circulating sEVs mainly of activated platelet origin in PAPS and aPL patients compared to HD, that were highly engulfed by HUVECs and monocyte. Through miRNA-sequencing analysis, we identified miR-483-3p to be differentially upregulated in sEVs from patients with PAPS and aPL, and miR-326 to be downregulated only in PAPS sEVs. In vitro studies showed that miR-483-3p overexpression in endothelial cells induced an upregulation of the PI3K-AKT pathway that led to endothelial proliferation/dysfunction. MiR-326 downregulation induced NOTCH pathway activation in monocytes with the upregulation of NFKB1, tissue factor and cytokine production. These results provide evidence that miRNA-derived sEVs contribute to APS pathogenesis by producing endothelial cell proliferation, monocyte activation and adhesion/procoagulant factors.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Maria Royo
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Sebastian Sandoval
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| | - Teresa Moliné
- Department of Pathology, Vall d’Hebrón University Hospital, 08035 Barcelona, Spain;
| | - Josefina Cortés-Hernández
- Rheumatology Research Group—Lupus Unit, Vall d’Hebrón University Hospital, Vall d’Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (M.R.); (S.S.); (J.C.-H.)
| |
Collapse
|
6
|
Luo L, Yang Y, Fu M, Luo J, Li W, Tu L, Dong R. 11,12-EET suppressed LPS induced TF expression and thrombus formation by accelerating mRNA degradation rate via strengthening PI3K-Akt signaling pathway and inhibiting p38-TTP pathway. Prostaglandins Other Lipid Mediat 2023; 167:106740. [PMID: 37119935 DOI: 10.1016/j.prostaglandins.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system. So far, most research has focused on the vasodilatory, anti-inflammatory, anti-apoptotic and mitogenic properties of EETs in the systemic circulation. However, whether EETs could suppress tissue factor (TF) expression and prevent thrombus formation remains unknown. Here we utilized in vivo and in vitro models to investigate the effects and underlying mechanisms of exogenously EETs on LPS induced TF expression and inferior vein cava ligation induced thrombosis. We observed that the thrombus formation rate and the size of the thrombus were greatly reduced in 11,12-EET treated mice,accompanied by decreased TF and inflammatory cytokines expression. Further in vitro studies showed that by enhancing p38 MAPK activation and subsequent tristetraprolin (TTP) phosphorylation, LPS strengthened the stability of TF mRNA and induced increased TF expression. However, by strengthening PI3K-dependent Akt phosphorylation, which acted as a negative regulator of p38-TTP signaling pathway,11,12-EET reduced LPS-induced TF expression in monocytes. In addition, 11,12-EET inhibited LPS-induced NF-κB nuclear translocation by activating the PI3K/Akt pathway. Further study indicated that the inhibitory effect of 11,12-EET on TF expression was mediated by antagonizing LPS-induced activation of thromboxane prostanoid receptor. In conclusion, our study demonstrated that 11,12-EET prevented thrombosis by reducing TF expression and targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate thrombosis related diseases.
Collapse
Affiliation(s)
- Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Wuhan, Hubei, 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Álvarez D, Morales-Prieto DM, Cadavid ÁP. Interaction between endothelial cell-derived extracellular vesicles and monocytes: A potential link between vascular thrombosis and pregnancy-related morbidity in antiphospholipid syndrome. Autoimmun Rev 2023; 22:103274. [PMID: 36649876 DOI: 10.1016/j.autrev.2023.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease driven by a wide group of autoantibodies primarily directed against phospholipid-binding proteins (antiphospholipid antibodies). APS is defined by two main kinds of clinical manifestations: vascular thrombosis and pregnancy-related morbidity. In recent years, in vitro and in vivo assays, as well as the study of large groups of patients with APS, have led some authors to suggest that obstetric and vascular manifestations of the disease are probably the result of different pathogenic mechanisms. According to this hypothesis, the disease could be differentiated into two parallel entities: Vascular APS and obstetric APS. Thus, vascular APS is understood as an acquired thrombophilia in which a generalised phenomenon of endothelial activation and dysfunction (coupled with a triggering factor) causes thrombosis at any location. In contrast, obstetric APS seems to be due to an inflammatory phenomenon accompanied by trophoblast cell dysfunction. The recent approach to APS raises new issues; for instance, the mechanisms by which a single set of autoantibodies can lead to two different clinical entities are unclear. This review will address the monocyte, a cell with well-known roles in haemostasis and pregnancy, as a potential participant in vascular thrombosis and pregnancy-related morbidity in APS. We will discuss how in a steady state the monocyte-endothelial interaction occurs via extracellular vesicles (EVs), and how antiphospholipid antibodies, by inducing endothelial activation and dysfunction, may disturb this interaction to promote the release of monocyte-targeted procoagulant and inflammatory messages.
Collapse
Affiliation(s)
- Daniel Álvarez
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Ángela P Cadavid
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
8
|
Abstract
Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease propelled by circulating autoantibodies that recognize cell surface phospholipids and phospholipid binding proteins. The result is an increased risk of thrombotic events, pregnancy morbidity, and various other autoimmune and inflammatory complications. Although antiphospholipid syndrome was first recognized in patients with lupus, the stand alone presentation of antiphospholipid syndrome is at least equally common. Overall, the diagnosis appears to affect at least one in 2000 people. Studies of antiphospholipid syndrome pathogenesis have long focused on logical candidates such as coagulation factors, endothelial cells, and platelets. Recent work has shed light on additional potential therapeutic targets within the innate immune system, including the complement system and neutrophil extracellular traps. Vitamin K antagonists remain the mainstay of treatment for most patients with thrombotic antiphospholipid syndrome and, based on current data, appear superior to the more targeted direct oral anticoagulants. The potential role of immunomodulatory treatments in antiphospholipid syndrome management is receiving increased attention. As for many systemic autoimmune diseases, the most important future direction is to more precisely identify mechanistic drivers of disease heterogeneity in pursuit of unlocking personalized and proactive treatments for patients.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - D Ware Branch
- James R. and Jo Scott Research Chair, Department of Obstetrics and Gynecology, University of Utah Health and Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Thomas L Ortel
- Division of Hematology, Departments of Medicine and Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
9
|
Abstract
The prognosis in systemic lupus erythematosus (SLE) has improved due to better treatment and care, but cardiovascular disease (CVD) still remains an important clinical problem, since the risk of CVD in SLE is much higher than among controls. Atherosclerosis is the main cause of CVD in the general population, and in SLE, increased atherosclerosis, especially the prevalence of atherosclerotic plaques, has been demonstrated. Atherosclerosis is an inflammatory condition, where immunity plays an important role. Interestingly, oxidized low-density lipoprotein, defective clearance of dead cells, and inflammation, with a pro-inflammatory T-cell profile are characteristics of both atherosclerosis and SLE. In addition to atherosclerosis as an underlying cause of CVD in SLE, there are also other non-mutually exclusive mechanisms, and the most important of these are antiphospholipid antibodies (aPL) leading to the antiphospholipid antibody syndrome with both arterial and venous thrombosis. aPL can cause direct pro-inflammatory and prothrombotic effects on endothelial and other cells and also interfere with the coagulation, for example, by inhibiting annexin A5 from its antithrombotic and protective effects. Antibodies against phosphorylcholine (anti-PC) and other small lipid-related epitopes, sometimes called natural antibodies, are negatively associated with CVD and atherosclerosis in SLE. Taken together, a combination of traditional risk factors such as hypertension and dyslipidemia, and nontraditional ones, especially aPL, inflammation, and low anti-PC are implicated in the increased risk of CVD in SLE. Close monitoring of both traditional risk factors and nontraditional ones, including treatment of disease manifestations, not lest renal disease in SLE, is warranted.
Collapse
Affiliation(s)
- Johan Frostegård
- Section of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Álvarez D, Rúa C, Velásquez Berrío M, Cataño JU, Escudero C, Cadavid J ÁP. Extracellular vesicles released upon stimulation with antiphospholipid antibodies: An actual direct procoagulant mechanism or a new factor in the lupus anticoagulant paradox? J Autoimmun 2022; 133:102905. [PMID: 36115210 DOI: 10.1016/j.jaut.2022.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Antiphospholipid antibodies (aPL) lead to a hypercoagulable state in vivo. Paradoxically, some of these autoantibodies perform as inhibitors of the coagulation cascade in vitro (a phenomenon referred to as "lupus anticoagulant"). The presence of lupus anticoagulant has been related to an increased quantity of plasma extracellular vesicles, which may constitute a direct procoagulant mechanism in antiphospholipid syndrome. This study investigates whether or not endothelial cell-derived extracellular vesicles released upon stimulation with aPL (aPL-EDEVs) are related to a higher direct coagulation activity. Using an in vitro model of endothelium, flow cytometry and a recalcified plasma-based assay, we found that the coagulation activity of aPL-EDEVs is mainly conditioned by the lupus anticoagulant-like activity of autoantibodies. Nevertheless, in the presence of β2 glycoprotein I, a cofactor of aPL during the stimulation of endothelial cells, the coagulation activity of EDEVs is restored in a mitogen-activated protein kinase kinases 1 and 2 (MEK1/2)-dependent manner. This phenomenon was especially evident when using immunoglobulins G from patients with vascular and obstetric primary antiphospholipid syndrome who manifest refractoriness to treatment. Our findings suggest that the role of aPL-EDEVs in the antiphospholipid syndrome-related hypercoagulable state may not rely on their capacity to enhance clotting directly. While β2 glycoprotein I performs as a procoagulant cofactor and restores the coagulation activity of extracellular vesicles via MEK1/2 pathway, proportionally, autoantibodies interact with aPL-EDEVs and exhaust their coagulation properties. Further analysis is required to establish whether lupus anticoagulant-like autoantibodies opsonise extracellular vesicles and whether opsonised vesicles may lead to thrombosis by indirect means.
Collapse
Affiliation(s)
- Daniel Álvarez
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Carolina Rúa
- Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Manuela Velásquez Berrío
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - John Ubeimar Cataño
- Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia; Hospital San Vicente Fundación, Medellín, Colombia
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health (GRIVAS Health), Basic Sciences Department, Faculty of Sciences, Universidad del Bio-Bio, Chillán, Chile
| | - Ángela P Cadavid J
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
11
|
Cheng C, Bison E, Pontara E, Cattini MG, Tonello M, Denas G, Pengo V. Platelet- and endothelial-derived microparticles in the context of different antiphospholipid antibody profiles. Lupus 2022; 31:1328-1334. [DOI: 10.1177/09612033221118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives Studies on microparticles (MPs) in patients with antiphospholipid antibodies (aPL) are sparse and inconclusive. The relation between MPs and different aPL antibody profiles has never been tested. We evaluated the presence of platelet and endothelial microparticles in patients positive for IgG anti-β2-glycoprotein I (aβ2GPI) antibodies according to triple, double and single positive aPL profiles. Methods Megamix (Biocytex) was used to set up the MPs gating according to the datasheet. Markers of Platelet Microparticles (PMPs) were CD41a-PE and annexin-V-FITC that was used to determine phosphatidylserine (PS) exposure. CD144-FITC was used as a marker of Endothelial Microparticles (EMPs). Results The number of total MPs and EMPs was significantly higher in triple positive groups with respect to single positive group and showed a significant correlation with IgG aβ2GPI titers. The number PMPs was the lowest in triple positive group and inversely correlated with IgG aβ2GPI titers. Conclusions Elevated levels of total MPs and EMPs suggest a state of vascular activation in IgG aβ2GPI positive individuals according to the number of positive tests. PMPs may be fast cleared from circulation in high risk triple positive patients.
Collapse
Affiliation(s)
- Chunyan Cheng
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisa Bison
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elena Pontara
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maria Grazia Cattini
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marta Tonello
- Department of Medicine, Rheumatology Section, University of Padua, Padova, Italy
| | - Gentian Denas
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Vittorio Pengo
- Thrombosis Research Laboratory, Department of Cardio-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Arianna Foundation on Anticoagulation, Bologna, Italy
| |
Collapse
|
12
|
Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol 2022; 44:347-362. [PMID: 35122116 PMCID: PMC8816310 DOI: 10.1007/s00281-022-00916-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune thrombophilia propelled by circulating antiphospholipid antibodies that herald vascular thrombosis and obstetrical complications. Antiphospholipid antibodies recognize phospholipids and phospholipid-binding proteins and are not only markers of disease but also key drivers of APS pathophysiology. Thrombotic events in APS can be attributed to various conspirators including activated endothelial cells, platelets, and myeloid-lineage cells, as well as derangements in coagulation and fibrinolytic systems. Furthermore, recent work has especially highlighted the role of neutrophil extracellular traps (NETs) and the complement system in APS thrombosis. Beyond acute thrombosis, patients with APS can also develop an occlusive vasculopathy, a long-term consequence of APS characterized by cell proliferation and infiltration that progressively expands the intima and leads to organ damage. This review will highlight known pathogenic factors in APS and will also briefly discuss similarities between APS and the thrombophilic coagulopathy of COVID-19.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
13
|
Wang C, Yu C, Novakovic VA, Xie R, Shi J. Circulating Microparticles in the Pathogenesis and Early Anticoagulation of Thrombosis in COVID-19 With Kidney Injury. Front Cell Dev Biol 2022; 9:784505. [PMID: 35118071 PMCID: PMC8804312 DOI: 10.3389/fcell.2021.784505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As more is learned about the pathophysiological mechanisms of COVID-19, systemic thrombosis has been recognized as being associated with more severe clinical manifestations, mortality and sequelae. As many as 40% of patients admitted to the hospital due to COVID-19 have acute kidney injury, with coagulation abnormalities the main cause of impaired function. However, the mechanism of renal thrombosis and the process leading to kidney injury are unclear. Microparticles (MPs) are membrane bubbles released in response to activation, injury or apoptosis of cells. The phosphatidylserine (PS) exposed on the surface of MPs provides binding sites for endogenous and exogenous FXase complexes and prothrombin complexes, thus providing a platform for the coagulation cascade reaction and facilitating clot formation. In the context of COVID-19 infection, viral attack leads immune cells to release cytokines that damage circulating blood cells and vascular endothelial cells, resulting in increased MPs levels. Therefore, MPs can be used as a risk factor to predict renal microthrombosis and kidney injury. In this paper, we have summarized the latest data on the pathophysiological mechanism and treatment of renal thrombosis caused by MPs in COVID-19, revealing that the coagulation abnormality caused by MP and PS storms is a universal progression that aggravates the mortality and sequelae of COVID-19 and potentially other pandemic diseases. This paper also describes the risk factors affecting renal thrombosis in COVID-19 from the perspective of the Virchow’s triad: blood hypercoagulability, vascular endothelial injury, and decreased blood flow velocity. In summary, given the serious consequences of thrombosis, current guidelines and clinical studies suggest that early prophylactic anticoagulant therapy reduces mortality and improves clinical outcomes. Early anticoagulation, through inhibition of PS-mediated coagulopathy, allows maintenance of unobstructed blood circulation and oxygen delivery thereby facilitating the removal of inflammatory factors, viruses, MPs, and dead or damaged cells, and expediting patient rehabilitation.
Collapse
Affiliation(s)
- Chengyue Wang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Geriatric, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Rujuan Xie
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| | - Jialan Shi
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| |
Collapse
|
14
|
Wang W, Deng Z, Liu G, Yang J, Zhou W, Zhang C, Shen W, Zhang Y. Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling. Exp Ther Med 2021; 22:1120. [PMID: 34504574 PMCID: PMC8383774 DOI: 10.3892/etm.2021.10554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs), which are generated from the plasma membrane during platelet activation, may be involved in the inflammatory processes of rheumatoid arthritis (RA). The motility of RA fibroblast-like synoviocytes (RA-FLS) plays a key role in the development of synovial inflammation and joint erosion. However, the effects of PEVs on the motility of RA-FLS remain unclear. Thus, the present study aimed to investigate the active contents and potential molecular mechanisms underlying the role of PEVs in regulating the migration and invasion of RA-FLS. The results demonstrated that PEVs contain certain chemokines associated with cell migration and invasion, including C-C motif chemokine ligand 5, C-X-C motif chemokine ligand (CXCL)4 and CXCL7. Furthermore, SB225002, an antagonist of C-X-C motif chemokine receptor 2 (CXCR2; a CXCL7 receptor), partially prevented the migration and invasion of RA-FLS induced by PEVs, suggesting that PEVs may activate a CXCR2-mediated signaling pathway in RA-FLS. In addition, SB225002 antagonized the phosphorylation of IκB and NF-κB in RA-FLS induced by PEVs. Taken together, the results of the present study suggested that PEVs may promote the migration and invasion of RA-FLS by activating the NF-κB pathway mediated by the CXCR2 signaling pathway.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Department of Rheumatology, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Zijing Deng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Guiping Liu
- Department of Rheumatology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jie Yang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Wei Zhou
- Department of Internal Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Chen Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yu Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
15
|
Platelet distribution width is highly associated with thrombotic events in primary antiphospholipid syndrome. Clin Rheumatol 2021; 40:4581-4588. [PMID: 34213673 DOI: 10.1007/s10067-021-05843-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Platelet activation is a possible pathogenic process contributing to thromboembolism in antiphospholipid syndrome (APS), and platelet distribution width (PDW) is associated with platelet activation. The objective of this study was to evaluate the association between platelet indices and thrombotic events in patients with primary APS. METHODS This single-center cross-sectional study included 207 consecutive patients with APS treated at our institution between 2010 and 2019. Results of blood tests were recorded retrospectively from medical records. RESULTS Of the included patients, 135 (65.2%) were female and 72 (34.8%) were male. They were classified into thrombotic (n = 150) or non-thrombotic (n = 57) groups. PDW, mean platelet volume, and large platelet ratio were significantly higher in the thrombotic group. In univariate logistic analysis, PDW was significantly associated with an increased odds of thrombosis [odds ratio (OR) 1.554, 95% confidence interval (CI) 1.289-1.873, p<0.001]. In multivariate logistic analysis, PDW and positive lupus anticoagulant (LA) were risk factors for thrombosis. Receiver operating characteristic analysis showed that PDW, combined with a positive LA, was a reliable indicator of thrombosis, with an area under the curve of 0.796 (95% CI 0.728-0.864). The optimal cutoff value for PDW was 12.4 fl, with a sensitivity of 72.0% and specificity of 77.2%. Multivariate logistic regression of PDW tertiles showed that the odds of thrombosis increased abruptly in the highest tertile. CONCLUSION This study confirmed the association between PDW and thrombotic events in APS patients, supporting the theory that platelet activation is a crucial mechanism of thrombosis in APS. Key Points • This study is the first to discuss the correlation between PDW and thromboses in patients with APS. • This study provides evidence of the important role of platelet activation in the pathogenesis of APS.
Collapse
|
16
|
Álvarez D, Rúa C, Cadavid J ÁP. Microparticles: An Alternative Explanation to the Behavior of Vascular Antiphospholipid Syndrome. Semin Thromb Hemost 2021; 47:787-799. [PMID: 33930895 DOI: 10.1055/s-0041-1727111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiphospholipid syndrome is an autoimmune disease characterized by the persistent presence of antiphospholipid antibodies, along with occurrence of vascular thrombosis and pregnancy morbidity. The variety of antiphospholipid antibodies and their related mechanisms, as well as the behavior of disease in wide groups of patients, have led some authors to propose a differentiation of this syndrome into two independent entities: vascular and obstetric antiphospholipid syndrome. Thus, previous studies have discussed whether specific autoantibodies may be responsible for this differentiation or, in contrast, how the same antibodies are able to generate two different clinical presentations. This discussion is yet to be settled. The capability of serum IgG from patients with vascular thrombosis to trigger the biogenesis of endothelial cell-derived microparticles in vitro is one of the previously discussed differences between the clinical entities of antiphospholipid syndrome. These vesicles constitute a prothrombotic mechanism as they can directly lead to clot activation in murine models and recalcified human plasma. Nevertheless, other indirect mechanisms by which microparticles can spread a procoagulant phenotype could be critical to understanding their role in antiphospholipid syndrome. For this reason, questions regarding the cargo of microparticles, and the signaling pathways involved in their biogenesis, are of interest in attempting to explain the behavior of this autoimmune disease.
Collapse
Affiliation(s)
- Daniel Álvarez
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Carolina Rúa
- Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Ángela P Cadavid J
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
17
|
Extracellular Vesicles and Antiphospholipid Syndrome: State-of-the-Art and Future Challenges. Int J Mol Sci 2021; 22:ijms22094689. [PMID: 33925261 PMCID: PMC8125219 DOI: 10.3390/ijms22094689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 01/08/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thromboembolism, obstetric complications, and the presence of antiphospholipid antibodies (aPL). Extracellular vesicles (EVs) play a key role in intercellular communication and connectivity and are known to be involved in endothelial and vascular pathologies. Despite well-characterized in vitro and in vivo models of APS pathology, the field of EVs remains largely unexplored. This review recapitulates recent findings on the role of EVs in APS, focusing on their contribution to endothelial dysfunction. Several studies have found that APS patients with a history of thrombotic events have increased levels of EVs, particularly of endothelial origin. In obstetric APS, research on plasma levels of EVs is limited, but it appears that levels of EVs are increased. In general, there is evidence that EVs activate endothelial cells, exhibit proinflammatory and procoagulant effects, interact directly with cell receptors, and transfer biological material. Future studies on EVs in APS may provide new insights into APS pathology and reveal their potential as biomarkers to identify patients at increased risk.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease that is primarily treated with anticoagulation. Better understanding the inflammatory aspects of APS could lead to safer, more effective, and more personalized therapeutic options. To this end, we sought to understand recent literature related to the role of neutrophils and, in particular, neutrophil extracellular traps (NETs) in APS. RECENT FINDINGS Expression of genes associated with type I interferons, endothelial adhesion, and pregnancy regulation are increased in APS neutrophils. APS neutrophils have a reduced threshold for NET release, which likely potentiates thrombotic events and perhaps especially large-vein thrombosis. Neutrophil-derived reactive oxygen species also appear to play a role in APS pathogenesis. There are new approaches for preventing and disrupting NETs that could potentially be leveraged to reduce the risk of APS-associated thrombosis. Neutrophils and NETs contribute to APS pathophysiology. More precisely understanding their roles at a mechanistic level should help identify new therapeutic targets for inhibiting NET formation, enhancing NET dissolution, and altering neutrophil adhesion. Such approaches may ultimately lead to better clinical management of APS patients and thereby reduce the chronic burden of this disease.
Collapse
|
19
|
Tong M, Tsai BW, Chamley LW. Antiphospholipid antibodies and extracellular vesicles in pregnancy. Am J Reprod Immunol 2020; 85:e13312. [PMID: 32715546 DOI: 10.1111/aji.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Antiphospholipid antibodies (aPL) are autoantibodies that target phospholipid-binding proteins, such as β2 glycoprotein I (β2GPI), and can induce thrombosis systemically, as well as increase the risk of obstetric complications such as recurrent miscarriage and preeclampsia. Due to the expression of β2GPI by placental trophoblasts, aPL readily target the maternal-fetal interface during pregnancy and many studies have investigated the deleterious effects of aPL on placental trophoblast function. This review will focus on studies that have examined the effects of aPL on the production and modification of extracellular vesicles (EVs) from trophoblasts, as EVs are a key mode of feto-maternal communication in both normal and pathological pregnancy. A more comprehensive understanding of the effects of aPL on the quantity and cargo of EVs extruded by the human placenta may contribute to our current knowledge of how aPL induce both systemic and obstetric disease.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Bridget W Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, USA
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, USA
| |
Collapse
|
20
|
Hermel M, Hermel D, Azam S, Shinbane J, Sarcon A, Jones E, Mehta A, Grazette L, Liebman H, Weitz I. Acute dilated cardiomyopathy in the setting of catastrophic antiphospholipid syndrome and thrombotic microangiopathy: A case series and review. EJHAEM 2020; 1:44-50. [PMID: 35847716 PMCID: PMC9175940 DOI: 10.1002/jha2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
Abstract
Catastrophic antiphospholipid antibody syndrome (CAPS) is a rare form of antiphospholipid syndrome, an autoimmune condition characterized by vascular thromboses, pregnancy loss, and antiphospholipid (aPL) antibodies. Diagnosis of CAPS relies on thrombosis of at least three different organs systems over 1 week, histopathological evidence of small vessel occlusion, and high aPL antibody titers. In a subset of precipitating circumstances, activation or disruption of endothelial cells in the microvasculature may occur along with cardiomyopathy. We present two cases of CAPS-associated dilated cardiomyopathy at our institution, focusing on disease management, pathophysiology, and treatment. These patients were of Southeastern Asian descent, raising the possibility of genetic polymorphisms contributing to the development of cardiomyopathy. Both met CAPS criteria and both demonstrated clinicopathologic thrombotic microangiopathy (TMA) and complement activation and developed severe dilated cardiomyopathy with shock. Complement activation plays an important role in the development of CAPS and may be important in the pathogenesis of CAPS-associated cardiomyopathy. Clinical suspicion for TMA as a pathophysiologic mechanism of unexplained heart failure in CAPS is important and increased awareness of cardiac side effects is necessary so that early treatment can be initiated to halt further cardiac and systemic complications.
Collapse
Affiliation(s)
- Melody Hermel
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - David Hermel
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Saif Azam
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Jerold Shinbane
- Department of CardiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Annahita Sarcon
- Department of CardiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Erika Jones
- Department of CardiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Arjun Mehta
- Department of PathologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Luanda Grazette
- Department of CardiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Howard Liebman
- Jane Anne Nohl Division of HematologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Ilene Weitz
- Jane Anne Nohl Division of HematologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
21
|
Štok U, Blokar E, Lenassi M, Holcar M, Frank-Bertoncelj M, Erman A, Resnik N, Sodin-Šemrl S, Čučnik S, Perdan Pirkmajer K, Ambrožič A, Žigon P. Characterization of Plasma-Derived Small Extracellular Vesicles Indicates Ongoing Endothelial and Platelet Activation in Patients with Thrombotic Antiphospholipid Syndrome. Cells 2020; 9:cells9051211. [PMID: 32414170 PMCID: PMC7290474 DOI: 10.3390/cells9051211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, characterized by thrombosis, obstetric complications and the presence of antiphospholipid antibodies (aPL), which drive endothelial injury and thrombophilia. Extracellular vesicles (EVs) have been implicated in endothelial and thrombotic pathologies. Here, we characterized the quantity, cellular origin and the surface expression of biologically active molecules in small EVs (sEVs) isolated from the plasma of thrombotic APS patients (n = 14), aPL-negative patients with idiopathic thrombosis (aPL-neg IT, n = 5) and healthy blood donors (HBD, n = 7). Nanoparticle tracking analysis showed similar sEV sizes (110–170 nm) between the groups, with an increased quantity of sEVs in patients with APS and aPL-neg IT compared to HBD. MACSPlex analysis of 37 different sEV surface markers showed endothelial (CD31), platelet (CD41b and CD42a), leukocyte (CD45), CD8 lymphocyte and APC (HLA-ABC) cell-derived sEVs. Except for CD8, these molecules were comparably expressed in all study groups. sEVs from APS patients were specifically enriched in surface expression of CD62P, suggesting endothelial and platelet activation in APS. Additionally, APS patients exhibited increased CD133/1 expression compared to aPL-neg IT, suggesting endothelial damage in APS patients. These findings demonstrate enhanced shedding, and distinct biological properties of sEVs in thrombotic APS.
Collapse
Affiliation(s)
- Ula Štok
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Elizabeta Blokar
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
- Division for Internal Medicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.L.); (M.H.)
| | - Marija Holcar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.L.); (M.H.)
| | - Mojca Frank-Bertoncelj
- Centre of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.E.); (N.R.)
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.E.); (N.R.)
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, SI-6000 Koper, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Katja Perdan Pirkmajer
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
- Division for Internal Medicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleš Ambrožič
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
| | - Polona Žigon
- Department of Rheumatology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (U.Š.); (E.B.); (S.S.-Š.); (S.Č.); (K.P.P.); (A.A.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-1-522-5479
| |
Collapse
|
22
|
Low extracellular vesicle-associated tissue factor activity in patients with persistent lupus anticoagulant and a history of thrombosis. Ann Hematol 2018; 98:313-319. [PMID: 30467688 PMCID: PMC6342892 DOI: 10.1007/s00277-018-3544-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
Lupus anticoagulants (LA) are a heterogeneous group of antiphospholipid antibodies (aPLAs) that promote thrombosis. Tissue factor (TF)-bearing extracellular vesicles (EVs) might contribute to the prothrombotic state of patients with persistent LA and a history of thrombosis. To investigate if EV-associated TF activity is elevated in a well-defined group of LA-positive patients with a history of thrombosis in comparison to that of healthy controls. Adult patients (n = 94, median age 40.1 years, interquartile range (IQR) 29.9-53.4; 87% females) positive for LA and a history of thrombosis (78% venous thrombosis, 17% arterial thrombosis, 5% venous thrombosis and arterial thrombosis) and healthy age- and sex-matched controls (n = 30, median age 42.9 years, IQR 38.6-45.8, 77% females) were included in this study. EV-TF activity was determined with a factor Xa generation assay and anti-β2-glycoprotein (anti-β2GPI) and anticardiolipin (aCL) antibodies by enzyme-linked immunoassays. EV-TF activity did not differ between 94 LA-positive patients with a history of thrombosis (median 0.05 pg/mL, IQR 0.00-0.14) and 30 healthy controls (median 0.06, IQR 0.00-0.11, p = 0.7745). No correlation was found between EV-TF activity and lupus-sensitive activated partial thromboplastin time (aPTT-LA) (rho = 0.034), Rosner index (rho = - 0.056), anti-β2GPI IgG (rho = 0.05), anti-β2GPI IgM (rho = - 0.08), aCL IgG (rho = 0.12), and aCL IgM (rho = - 0.11) in LA-positive patients. We found low EV-TF activity levels in LA-positive patients and a history of thrombosis and no correlation with analyzed aPLAs. Our data indicate that circulating TF-bearing EVs do not contribute to the prothrombotic state of patients with LA.
Collapse
|
23
|
Turrent-Carriles A, Herrera-Félix JP, Amigo MC. Renal Involvement in Antiphospholipid Syndrome. Front Immunol 2018; 9:1008. [PMID: 29867982 PMCID: PMC5966534 DOI: 10.3389/fimmu.2018.01008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Antiphospholipid syndrome is a complex autoimmune disease, characterized by the presence of vascular thrombosis, obstetric, hematologic, cutaneous, and cardiac manifestations. Renal disease in patients with antiphospholipid syndrome was not recognized in the first descriptions of the disease, but later on, the renal manifestations of the syndrome have been investigated widely. Renal manifestations of antiphospholipid syndrome conform a wide spectrum of diverse renal syndromes. Hypertension is one of the most frequent, but less commonly recognized renal alteration. It can be difficult to control as its origin is renovascular. Renal vascular thrombosis can be arterial or venous. Other alterations are renal infarction and vascular thrombosis in arterial territories. Venous thrombosis can be present in primary and secondary antiphospholipid syndrome; it presents with worsening of previous proteinuria or de novo nephrotic syndrome, hypertension and renal failure. Antiphospholipid syndrome nephropathy is a vascular disease that affects glomerular tuft, interstitial vessels, and peritubular vessels; histopathology characterizes the renal lesions as acute or chronic, the classic finding is thrombotic microangiopathy, that leads to fibrosis, tubule thyroidization, focal cortical atrophy, and glomerular sclerosis. Antiphospholipid syndrome nephropathy can also complicate patients with systemic lupus erythematosus, and there is vast information supporting the worse renal prognosis in this group of patients with the classic histopathologic lesions. Treatment consists of anticoagulation, as for other thrombotic manifestations of antiphospholipid syndrome. There is some evidence of glomerulonephritis as an isolated lesion in patients with antiphospholipid syndrome. The most frequently reported glomerulonephritis is membranous; with some reports suggesting that immunosuppressive treatment may be effective. Patients with end stage renal disease commonly are positive for antiphospholipid antibodies, but it is not clear what is the role of aPL in this setting. Patients with vascular access may have complications in the presence of antibodies so that anticoagulation is recommended. Patients ongoing renal transplant with persistent antiphospholipid antibody positivity may have early and late graft failure.
Collapse
Affiliation(s)
| | | | - Mary-Carmen Amigo
- Internal Medicine Rheumatology Service, Centro Médico ABC, Mexico City, Mexico
| |
Collapse
|
24
|
Chaturvedi S, McCrae KR. Clinical Risk Assessment in the Antiphospholipid Syndrome: Current Landscape and Emerging Biomarkers. Curr Rheumatol Rep 2018; 19:43. [PMID: 28711993 DOI: 10.1007/s11926-017-0668-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Laboratory criteria for the classification of antiphospholipid syndrome include the detection of a lupus anticoagulant and/or anticardiolipin and anti-β2-glycoprotein I antibodies. However, the majority of patients who test positive in these assays do not have thrombosis. Current risk-stratification tools are largely limited to the antiphospholipid antibody profile and traditional thrombotic risk factors. RECENT FINDINGS Novel biomarkers that correlate with disease activity and potentially provide insight into future clinical events include domain 1 specific anti-β2GPI antibodies, antibodies to other phospholipids or phospholipid/protein antigens (such as anti-PS/PT), and functional/biological assays such as thrombin generation, complement activation, levels of circulating microparticles, and annexin A5 resistance. Clinical risk scores may also have value in predicting clinical events. Biomarkers that predict thrombosis risk in patients with antiphospholipid antibodies have been long sought, and several biomarkers have been proposed. Ultimately, integration of biomarkers with established assays and clinical characteristics may offer the best chance of identifying patients at highest risk of APS-related complications.
Collapse
Affiliation(s)
- Shruti Chaturvedi
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Keith R McCrae
- Department of Cellular and Molecular Medicine, Taussig Cancer Institute, Cleveland Clinic, CA6-154, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
25
|
Siddique S, Risse J, Canaud G, Zuily S. Vascular Manifestations in Antiphospholipid Syndrome (APS): Is APS a Thrombophilia or a Vasculopathy? Curr Rheumatol Rep 2017; 19:64. [PMID: 28871481 DOI: 10.1007/s11926-017-0687-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Antiphospholipid antibody syndrome (APS) is characterized primarily by thrombosis and pregnancy morbidity. Chronic vascular lesions can also occur. While the underlying mechanisms of these vascular lesions are not entirely known, there have been multiple theories describing the potential process of vasculopathy in APS and the various clinical manifestations associated with it. RECENT FINDINGS Recently, it has been demonstrated that endothelial proliferation in kidneys can be explained by the activation of the mammalian target of rapamycin complex (mTORC) pathway by antiphospholipid antibodies (aPL). These data support the existence of an APS-related vasculopathy in different locations which can explain-in part-the different manifestations of APS. This review focuses on the various manifestations of APS as a result of APS-related vasculopathy, as well as pathophysiology, current screening, and treatment options for clinicians to be aware of.
Collapse
Affiliation(s)
- Salma Siddique
- Division of Rheumatology, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, 10021, USA.
| | - Jessie Risse
- CHRU de Nancy, Vascular Medicine Division and Regional Competence Center For Rare Vascular And Systemic Autoimmune Diseases, Inserm U1116 at Lorraine University, Nancy, France
| | - Guillaume Canaud
- Université Paris Descartes, Sorbonne Paris Cité; Inserm U1151, Institut Necker-Enfants Malades; Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Stéphane Zuily
- CHRU de Nancy, Vascular Medicine Division and Regional Competence Center For Rare Vascular And Systemic Autoimmune Diseases, Inserm U1116 at Lorraine University, Nancy, France
| |
Collapse
|
26
|
Campello E, Radu CM, Spiezia L, Simioni P. Modulating thrombotic diathesis in hereditary thrombophilia and antiphospholipid antibody syndrome: a role for circulating microparticles? Clin Chem Lab Med 2017; 55:934-943. [PMID: 27816948 DOI: 10.1515/cclm-2016-0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Over the past decades, there have been great advances in the understanding of the pathogenesis of venous thromboembolism (VTE) in patients with inherited and acquired thrombophilia [mainly antiphospholipid antibody syndrome (APS)]. However, a number of questions remain unanswered. Prognostic markers capable of estimating the individual VTE risk would be of great use. Microparticles (MPs) are sub-micron membrane vesicles constitutively released from the surface of cells after cellular activation and apoptosis. The effects of MPs on thrombogenesis include the exposure of phopshatidylserine and the expression of tissue factor and MPs have been described in clinical studies as possible diagnostic and prognostic biomarkers for VTE. This review will provide a novel perspective on the current knowledge and research trends on the possible role of MPs in hereditary thrombophilia and APS. Basically, the published data show that circulating MPs may contribute to the development of VTE in thrombophilic carriers, both in mild and severe states. Moreover, the presence of endothelial-MPs and platelet-MPs has been described in antiphospholipid syndrome and seems to be directly linked to antiphospholipid antibodies and not to other underlying autoimmune disorders or the thrombotic event itself. In conclusion, circulating MPs may constitute an epiphenomenon of thrombophilia itself and could be up-regulated in acute particular conditions, promoting a global prothrombotic state up to the threshold of the clinical relevant thrombotic event.
Collapse
|
27
|
Funke A, Danowski A, de Andrade DCO, Rêgo J, Levy RA. A importância de reconhecer a síndrome antifosfolípide na medicina vascular. J Vasc Bras 2017; 16:140-149. [PMID: 29930638 PMCID: PMC5915862 DOI: 10.1590/1677-5449.011416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A síndrome antifosfolipíde (SAF) é uma doença autoimune sistêmica caracterizada por trombose arterial ou venosa recorrente e/ou morbidade gestacional e pela presença dos anticorpos antifosfolipídeos, podendo apresentar outras manifestações vasculares, como microangiopatia, arteriopatia crônica e SAF catastrófica. Determinados testes laboratoriais para a síndrome (por exemplo, o anticoagulante lúpico) podem sofrer interferência do uso de medicações anticoagulantes, dificultando o diagnóstico. A fisiopatologia da SAF é complexa, sendo enumerados no texto diversos mecanismos patogênicos relacionados à coagulação, ao endotélio e às plaquetas. Por fim, discutimos o tratamento da SAF de acordo com a presença e o tipo de manifestações clínicas, o uso dos anticoagulantes orais diretos e o manejo perioperatório de pacientes com SAF.
Collapse
Affiliation(s)
- Andreas Funke
- Universidade Federal do Paraná - UFPR, Hospital de Clínicas, Curitiba, PR, Brasil
| | - Adriana Danowski
- Hospital Federal dos Servidores do Estado - HFSE, Rio de Janeiro, RJ, Brasil
| | | | - Jozelia Rêgo
- Universidade Federal de Goiás - UFG, Faculdade de Medicina, Goiânia, GO, Brasil
| | | |
Collapse
|
28
|
Bai A. β2-glycoprotein I and its antibodies involve in the pathogenesis of the antiphospholipid syndrome. Immunol Lett 2017; 186:15-19. [DOI: 10.1016/j.imlet.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
29
|
Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium. Sci Rep 2017; 7:1112. [PMID: 28442771 PMCID: PMC5430798 DOI: 10.1038/s41598-017-01148-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
Double-stranded DNA (dsDNA) constitutes a potent activator of innate immunity, given its ability to bind intracellular pattern recognition receptors during viral infections or sterile tissue damage. While effects of dsDNA in immune cells have been extensively studied, dsDNA signalling and its pathophysiological implications in non-immune cells, such as the vascular endothelium, remain poorly understood. The aim of this study was to characterize prothrombotic effects of dsDNA in vascular endothelial cells. Transfection of cultured human endothelial cells with the synthetic dsDNA poly(dA:dT) induced upregulation of the prothrombotic molecules tissue factor and PAI-1, resulting in accelerated blood clotting in vitro, which was partly dependent on RIG-I signalling. Prothrombotic effects were also observed upon transfection of endothelial cells with hepatitis B virus DNA-containing immunoprecipitates as well human genomic DNA. In addition, dsDNA led to surface expression of von Willebrand factor resulting in increased platelet-endothelium-interactions under flow. Eventually, intrascrotal injection of dsDNA resulted in accelerated thrombus formation upon light/dye-induced endothelial injury in mouse cremaster arterioles and venules in vivo. In conclusion, we show that viral or endogenous dsDNA induces a prothrombotic phenotype in the vascular endothelium. These findings represent a novel link between pathogen- and danger-associated patterns within innate immunity and thrombosis.
Collapse
|
30
|
Badimon L, Suades R, Fuentes E, Palomo I, Padró T. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front Pharmacol 2016; 7:293. [PMID: 27630570 PMCID: PMC5005978 DOI: 10.3389/fphar.2016.00293] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant PauBarcelona, Spain; Cardiovascular Research Chair, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant Pau Barcelona, Spain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de TalcaTalca, Chile; Centro de Estudios en Alimentos Procesados, Conicyt-RegionalGore-Maule, Talca, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de TalcaTalca, Chile; Centro de Estudios en Alimentos Procesados, Conicyt-RegionalGore-Maule, Talca, Chile
| | - Teresa Padró
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant Pau Barcelona, Spain
| |
Collapse
|
31
|
Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases? Vascul Pharmacol 2016; 86:71-76. [PMID: 27291140 DOI: 10.1016/j.vph.2016.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/10/2016] [Accepted: 05/21/2016] [Indexed: 11/24/2022]
Abstract
Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases.
Collapse
|
32
|
Zubairova LD, Nabiullina RM, Nagaswami C, Zuev YF, Mustafin IG, Litvinov RI, Weisel JW. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots. Sci Rep 2015; 5:17611. [PMID: 26635081 PMCID: PMC4669434 DOI: 10.1038/srep17611] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 01/21/2023] Open
Abstract
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.
Collapse
Affiliation(s)
- Laily D Zubairova
- Department of General Pathology, Kazan State Medical University, Kazan 420012, Russian Federation
| | - Roza M Nabiullina
- Department of General Pathology, Kazan State Medical University, Kazan 420012, Russian Federation
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yuriy F Zuev
- Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Ilshat G Mustafin
- Department of General Pathology, Kazan State Medical University, Kazan 420012, Russian Federation
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
A new cytofluorimetric approach to evaluate the circulating microparticles in subjects with antiphospholipid antibodies. Thromb Res 2015; 136:1252-8. [PMID: 26476741 DOI: 10.1016/j.thromres.2015.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Growing evidence supports the idea that microparticles (MPs) could contribute to the pathogenesis of the thrombotic phenomena associated with antiphospholipid antibody syndrome (APS), inducing a hypercoagulable state. But, to date, different approaches to evaluate circulating MPs and conflicting results have been reported. MATERIALS AND METHODS We have characterized the different circulating subpopulations of MPs in APS patients, and in asymptomatic aPL-positive subjects (carriers) by examining the correlation between the amount and phenotype of MPs and the clinical parameters. Forty-eight subjects were enrolled: 16 with primary APS, 16 aPL-positive, but without clinical criteria for APS (carriers), and 16 healthy subjects. The levels of MPs were evaluated using a new cytofluorimetric approach based on BD Horizon Violet Proliferation dye (VPD) 450. RESULTS AND CONCLUSIONS Using a new detection cytofluorimetric approach, we demonstrated that the AnnV-negative MPs, underestimated/or excluded in the previous studies, are a large subset of circulating MPs. Also, the levels of MPs in the plasma of aPL positive subjects indicate a state of cellular activation, which is much more pronounced in patients with APS compared to aPL carriers. Moreover, the preliminary data of our pilot study suggest that the evaluation of circulating MPs, in particular PMPs and EMPs, could be used as a surrogate biomarker for platelet and vascular damage monitoring and, if confirmed in a more numerous cohort of patients, it could be used as a prognostic factor to identify aPL positive subjects at higher risk of developing thrombosis.
Collapse
|
34
|
|
35
|
Wu M, Barnard J, Kundu S, McCrae KR. A novel pathway of cellular activation mediated by antiphospholipid antibody-induced extracellular vesicles. J Thromb Haemost 2015; 13:1928-40. [PMID: 26264622 PMCID: PMC4877623 DOI: 10.1111/jth.13072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Elevated levels of endothelial cell (EC)-derived extracellular vesicles (EVs) circulate in patients with antiphospholipid antibodies (APLAs), and APLAs, particularly those against β2 -glycoprotein I (β2 GPI), stimulate EV release from ECs. However, the effects of EC-derived EVs have not been characterized. OBJECTIVE To determine the mechanism by which EVs released from ECs by anti-β2 GPI antibodies activate unstimulated ECs. PATIENTS/METHODS We used interleukin (IL)-1 receptor inhibitors, small interfering RNA (siRNA) against Toll-like receptors (TLRs) and microRNA (miRNA) profiling to assess the mechanism(s) by which EVs released from ECs exposed to anti-β2 GPI antibodies activated unstimulated ECs. RESULTS AND CONCLUSIONS Anti-β2 GPI antibodies caused formation of an EC inflammasome and the release of EVs that were enriched in mature IL-1β, had a distinct miRNA profile, and caused endothelial activation. However, activation was not inhibited by an IL-1β antibody, an IL-1 receptor antagonist, or IL-1 receptor siRNA. EC activation by EVs required IL-1 receptor-associated kinase 4 phosphorylation, and was inhibited by pretreatment of cells with TLR7 siRNA or RNase A, which degrades ssRNA. Profiling of miRNA in EVs released from ECs incubated with β2 GPI and either control IgG or anti-β2 GPI antibodies revealed numerous differences in the content of specific miRNAs, including a significant decrease in mIR126. These observations demonstrate that, although anti-β2 GPI-derived endothelial EVs contain IL-1β, they activate unstimulated ECs through a TLR7-dependent and ssRNA-dependent pathway. Alterations in miRNA content may contribute to the ability of EVs derived from ECs exposed to anti-β2 GPI antibodies to activate unstimulated ECs in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- M Wu
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - J Barnard
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - S Kundu
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - K R McCrae
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Hematology and Solid Tumor Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
|
37
|
van den Hoogen LL, van Roon JAG, Radstake TRDJ, Fritsch-Stork RDE, Derksen RHWM. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev 2015; 15:50-60. [PMID: 26318678 DOI: 10.1016/j.autrev.2015.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
The antiphospholipid syndrome (APS) is a systemic autoimmune disease that is characterized serologically by the presence of antiphospholipid antibodies (aPL) and clinically by vascular thrombosis and obstetric complications. The protein β2 glycoprotein I (β2GPI) is identified as the most important autoantigen in this syndrome. Activation of endothelial cells, thrombocytes and placental tissue by anti-β2GPI antibodies relates to the clinical manifestations of APS. This review describes genetic and environmental factors in relation to APS and summarizes the current knowledge on abnormalities in components of both the innate and adaptive immune system in APS. The role of dendritic cells, T-cells, B-cells, monocytes, neutrophils and NK-cells as well as the complement system in APS are discussed. Several gaps in our knowledge on the pathophysiology of APS are identified and a plea is made for future extensive immune cell profiling by a systems medicine approach in order to better unravel the pathogenesis of APS, to gain more insight in the role of the immune system in APS as well as having the potential to reveal biomarkers or novel therapeutic targets.
Collapse
Affiliation(s)
- Lucas L van den Hoogen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Joël A G van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ronald H W M Derksen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|