1
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
2
|
Infection in Living Donor Liver Transplantation Leads to Increased Risk of Adverse Renal Outcomes. Nutrients 2022; 14:nu14173660. [PMID: 36079917 PMCID: PMC9460461 DOI: 10.3390/nu14173660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Little is known about the subsequent renal function change following incident infectious diseases in living-donor liver transplant (LT) recipients. (2) Methods: We studied patients who underwent living-donor LT from January 2003 to January 2019 to evaluate the association of incident hospitalization with major infections or pneumonia with adverse renal outcomes, including a sustained 40% reduction in estimated glomerular filtration rate (eGFR) and renal composite outcome (a 40% decline in eGFR, end-stage renal disease, or death.). Multivariable-adjusted time-dependent Cox models with infection as a time-varying exposure were used to estimate hazard ratio (HR) with 95% confidence interval (CI) for study outcomes. (3) Results: We identified 435 patients (mean age 54.6 ± 8.4 years and 76.3% men), of whom 102 had hospitalization with major infections during follow-up; the most common cause of infection was pneumonia (38.2%). In multiple Cox models, hospitalization with a major infection was associated with an increased risk of eGFR decline > 40% (HR, 3.32; 95% CI 2.13−5.16) and renal composite outcome (HR, 3.41; 95% CI 2.40−5.24). Likewise, pneumonia was also associated with an increased risk of eGFR decline > 40% (HR, 2.47; 95% CI 1.10−5.56) and renal composite outcome (HR, 4.37; 95% CI 2.39−8.02). (4) Conclusions: Our results illustrated the impact of a single infection episode on the future risk of adverse renal events in LT recipients. Whether preventive and prophylactic care bundles against infection and judicious modification of the immunosuppressive regimen benefit renal outcomes may deserve further study.
Collapse
|
3
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
4
|
Su G, Trevisan M, Ishigami J, Matsushita K, Stålsby Lundborg C, Carrero JJ. Short- and long-term outcomes after incident pneumonia in adults with chronic kidney disease: a time-dependent analysis from the Stockholm CREAtinine Measurement project. Nephrol Dial Transplant 2020; 35:1894-1900. [PMID: 31219575 PMCID: PMC7643674 DOI: 10.1093/ndt/gfz119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Little is known about the health sequelae of pneumonia in persons with chronic kidney disease (CKD). METHODS We studied adults with CKD in Stockholm during 2006-11, who not previously been diagnosed with lower respiratory tract infections. We used multivariable-adjusted Cox regression with pneumonia as a time-varying exposure to estimate hazard ratios (HRs) [95% confidence intervals (CIs)] for the events of death, major adverse cardiovascular events (MACEs), acute kidney injury (AKI), CKD progression or hospitalization for urinary tract infections (UTIs)/sepsis. Cataract and knee/joint replacement served as negative control outcomes. RESULTS We identified 71 931 adults (mean age 79 years, 59% women), of whom 8379 (12%) were diagnosed with pneumonia during follow-up; incident pneumonia was associated with 10 times higher adjusted mortality risk during the first 90 days [HR = 10.0, 95% confidence interval (CI) 9.5-10.5] and double the mortality beyond 90 days from pneumonia diagnosis (HR = 2.0; 95% CI 1.9-2.1). Incident pneumonia was similarly associated with higher adjusted risk of MACE (<90 days: HR = 12.6; 95% CI 12.0-13.3; ≥90 days: HR = 1.5; 95% CI 1.4-1.6). The adjusted risk of CKD progression and UTI/sepsis hospitalization was highest within 90 days from pneumonia but remained elevated thereafter. For AKI, the association with incident pneumonia was only seen within 90 days. Neither cataract nor knee/joint replacement was related to pneumonia. CONCLUSIONS Incident pneumonia was associated with increased risks of MACE, CKD progression, severe UTI/sepsis and death, with risks highest soon after pneumonia diagnosis but extending beyond 90 days. Our findings highlight the susceptibility for adverse outcomes of CKD patients following pneumonia diagnosis, and may inform clinical decisions regarding vaccination strategies.
Collapse
Affiliation(s)
- Guobin Su
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou city, Guangdong Province, China
- Global Health—Health Systems and Policy, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Marco Trevisan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Junichi Ishigami
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cecilia Stålsby Lundborg
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou city, Guangdong Province, China
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Feldman C. Cardiac complications in community-acquired pneumonia and COVID-19. Afr J Thorac Crit Care Med 2020; 26:10.7196/AJTCCM.2020.v26i2.077. [PMID: 34235421 PMCID: PMC7221539 DOI: 10.7196/ajtccm.2020.v26i2.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains a global health problem with significant morbidity and mortality. Much recent published literature about the infection has indicated that a substantial number of patients with CAP, particularly those ill enough to be admitted to hospital, will suffer a cardiovascular event. While these may include events such as deep venous thrombosis and stroke, most of the events involve the heart and include the occurrence of an arrhythmia (most commonly atrial fibrillation), new onset or worsening of heart failure and acute myocardial infarction. While such cardiac events may occur, for example, in all-cause CAP and CAP due to influenza virus infection, and more recently described with the SARS-CoV-2 pandemic, a significant amount of research work has been investigating the pathogenic mechanisms of these cardiac events in patients with CAP due to Streptococcus pneumoniae (pneumococcus) and, more recently, COVID-19 infections. Such research has identified a number of mechanisms by which these microorganisms may cause cardiovascular events. Importantly, these cardiac events appear not only to be associated with in-hospital mortality, but they also appear to contribute to longer-term mortality of patients with CAP, even after their discharge from hospital. This review will focus initially on studies of cardiovascular events in all-cause CAP and pneumococcal CAP, excluding COVID-19 infection, and then address similar issues in the latter infection.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
7
|
Binsker U, Kohler TP, Hammerschmidt S. Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. J Innate Immun 2019; 11:303-315. [PMID: 30814475 PMCID: PMC6738282 DOI: 10.1159/000496033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Ulrike Binsker
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
- Department of Microbiology, NYU Langone Health, Alexandria Center for the Life Sciences, New York City, New York, USA
| | - Thomas P Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany,
| |
Collapse
|
8
|
Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018; 19:E1147. [PMID: 29641429 PMCID: PMC5979279 DOI: 10.3390/ijms19041147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (PLY), a member of the family of Gram-positive bacterial, cholesterol-dependent, β-barrel pore-forming cytolysins, is the major protein virulence factor of the dangerous respiratory pathogen, Streptococcus pneumoniae (pneumococcus). PLY plays a major role in the pathogenesis of community-acquired pneumonia (CAP), promoting colonization and invasion of the upper and lower respiratory tracts respectively, as well as extra-pulmonary dissemination of the pneumococcus. Notwithstanding its role in causing acute lung injury in severe CAP, PLY has also been implicated in the development of potentially fatal acute and delayed-onset cardiovascular events, which are now recognized as being fairly common complications of this condition. This review is focused firstly on updating mechanisms involved in the immunopathogenesis of PLY-mediated myocardial damage, specifically the direct cardiotoxic and immunosuppressive activities, as well as the indirect pro-inflammatory/pro-thrombotic activities of the toxin. Secondly, on PLY-targeted therapeutic strategies including, among others, macrolide antibiotics, natural product antagonists, cholesterol-containing liposomes, and fully humanized monoclonal antibodies, as well as on vaccine-based preventive strategies. These sections are preceded by overviews of CAP in general, the role of the pneumococcus as the causative pathogen, the occurrence and types of CAP-associated cardiac complication, and the structure and biological activities of PLY.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria 0001, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 0002, South Africa.
| |
Collapse
|
9
|
Anderson R, Feldman C. Review manuscript: Mechanisms of platelet activation by the pneumococcus and the role of platelets in community-acquired pneumonia. J Infect 2017; 75:473-485. [PMID: 28943342 DOI: 10.1016/j.jinf.2017.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
There is increasing recognition of the involvement of platelets in orchestrating inflammatory responses, driving the activation of neutrophils, monocytes and vascular endothelium, which, if poorly controlled, may lead to microvascular dysfunction. Importantly, hyperreactivity of platelets has been implicated in the pathogenesis of myocardial injury and the associated particularly high prevalence of acute cardiovascular events in patients with severe community-acquired pneumonia (CAP), of which Streptococcus pneumoniae (pneumococcus) is the most commonly encountered aetiologic agent. In this context, it is noteworthy that a number of studies have documented various mechanisms by which the pneumococcus may directly promote platelet aggregation and activation. The major contributors to platelet activation include several different types of pneumococcal adhesin, the pore-forming toxin, pneumolysin, and possibly pathogen-derived hydrogen peroxide, which collectively represent a major focus of the current review. This is followed by an overview of the limited experimental studies together with a larger series of clinical studies mainly focused on all-cause CAP, which have provided evidence in support of associations between alterations in circulating platelet counts, most commonly thrombocytopenia, and a poor clinical outcome. The final section of the review covers, albeit briefly, systemic biomarkers of platelet activation which may have prognostic potential.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Tunjungputri RN, Gasem MH, van der Does W, Sasongko PH, Isbandrio B, Urbanus RT, de Groot PG, van der Ven A, de Mast Q. Platelet dysfunction contributes to bleeding complications in patients with probable leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005915. [PMID: 28934202 PMCID: PMC5626517 DOI: 10.1371/journal.pntd.0005915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/03/2017] [Accepted: 08/28/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe leptospirosis is frequently complicated by a hemorrhagic diathesis, of which the pathogenesis is still largely unknown. Thrombocytopenia is common, but often not to the degree that spontaneous bleeding is expected. We hypothesized that the hemorrhagic complications are not only related to thrombocytopenia, but also to platelet dysfunction, and that increased binding of von Willebrand factor (VWF) to platelets is involved in both platelet dysfunction and increased platelet clearance. METHODOLOGY/PRINCIPAL FINDINGS A prospective study was carried out in Semarang, Indonesia, enrolling 33 hospitalized patients with probable leptospirosis, of whom 15 developed clinical bleeding, and 25 healthy controls. Platelet activation and reactivity were determined using flow cytometry by measuring the expression of P-selectin and activation of the αIIbβ3 integrin by the binding of fibrinogen in unstimulated samples and after ex vivo stimulation by the platelet agonists adenosine-diphosphate (ADP) and thrombin-receptor activating peptide (TRAP). Platelet-VWF binding, before and after VWF stimulation by ristocetin, as well as plasma levels of VWF, active VWF, the VWF-inactivating enzyme ADAMTS13, thrombin-antithrombin complexes (TAT) and P-selectin were also measured. Bleeding complications were graded using the WHO bleeding scale. Our study revealed that platelet activation, with a secondary platelet dysfunction, is a feature of patients with probable leptospirosis, especially in those with bleeding manifestations. There was a significant inverse correlation of bleeding score with TRAP-stimulated P-selectin and platelet-fibrinogen binding (R = -0.72, P = 0.003 and R = -0.66, P = 0.01, respectively) but not with platelet count. Patients with bleeding also had a significantly higher platelet-VWF binding. Platelet counts were inversely correlated with platelet-VWF binding (R = -0.74; P = 0.0009. There were no correlations between platelet-VWF binding and the degree of platelet dysfunction, suggesting that increased platelet-VWF binding does not directly interfere with the platelet αIIbβ3 signaling pathway in patients with probable leptospirosis. CONCLUSION/SIGNIFICANCE Platelet dysfunction is common in probable leptospirosis patients with manifest bleeding. Increased VWF-platelet binding may contribute to the activation and clearance of platelets.
Collapse
Affiliation(s)
- Rahajeng N. Tunjungputri
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Willemijn van der Does
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Pandu H. Sasongko
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Bambang Isbandrio
- National Reference Laboratory for Leptospira, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Rolf T. Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands
| | - Philip G. de Groot
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Andre van der Ven
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Tunjungputri RN, van de Heijden W, Urbanus RT, de Groot PG, van der Ven A, de Mast Q. Higher platelet reactivity and platelet-monocyte complex formation in Gram-positive sepsis compared to Gram-negative sepsis. Platelets 2016; 28:595-601. [PMID: 28033029 DOI: 10.1080/09537104.2016.1252837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Platelets may play a role in the high risk for vascular complications in Gram-positive sepsis. We compared the platelet reactivity of 15 patients with Gram-positive sepsis, 17 with Gram-negative sepsis and 20 healthy controls using a whole blood flow cytometry-based assay. Patients with Gram-positive sepsis had the highest median fluorescence intensity (MFI) of the platelet membrane expression of P-selectin upon stimulation with high dose adenosine diphosphate (ADP; P = 0.002 vs. Gram-negative and P = 0.005 vs. control groups) and cross-linked collagen-related peptide (CRP-XL; P = 0.02 vs. Gram-negative and P = 0.0001 vs. control groups). The Gram-positive group also demonstrated significantly higher ADP-induced fibrinogen binding (P = 0.001), as wll as platelet-monocyte complex formation (P = 0.02), compared to the Gram-negative group and had the highest plasma levels of platelet factor 4, β-thromboglobulin and soluble P-selectin. In contrast, thrombin-antithrombin complex and C-reactive protein levels were comparable in both patient groups. In conclusion, common Gram-positive pathogens induce platelet hyperreactivity, which may contribute to a higher risk for vascular complications.
Collapse
Affiliation(s)
- Rahajeng N Tunjungputri
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Nijmegen Medical Center , Nijmegen , The Netherlands.,c Center for Tropical and Infectious Diseases (CENTRID) , Faculty of Medicine Diponegoro University - Dr. Kariadi Hospital , Semarang , Indonesia
| | - Wouter van de Heijden
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Nijmegen Medical Center , Nijmegen , The Netherlands
| | - Rolf T Urbanus
- c Center for Tropical and Infectious Diseases (CENTRID) , Faculty of Medicine Diponegoro University - Dr. Kariadi Hospital , Semarang , Indonesia
| | - Philip G de Groot
- c Center for Tropical and Infectious Diseases (CENTRID) , Faculty of Medicine Diponegoro University - Dr. Kariadi Hospital , Semarang , Indonesia
| | - Andre van der Ven
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Nijmegen Medical Center , Nijmegen , The Netherlands.,d Department of Clinical Chemistry and Haematology , University Medical Centre , Utrecht , The Netherlands
| | - Quirijn de Mast
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Nijmegen Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
12
|
|