1
|
Monclova JL, Walsh DJ, Barraclough T, Hummel ME, Goetz I, Kannojiya V, Costanzo F, Simon SD, Manning KB. A hyper-viscoelastic uniaxial characterization of collagenous embolus analogs in acute ischemic stroke. J Mech Behav Biomed Mater 2024; 159:106690. [PMID: 39205348 PMCID: PMC11426309 DOI: 10.1016/j.jmbbm.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Acute ischemic stroke is a leading cause of death and morbidity worldwide. Despite advances in medical technology, nearly 30% of strokes result in incomplete vessel recanalization. Recent studies have demonstrated that clot composition correlates with success rates of mechanical thrombectomy procedures. To understand clot behavior during thrombectomy, which exerts considerable strains on thrombi, in vitro studies must characterize the rate-dependent high-strain behavior of embolus analogs (EAs) with different formation conditions, which can be used to fit models of hyper-viscoelasticity. METHODS In this study, the effect of collagen infiltration as a carotid-induced collagen-rich thrombosis surrogate is considered as a contributor to embolus analog high-strain stiffness, when compared to 40% hematocrit EAs. RESULTS EA high-strain stiffnesses, characterized on a uniaxial load frame, increase by an order of magnitude for collagenous clot analogs. Chandler loop analogs show high-strain stiffnesses and clot compositions commensurate with previous reports of stroke patient clots, and collagenous clots show significant increase in stiffness when compared to stroke patient clots. Finally, hyper-viscoelastic curve fitting demonstrates the asymmetry between tension and compression. Nonlinear, rate-dependent models that consider clot-stiffening behavior match the high strain stiffness of clots fairly well. Furthermore, we demonstrate that the stability of the elastic energy needs to be considered to obtain optimal curve fits for high-strain, rate dependent data. CONCLUSION This study provides a framework for the development of dynamically formed EAs that mimic the mechanical and structural properties of in vivo clots and provides parameters for numerical simulation of clot behavior with hyper-viscoelastic models.
Collapse
Affiliation(s)
- Jose L Monclova
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Daniel J Walsh
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Terrell Barraclough
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Madelyn E Hummel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ian Goetz
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Vikas Kannojiya
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Francesco Costanzo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
| | - Scott D Simon
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA; Department of Surgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Vandelanotte S, Staessens S, François O, De Wilde M, Desender L, De Sloovere AS, Dewaele T, Tersteeg C, Vanhoorelbeke K, Vanacker P, Andersson T, De Meyer SF. Association between thrombus composition and first-pass recanalization after thrombectomy in acute ischemic stroke. J Thromb Haemost 2024; 22:2555-2561. [PMID: 38897388 DOI: 10.1016/j.jtha.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Achieving first-pass recanalization (FPR) has become the primary procedural objective during thrombectomy in acute ischemic stroke patients as it correlates with the best clinical outcome. Understanding factors contributing to FPR failures is essential to enhance FPR success rates. As the central target of thrombectomy, the thrombus itself may be a significant factor influencing FPR. OBJECTIVES This study aimed to investigate the association between thrombus composition and FPR success rates. METHODS In total, thrombi from 267 ischemic stroke patients were collected in the AZ Groeninge Hospital (Kortrijk, Belgium). Thrombus composition was determined via detailed histologic analysis of red blood cells (RBCs), fibrin, von Willebrand factor, platelets, leukocytes, citrullinated histone 3 (marker for neutrophil extracellular traps), and intracellular and extracellular DNA. FPR was defined as obtaining a modified thrombolysis in cerebral infarction (mTICI) score of 2c/3 after the first pass. RESULTS An mTICI score of 2c/3 was obtained in 180 patients, which was achieved via a successful FPR procedure in 126 cases or after multiple passes in 54 cases. Interestingly, thrombi from FPR cases had a different composition from thrombi that needed multiple passes to obtain an mTICI score of 2c/3. FPR thrombi contained significantly more RBCs (P = .0264), less fibrin (P = .0196), and less extracellular DNA (P = .0457). CONCLUSION Our results indicate that thrombi characterized by lower RBC content, higher fibrin levels, and increased extracellular DNA are less likely to result in an FPR. These results are important to guide future research aiming at improving procedures or technologies to obtain FPR rates in RBC-poor thrombi.
Collapse
Affiliation(s)
| | - Senna Staessens
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | | | - Maaike De Wilde
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | - Linda Desender
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | | | - Tom Dewaele
- Department of Medical Imaging, AZ Groeninge, Kortrijk, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | | | - Peter Vanacker
- Department of Neurology, AZ Groeninge, Kortrijk, Belgium; Department of Neurology, University Hospitals Antwerp, Antwerp, Belgium; Department of Translational Neuroscience, University of Antwerp, Antwerp, Belgium
| | - Tommy Andersson
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium.
| |
Collapse
|
3
|
Kannojiya V, Almasy SE, Monclova JL, Contreras J, Costanzo F, Manning KB. Characterizing thrombus adhesion strength on common cardiovascular device materials. Front Bioeng Biotechnol 2024; 12:1438359. [PMID: 39205855 PMCID: PMC11349534 DOI: 10.3389/fbioe.2024.1438359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Thrombus formation in blood-contacting medical devices is a major concern in the medical device industry, limiting the clinical efficacy of these devices. Further, a locally formed clot within the device has the potential to detach from the surface, posing a risk of embolization. Clot embolization from blood-contacting cardiovascular devices can result in serious complications like acute ischemic stroke and myocardial infarction. Therefore, clot embolization associated with device-induced thrombosis can be life-threatening and requires an enhanced fundamental understanding of embolization characteristics to come up with advanced intervention strategies. Therefore, this work aims to investigate the adhesive characteristics of blood clots on common biocompatible materials used in various cardiovascular devices. This study focuses on characterizing the adhesion strength of blood clots on materials such as polytetrafluoroethylene (PTFE), polyurethane (PU), polyether ether ketone (PEEK), nitinol, and titanium, frequently used in medical devices. In addition, the effect of incubation time on clot adhesion is explored. Results from this work demonstrated strongest clot adhesion to titanium with 3 h of incubation resulting in 1.06 ± 0.20 kPa detachment stresses. The clot adhesion strength on titanium was 51.5% higher than PEEK, 35.9% higher than PTFE, 63.1% higher than PU, and 35.4% higher than nitinol. Further, adhesion strength increases with incubation time for all materials. The percentage increase in detachment stress over incubation time (ranging from 30 min to 3 h) for polymers ranged from at least 108.75% (PEEK), 140.74% (PU), to 151.61% (PTFE). Whereas, for metallic surfaces, the percentage rise ranged from 70.21% (nitinol) to 89.28% (titanium). Confocal fluorescence imaging of clot remnants on the material surfaces revealed a well-bounded platelet-fibrin network at the residual region, representing a comparatively higher adhesive region than the non-residual zone of the surface.
Collapse
Affiliation(s)
- Vikas Kannojiya
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Sara E. Almasy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Jose L. Monclova
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Jerry Contreras
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Francesco Costanzo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Surgery, Penn State College of Medicine, Penn State Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
4
|
Vandelanotte S, De Meyer SF. Acute Ischemic Stroke Thrombus Composition. Neuroscience 2024; 550:11-20. [PMID: 38185279 DOI: 10.1016/j.neuroscience.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Ischemic stroke is caused by a thrombus blocking one or multiple arteries in the brain, resulting in irreversible damage in the associated brain tissue. The aim of therapy is to restore the blood flow as fast as possible. Two recanalization strategies are currently available: pharmacological thrombolysis using recombinant tissue plasminogen activator (rt-PA) and mechanical removal of the thrombus. Despite recent advancements, achieving efficient recanalization remains a challenge. The precise causes of therapy failure are not fully understood but thrombus composition is likely a key factor in successful recanalization. This review explores acute ischemic stroke thrombus composition, its recently identified components, and how it affects stroke treatment. It also discusses how new insights could enhance current recanalization strategies for ischemic stroke patients.
Collapse
Affiliation(s)
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium.
| |
Collapse
|
5
|
Baek JH. Traditional Thrombus Composition and Related Endovascular Outcomes: Catching up with the Recent Evidence. Neurointervention 2024; 19:65-73. [PMID: 38570911 PMCID: PMC11222681 DOI: 10.5469/neuroint.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Endovascular thrombectomy is the primary treatment for acute intracranial vessel occlusion and significantly improves recanalization success rate. However, achieving optimal recanalization remains a challenge. The histopathological components of thrombus composition play a crucial role in determining endovascular outcomes. This review aimed to consolidate the recent evidence on the impact of thrombus composition on mechanical properties and endovascular outcomes. The relationship between thrombus composition and mechanical properties was significant, with fibrin and/or platelet-rich thrombi being stiff, tough, elastic, and less deformable; fibrin-rich thrombi were sticky and had higher friction with the vessel wall. Erythrocyte composition was positively associated with successful recanalization, whereas lower platelet composition was associated with specific outcomes, such as the first-pass effect and complete recanalization. The number of thrombectomy device passes was possibly related to erythrocyte, platelet, and fibrin composition, with a smaller number of passes associated with erythrocyte-rich thrombi. Procedural time was consistently related to thrombus composition, with shorter times observed for erythrocyte-rich thrombi. The relationship between thrombus composition and secondary embolism remains inconclusive. Understanding the role of thrombus composition in endovascular outcomes is crucial to optimize stroke treatment. Although evidence suggests a link between thrombus composition and mechanical properties, further research is needed to establish stronger correlations and to reduce study variations. Exploring non-traditional thrombus components such as leukocytes and neutrophil extracellular traps is vital. Thrombus imaging could provide a practical solution for predicting thrombus composition before endovascular procedures. This review highlights the importance of thrombus composition for enhancing endovascular stroke treatment strategies.
Collapse
Affiliation(s)
- Jang-Hyun Baek
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Boriesosdick J, Michael AE, Kröger JR, Niehoff JH, Saeed S, Pflug M, Schellinger P, Maus V, Borggrefe J, Mönninghoff C. Mechanical thrombectomy using the Nimbus stent-retriever - initial experiences in a single-center observational study. Interv Neuroradiol 2024; 30:380-388. [PMID: 36147011 PMCID: PMC11310731 DOI: 10.1177/15910199221129097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Nimbus stent-retriever (NSR) was developed for mechanical thrombectomy of wall-adherent thrombi in cerebral arteries. It features a novel geometry with a proximal spiral section and a distal barrel section. The new device is designed to retrieve tough clots with a micro-clamping technique. In the first case series reporting on the NSR, we share our initial experience about the first 12 treated cases. METHODS In total, 12 patients (5 men, 7 women; mean age 78 years) with occlusion of the internal carotid artery or the middle cerebral artery (M1 or M2 segment) were treated with the NSR, 11 after unsuccessful recanalization attempts with conventional stent-retrievers or aspiration thrombectomy. RESULTS Retrieving maneuvers with the NSR recovered a thrombus in 7 patients (58%), of which 6 resulted in vessel recanalization mTICI ≥ 2b. Successful recanalization improved the mTICI score by a median of 3 points. In 5 of 7 cases, this required only one thrombectomy maneuver. In 5 cases, no improvement of recanalization could be achieved with the NSR (1-3 attempts). No NSR-related complications occurred in this case series. CONCLUSIONS In our initial experience, the NSR appeared to be a safe and effective second-line stent-retriever after unsuccessful MT with conventional stent-retrievers or aspiration thrombectomy allowing for mTICI ≥ 2b rescue thrombectomy in ab 50% of cases. No NSR associated complications occurred in our case series.
Collapse
Affiliation(s)
- Jan Boriesosdick
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jan-Robert Kröger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Saher Saeed
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marc Pflug
- Department of Neurology and Neurogeriatrics, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Peter Schellinger
- Department of Neurology and Neurogeriatrics, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Volker Maus
- Department of Radiology, Neuroradiology and Nuclear Medicine, Knappschaftskrankenhaus Langendreer, Ruhr-University Bochum, Bochum, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Christoph Mönninghoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Santo BA, Poppenberg KE, Ciecierska SSK, Baig AA, Raygor KP, Patel TR, Shah M, Levy EI, Siddiqui AH, Tutino VM. Hybrid Clot Histomic-Transcriptomic Models Predict Functional Outcome After Mechanical Thrombectomy in Acute Ischemic Stroke. Neurosurgery 2024:00006123-990000000-01180. [PMID: 38829781 DOI: 10.1227/neu.0000000000003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Histologic and transcriptomic analyses of retrieved stroke clots have identified features associated with patient outcomes. Previous studies have demonstrated the predictive capacity of histology or expression features in isolation. Few studies, however, have investigated how paired histologic image features and expression patterns from the retrieved clots can improve understanding of clot pathobiology and our ability to predict long-term prognosis. We hypothesized that computational models trained using clot histomics and mRNA expression can predict early neurological improvement (ENI) and 90-day functional outcome (modified Rankin Scale Score, mRS) better than models developed using histological composition or expression data alone. METHODS We performed paired histological and transcriptomic analysis of 32 stroke clots. ENI was defined as a delta-National Institutes of Health Stroke Score/Scale > 4, and a good long-term outcome was defined as mRS ≤2 at 90 days after procedure. Clots were H&E-stained and whole-slide imaged at 40×. An established digital pathology pipeline was used to extract 237 histomic features and to compute clot percent composition (%Comp). When dichotomized by either the ENI or mRS thresholds, differentially expressed genes were identified as those with absolute fold-change >1.5 and q < 0.05. Machine learning with recursive feature elimination (RFE) was used to select clot features and evaluate computational models for outcome prognostication. RESULTS For ENI, RFE identified 9 optimal histologic and transcriptomic features for the hybrid model, which achieved an accuracy of 90.8% (area under the curve [AUC] = 0.98 ± 0.08) in testing and outperformed models based on histomics (AUC = 0.94 ± 0.09), transcriptomics (AUC = 0.86 ± 0.16), or %Comp (AUC = 0.70 ± 0.15) alone. For mRS, RFE identified 7 optimal histomic and transcriptomic features for the hybrid model. This model achieved an accuracy of 93.7% (AUC = 0.94 ± 0.09) in testing, also outperforming models based on histomics (AUC = 0.90 ± 0.11), transcriptomics (AUC = 0.55 ± 0.27), or %Comp (AUC = 0.58 ± 0.16) alone. CONCLUSION Hybrid models offer improved outcome prognostication for patients with stroke. Identified digital histology and mRNA signatures warrant further investigation as biomarkers of patient functional outcome after thrombectomy.
Collapse
Affiliation(s)
- Briana A Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Kerry E Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Ammad A Baig
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Kunal P Raygor
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Tatsat R Patel
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Munjal Shah
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
| | - Elad I Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Szpakowski P, Glabinski A. The Role of Neutrophils in Multiple Sclerosis and Ischemic Stroke. Brain Sci 2024; 14:423. [PMID: 38790402 PMCID: PMC11118671 DOI: 10.3390/brainsci14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation plays an important role in numerous central nervous system (CNS) disorders. Its role is ambiguous-it can induce detrimental effects, as well as repair and recovery. In response to injury or infection, resident CNS cells secrete numerous factors that alter blood-brain barrier (BBB) function and recruit immune cells into the brain, like neutrophils. Their role in the pathophysiology of CNS diseases, like multiple sclerosis (MS) and stroke, is highly recognized. Neutrophils alter BBB permeability and attract other immune cells into the CNS. Previously, neutrophils were considered a homogenous population. Nowadays, it is known that various subtypes of these cells exist, which reveal proinflammatory or immunosuppressive functions. The primary goal of this review was to discuss the current knowledge regarding the important role of neutrophils in MS and stroke development and progression. As the pathogenesis of these two disorders is completely different, it gives the opportunity to get insight into diverse mechanisms of neutrophil involvement in brain pathology. Our understanding of the role of neutrophils in CNS diseases is still evolving as new aspects of their activity are being unraveled. Neutrophil plasticity adds another level to their functional complexity and their importance for CNS pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.); (P.S.)
| |
Collapse
|
9
|
Fang H, Bo Y, Hao Z, Mang G, Jin J, Wang H. A promising frontier: targeting NETs for stroke treatment breakthroughs. Cell Commun Signal 2024; 22:238. [PMID: 38654328 PMCID: PMC11036592 DOI: 10.1186/s12964-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
Stroke is a prevalent global acute cerebrovascular condition, with ischaemic stroke being the most frequently occurring type. After a stroke, neutrophils accumulate in the brain and subsequently generate and release neutrophil extracellular traps (NETs). The accumulation of NETs exacerbates the impairment of the blood‒brain barrier (BBB), hampers neovascularization, induces notable neurological deficits, worsens the prognosis of stroke patients, and can facilitate the occurrence of t-PA-induced cerebral haemorrhage subsequent to ischaemic stroke. Alternative approaches to pharmacological thrombolysis or endovascular thrombectomy are being explored, and targeting NETs is a promising treatment that warrants further investigation.
Collapse
Affiliation(s)
- Huijie Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yunfei Bo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongfei Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
10
|
Xu X, Song Y, Cao W, Bai X, Wang X, Gao P, Chen J, Chen Y, Yang B, Wang Y, Chen F, Ma Q, Yu B, Jiao L. Alterations of Hemostatic Molecular Markers During Acute Large Vessel Occlusion Stroke. J Am Heart Assoc 2024; 13:e032651. [PMID: 38293908 PMCID: PMC11056158 DOI: 10.1161/jaha.123.032651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND This study aimed to investigate regional levels of TAT (thrombin-antithrombin complex), PIC (plasmin-α2 plasmin inhibitor complex), t-PAIC (tissue plasminogen activator-plasminogen activator inhibitor complex), sTM (soluble thrombomodulin), and D-dimer, along with their associations with clinical and procedural characteristics in patients with acute ischemic stroke undergoing endovascular thrombectomy. METHODS AND RESULTS We retrospectively analyzed 166 consecutive patients with acute ischemic stroke (62±11.54 years of age, 34.3% women) using prospectively maintained clinical databases and blood samples from local ischemic (proximal to thrombus) and systemic (femoral artery, self-control) arterial compartments. Levels of TAT, PIC, t-PAIC, and D-dimer were significantly elevated, whereas sTM was significantly reduced, in local ischemic regions compared with their systemic levels. Each 1-unit increase in ischemic TAT (adjusted odds ratio [aOR], 1.086 [95% CI, 1.03-1.145]; P=0.002; area under the curve [AUC], 0.833) and PIC (aOR, 1.337 [95% CI, 1.087-1.644]; P=0.006; AUC, 0.771) correlated significantly with higher symptomatic intracranial hemorrhage risk. Additionally, each 1-unit increase in ischemic TAT (aOR, 1.076 [95% CI, 1.016-1.139]; P=0.013; AUC, 0.797), PIC (aOR, 1.554 [95% CI, 1.194-2.022]; P=0.001; AUC, 0.798), and sTM (aOR, 0.769 [95% CI, 0.615-0.961]; P=0.021; AUC, 0.756) was significantly associated with an increased risk of an unfavorable 90-day outcome (modified Rankin scale of 3-6). These hemostatic molecules, individually or combined, significantly improved the predictive power of conventional risk factors, as evidenced by significant increases in net reclassification improvement and integrated discrimination improvement (all P<0.01). CONCLUSIONS We observed a hyperactive state of the coagulation-fibrinolysis system within the local ischemic region during hyperacute stroke. Rapid automated measurement of hemostatic molecular markers, particularly TAT, PIC, and sTM, during intra-arterial procedures may provide additional information for stroke risk stratification and therapeutic decision-making, and warrants further investigation.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
- Jinan Hospital of Xuanwu HospitalCapital Medical UniversityJinanShandongChina
| | - Yiming Song
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Wenbo Cao
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Xinyu Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Peng Gao
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Jian Chen
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Yanfei Chen
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Bin Yang
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Yabing Wang
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Fei Chen
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qingfeng Ma
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bo Yu
- Zhejiang Pushkang Biotechnology Co., LtdShaoxingZhejiangChina
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
- Jinan Hospital of Xuanwu HospitalCapital Medical UniversityJinanShandongChina
- Department of Interventional Neuroradiology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Shao BZ, Jiang JJ, Zhao YC, Zheng XR, Xi N, Zhao GR, Huang XW, Wang SL. Neutrophil extracellular traps in central nervous system (CNS) diseases. PeerJ 2024; 12:e16465. [PMID: 38188146 PMCID: PMC10771765 DOI: 10.7717/peerj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | | - Yi-Cheng Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Rui Zheng
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Na Xi
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Guan-Ren Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Wu Huang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
12
|
Liaptsi E, Merkouris E, Polatidou E, Tsiptsios D, Gkantzios A, Kokkotis C, Petridis F, Christidi F, Karatzetzou S, Karaoglanis C, Tsagkalidi AM, Chouliaras N, Tsamakis K, Protopapa M, Pantazis-Pergaminelis D, Skendros P, Aggelousis N, Vadikolias K. Targeting Neutrophil Extracellular Traps for Stroke Prognosis: A Promising Path. Neurol Int 2023; 15:1212-1226. [PMID: 37873833 PMCID: PMC10594510 DOI: 10.3390/neurolint15040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Stroke has become the first cause of functional disability and one of the leading causes of mortality worldwide. Therefore, it is of crucial importance to develop accurate biomarkers to assess stroke risk and prognosis. Emerging evidence suggests that neutrophil extracellular trap (NET) levels may serve as a valuable biomarker to predict stroke occurrence and functional outcome. NETs are known to create a procoagulant state by serving as a scaffold for tissue factor (TF) and platelets inducing thrombosis by activating coagulation pathways and endothelium. A literature search was conducted in two databases (MEDLINE and Scopus) to trace all relevant studies published between 1 January 2016 and 31 December 2022, addressing the potential utility of NETs as a stroke biomarker. Only full-text articles in English were included. The current review includes thirty-three papers. Elevated NET levels in plasma and thrombi seem to be associated with increased mortality and worse functional outcomes in stroke, with all acute ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage included. Additionally, higher NET levels seem to correlate with worse outcomes after recanalization therapies and are more frequently found in strokes of cardioembolic or cryptogenic origin. Additionally, total neutrophil count in plasma seems also to correlate with stroke severity. Overall, NETs may be a promising predictive tool to assess stroke severity, functional outcome, and response to recanalization therapies.
Collapse
Affiliation(s)
- Eirini Liaptsi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Efthymia Polatidou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Aimilios Gkantzios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Foteini Christidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Stella Karatzetzou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Christos Karaoglanis
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Anna-Maria Tsagkalidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Nikolaos Chouliaras
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Konstantinos Tsamakis
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK;
| | - Maria Protopapa
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Dimitrios Pantazis-Pergaminelis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Panagiotis Skendros
- First Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Konstantinos Vadikolias
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| |
Collapse
|
13
|
Ho-Tin-Noé B, Desilles JP, Mazighi M. Thrombus composition and thrombolysis resistance in stroke. Res Pract Thromb Haemost 2023; 7:100178. [PMID: 37538503 PMCID: PMC10394565 DOI: 10.1016/j.rpth.2023.100178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 08/05/2023] Open
Abstract
A State of the Art lecture titled "Thrombus Composition and Thrombolysis Resistance in Stroke" was presented at the ISTH Congress in 2022. Intravenous thrombolysis (IVT) remains the only pharmacologic option to re-establish cerebral perfusion at the acute phase of ischemic stroke. IVT is based on the administration of recombinant tissue plasminogen activator with the objective of dissolving fibrin, the major fibrillar protein component of thrombi. Almost 30 years on from its introduction, although the clinical benefits of IVT have been clearly demonstrated, IVT still suffers from a relatively low efficacy, with a rate of successful early recanalization below 50% overall. Analyses of thrombectomy-recovered acute ischemic stroke (AIS) thrombi have shown that apart from occlusion site, thrombus length, and collateral status, AIS thrombus structure and composition are also important modulators of IVT efficacy. In this article, after a brief presentation of IVT principle and current knowledge on IVT resistance, we review recent findings on how compaction and structural alterations of fibrin together with nonfibrin thrombus components such as neutrophil extracellular traps and von Willebrand factor interfere with IVT in AIS. We further discuss how these new insights could soon result in the development of original adjuvant therapies for improved IVT in AIS. Finally, we summarize relevant new data presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Benoit Ho-Tin-Noé
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Jean-Philippe Desilles
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Mikael Mazighi
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
14
|
Maglinger B, Frank JA, Fraser JF, Pennypacker KR. Reverse Translation to Develop Post-stroke Therapeutic Interventions during Mechanical Thrombectomy: Lessons from the BACTRAC Trial. Methods Mol Biol 2023; 2616:391-402. [PMID: 36715948 DOI: 10.1007/978-1-0716-2926-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The majority of strokes, approximately 87%, are ischemic in etiology with the remaining hemorrhagic in origin. Emergent large vessel occlusions (ELVOs) are a subtype of ischemic stroke accounting for approximately 30-40% of acute large vessel blockages. Treatment for ELVOs focuses on recanalization of the occluded vessel by time-sensitive administration of tissue plasminogen activator (tPA) or thrombus removal using mechanical thrombectomy. Although a great deal of time and resources have focused on translational stroke research, little progress has been made in the area of identifying additional new treatments for stroke. Translational limitations include difficulty simulating human comorbid conditions in animal models, as well as the temporal nature of stroke pathology. The Blood And Clot Thrombectomy Registry And Collaboration represents an ongoing tissue registry for thrombectomy patients and includes collection of intracranial arterial blood, systemic arterial blood, thrombi, as well as a series of clinical and radiographic data points for analysis. This chapter will explore the methodologies employed and results obtained from studying BACTRAC-derived human biological specimens and how they can inform translational experimental design in animal studies.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Lin J, Guan M, Liao Y, Zhang L, Qiao H, Huang L. An old thrombus may potentially identify patients at higher risk of poor outcome in anterior circulation stroke undergoing thrombectomy. Neuroradiology 2023; 65:381-390. [PMID: 36269335 DOI: 10.1007/s00234-022-03069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE To investigate thrombus age and its association with clinical and procedural parameters in patients with acute ischemic stroke (AIS) due to anterior circulation occlusions. METHODS The thrombi of 107 consecutive AIS patients with occlusions in anterior circulation large-arteries were collected during mechanical recanalization. By hematoxylin-eosin staining analysis, thrombi were classified as fresh (< 3 days) or old (≥ 3 days) according to the hemosiderin positivity. Old thrombi were further classified as thrombi with focal hemosiderin or diffuse hemosiderin according to their predominant distribution. Neuro-interventional data and clinical outcomes were compared based on thrombus age. RESULTS We identified fresh thrombi in 29 patients and old thrombi in 78 patients. Compared with patients with fresh thrombi, patients with old thrombi were associated with (i) a longer mechanical recanalization time (p = 0.027), (ii) a higher percentage of fibrin/platelets and leukocytes (all p = 0.02) and a lower percentage of erythrocytes (p = 0.001), and (iii) less favorable clinical outcomes at discharge (p = 0.019) and 90 days later (OR = 2.76, 95% CI = 1.09-6.99, p = 0.032). Furthermore, 18 (16.8%) of all patients had focal hemosiderin in old thrombi, which was independently linked to a poor clinical outcome 90 days later (adjusted OR = 5.37, 95% CI = 1.14-25.28, p = 0.034). CONCLUSION The presence of old thrombi, particularly those with focal hemosiderin, may aid in identifying patients with acute ischemic anterior circulation stroke who are at a higher risk of poor clinical outcome at 3-month follow-up.
Collapse
Affiliation(s)
- Jia'xing Lin
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, NO.613 the West of Huangpu street, Guangzhou, 510630, China
| | - Min Guan
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, NO.613 the West of Huangpu street, Guangzhou, 510630, China
| | - Yu Liao
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, NO.613 the West of Huangpu street, Guangzhou, 510630, China.,Department of Pathology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Zhang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, NO.613 the West of Huangpu street, Guangzhou, 510630, China
| | - Hong'yu Qiao
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, NO.613 the West of Huangpu street, Guangzhou, 510630, China
| | - Li'an Huang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, NO.613 the West of Huangpu street, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Narwal A, Whyte CS, Mutch NJ. Location, location, location: Fibrin, cells, and fibrinolytic factors in thrombi. Front Cardiovasc Med 2023; 9:1070502. [PMID: 36741833 PMCID: PMC9889369 DOI: 10.3389/fcvm.2022.1070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.
Collapse
|
17
|
Dumitriu LaGrange D, Reymond P, Brina O, Zboray R, Neels A, Wanke I, Lövblad KO. Spatial heterogeneity of occlusive thrombus in acute ischemic stroke: A systematic review. J Neuroradiol 2023; 50:352-360. [PMID: 36649796 DOI: 10.1016/j.neurad.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Following the advent of mechanical thrombectomy, occlusive clots in ischemic stroke have been amply characterized using conventional histopathology. Many studies have investigated the compositional variability of thrombi and the consequences of thrombus composition on treatment response. More recent evidence has emerged about the spatial heterogeneity of the clot or the preferential distribution of its components and compact nature. Here we review this emerging body of evidence, discuss its potential clinical implications, and propose the development of adequate characterization techniques.
Collapse
Affiliation(s)
- Daniela Dumitriu LaGrange
- Neurodiagnostic and Neurointerventional Division, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Philippe Reymond
- Neurodiagnostic and Neurointerventional Division, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Isabel Wanke
- Division of Neuroradiology, Klinik Hirslanden, Zurich, Switzerland; Swiss Neuroradiology Institute, Zurich, Switzerland; Division of Neuroradiology, University of Essen, Essen, Germany
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland; Neurodiagnostic and Neurointerventional Division, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Desilles JP, Di Meglio L, Delvoye F, Maïer B, Piotin M, Ho-Tin-Noé B, Mazighi M. Composition and Organization of Acute Ischemic Stroke Thrombus: A Wealth of Information for Future Thrombolytic Strategies. Front Neurol 2022; 13:870331. [PMID: 35873787 PMCID: PMC9298929 DOI: 10.3389/fneur.2022.870331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
During the last decade, significant progress has been made in understanding thrombus composition and organization in the setting of acute ischemic stroke (AIS). In particular, thrombus organization is now described as highly heterogeneous but with 2 preserved characteristics: the presence of (1) two distinct main types of areas in the core—red blood cell (RBC)-rich and platelet-rich areas in variable proportions in each thrombus—and (2) an external shell surrounding the core composed exclusively of platelet-rich areas. In contrast to RBC-rich areas, platelet-rich areas are highly complex and are mainly responsible for the thrombolysis resistance of these thrombi for the following reasons: the presence of platelet-derived fibrinolysis inhibitors in large amounts, modifications of the fibrin network structure resistant to the tissue plasminogen activator (tPA)-induced fibrinolysis, and the presence of non-fibrin extracellular components, such as von Willebrand factor (vWF) multimers and neutrophil extracellular traps. From these studies, new therapeutic avenues are in development to increase the fibrinolytic efficacy of intravenous (IV) tPA-based therapy or to target non-fibrin thrombus components, such as platelet aggregates, vWF multimers, or the extracellular DNA network.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France.,Université Paris Cité, Paris, France.,FHU Neurovasc, Paris, France
| | - Lucas Di Meglio
- Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France
| | - Francois Delvoye
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,University of Liège, Liege, Belgium
| | - Benjamin Maïer
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Université Paris Cité, Paris, France.,FHU Neurovasc, Paris, France
| | - Michel Piotin
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France
| | - Benoît Ho-Tin-Noé
- Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France.,Université Paris Cité, Paris, France
| | - Mikael Mazighi
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France.,Université Paris Cité, Paris, France.,FHU Neurovasc, Paris, France.,Department of Neurology, Hopital Lariboisère, APHP Nord, Paris, France
| |
Collapse
|
19
|
p38 MAPK Endogenous Inhibition Improves Neurological Deficits in Global Cerebral Ischemia/Reperfusion Mice. Neural Plast 2022; 2022:3300327. [PMID: 35811833 PMCID: PMC9259354 DOI: 10.1155/2022/3300327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a complex pathophysiological process that can lead to neurological function damage and the formation of cerebral infarction. The p38 MAPK pathway has attracted considerable attention in cerebral I/R injury (IRI), but little research has been carried out on its direct role in vivo. In this study, to observe the effects of p38 MAPK endogenous inhibition on cerebral IRI, p38 heterozygous knockdown (p38KI/+) mice were used. We hypothesized that p38 signaling might be involved in I/R injury and neurological damage reduction and that neurological behavioral deficits improve when p38 MAPK is inhibited. First, we examined the neurological damage and neurological behavioral deficit effects of I/R injury in WT mice. Cerebral I/R injury was induced by the bilateral common carotid artery occlusion (BCCAO) method. The cerebral infarction area and volume were assessed and analyzed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. p38 MAPK and caspase-3 were detected by western blotting. Neuronal apoptosis was measured using TUNEL staining. Neurological deficits were detected by behavioral testing. Furthermore, to assess whether these neuroprotective effects occurred when p38 MAPK was inhibited, p38 heterozygous knockdown (p38KI/+) mice were used. We found that p38 MAPK endogenous inhibition rescued hippocampal cell apoptosis, reduced ischemic penumbra, and improved neurological behavioral deficits. These findings showed that p38 MAPK endogenous inhibition had a neuroprotective effect on IRI and that p38 MAPK may be a potential therapeutic target for cerebral IRI.
Collapse
|
20
|
Computational Analysis of the Related Factors of Deep Vein Thrombosis (DVT) Formation in Patients Undergoing Hip Fracture Surgery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1127095. [PMID: 35668774 PMCID: PMC9166936 DOI: 10.1155/2022/1127095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022]
Abstract
A retrospective study was conducted on 51 patients undergoing hip fracture surgery to investigate the factors associated with the formation of deep venous thrombosis (DVT). The independent sample t-test and correlation analysis were used to sort out and analyze the data. The findings are as follows. (1) Different gender samples showed significant differences in the Caprini score and thrombus location. Most DVTs in females are located in the posterior tibial vein and intermuscular veins. The Caprini score of females was significantly higher than that of males. (2) Age displays a positive correlation with DVT, coronary heart disease, hypertension, and different surgical types, respectively. (3) There is a correlation between age and operation duration. (4) Hyperlipidemia and cerebrovascular disease show a positive correlation with DVT. (5) There was a significant negative correlation between the Caprini score and the quantification of D-dimer. This indicates that in this sample, the higher the patients' Caprini score is, the lower the quantitation of D-dimer will be. (6) Hyperlipidemia and cardiac insufficiency show a positive correlation with cerebrovascular disease. Patients with hyperlipidemia and cardiac insufficiency may also suffer from cerebrovascular diseases.
Collapse
|
21
|
de Buhr N, Baumann T, Werlein C, Fingerhut L, Imker R, Meurer M, Götz F, Bronzlik P, Kühnel MP, Jonigk DD, Ernst J, Leotescu A, Gabriel MM, Worthmann H, Lichtinghagen R, Tiede A, von Köckritz-Blickwede M, Falk CS, Weissenborn K, Schuppner R, Grosse GM. Insights Into Immunothrombotic Mechanisms in Acute Stroke due to Vaccine-Induced Immune Thrombotic Thrombocytopenia. Front Immunol 2022; 13:879157. [PMID: 35619694 PMCID: PMC9128407 DOI: 10.3389/fimmu.2022.879157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tristan Baumann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.,Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rabea Imker
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friedrich Götz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Paul Bronzlik
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrei Leotescu
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Maria M Gabriel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Chen X, Wang L, Jiang M, Lin L, Ba Z, Tian H, Li G, Chen L, Liu Q, Hou X, Wu M, Liu L, Ju W, Zeng W, Zhou Z. Leukocytes in Cerebral Thrombus Respond to Large-Vessel Occlusion in a Time-Dependent Manner and the Association of NETs With Collateral Flow. Front Immunol 2022; 13:834562. [PMID: 35251025 PMCID: PMC8891436 DOI: 10.3389/fimmu.2022.834562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Thrombus components are dynamically influenced by local blood flow and blood immune cells. After a large-vessel occlusion stroke, changes in the cerebral thrombus are unclear. Here we assessed a total of 206 cerebral thrombi from patients with ischemic stroke undergoing endovascular thrombectomy. The thrombi were categorized by time to reperfusion of <4 h (T4), 4–8 h (T4–8), and >8 h (T8). The cellular compositions in thrombus were analyzed, and relevant clinical features were compared. Both white blood cells and neutrophils were increased and then decreased in thrombus with time to reperfusion, which were positively correlated with those in peripheral blood. The neutrophil extracellular trap (NET) content in thrombus was correlated with the degree of neurological impairment of patients. Moreover, with prolonged time to reperfusion, the patients showed a trend of better collateral grade, which was associated with a lower NET content in the thrombus. In conclusion, the present results reveal the relationship between time-related endovascular immune response and clinical symptoms post-stroke from the perspective of thrombus and peripheral blood. The time-related pathological changes of cerebral thrombus may not be the direct cause for the difficulty in thrombolysis and thrombectomy. A low NET content in thrombi indicates excellent collateral flow, which suggests that treatments targeting NETs in thrombi might be beneficial for early neurological protection.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Wang
- Department of Neurology, Zigong Third People's Hospital, Zigong, China
| | - Meiling Jiang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Lin
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaojing Ba
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Tian
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guangjian Li
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qu Liu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Wu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Liu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenying Ju
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wen Zeng
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
23
|
The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches. J Clin Med 2022; 11:jcm11071864. [PMID: 35407472 PMCID: PMC8999747 DOI: 10.3390/jcm11071864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke accounts for over 80% of all strokes and is one of the leading causes of mortality and permanent disability worldwide. Intravenous administration of recombinant tissue plasminogen activator (rt-PA) is an approved treatment strategy for acute ischemic stroke of large arteries within 4.5 h of onset, and mechanical thrombectomy can be used for large arteries occlusion up to 24 h after onset. Improving diagnostic work up for acute treatment, reducing onset-to-needle time and urgent radiological access angiographic CT images (angioCT) and Magnetic Resonance Imaging (MRI) are real problems for many healthcare systems, which limits the number of patients with good prognosis in real world compared to the results of randomized controlled trials. The applied endovascular procedures demonstrated high efficacy, but some cellular mechanisms, following reperfusion, are still unknown. Changes in the morphology and function of mitochondria associated with reperfusion and ischemia-reperfusion neuronal death are still understudied research fields. Moreover, future research is needed to elucidate the relationship between continuously refined imaging techniques and the variable structure or physical properties of the clot along with vascular permeability and the pleiotropism of ischemic reperfusion lesions in the penumbra, in order to define targeted preventive procedures promoting long-term health benefits.
Collapse
|