1
|
Chimienti R, Torchio S, Siracusano G, Zamarian V, Monaco L, Lombardo MT, Pellegrini S, Manenti F, Cuozzo F, Rossi G, Carrera P, Sordi V, Broccoli V, Bonfanti R, Casari G, Frontino G, Piemonti L. A WFS1 variant disrupting acceptor splice site uncovers the impact of alternative splicing on beta cell apoptosis in a patient with Wolfram syndrome. Diabetologia 2025; 68:128-151. [PMID: 39520565 DOI: 10.1007/s00125-024-06307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
AIMS/HYPOTHESIS Wolfram syndrome 1 (WS1) is an inherited condition mainly manifesting in childhood-onset diabetes mellitus and progressive optic nerve atrophy. The causative gene, WFS1, encodes wolframin, a master regulator of several cellular responses, and the gene's mutations associate with clinical variability. Indeed, nonsense/frameshift variants correlate with more severe symptoms than missense/in-frame variants. As achieving a genotype-phenotype correlation is crucial for dealing with disease outcome, works investigating the impact of transcriptional and translational landscapes stemming from such mutations are needed. Therefore, we sought to elucidate the molecular determinants behind the pathophysiological alterations in a WS1 patient carrying compound heterozygous mutations in WFS1: c.316-1G>A, affecting the acceptor splice site (ASS) upstream of exon 4; and c.757A>T, introducing a premature termination codon (PTC) in exon 7. METHODS Bioinformatic analysis was carried out to infer the alternative splicing events occurring after disruption of ASS, followed by RNA-seq and PCR to validate the transcriptional landscape. Patient-derived induced pluripotent stem cells (iPSCs) were used as an in vitro model of WS1 and to investigate the WFS1 alternative splicing isoforms in pancreatic beta cells. CRISPR/Cas9 technology was employed to correct ASS mutation and generate a syngeneic control for the endoplasmic reticulum stress induction and immunotoxicity assays. RESULTS We showed that patient-derived iPSCs retained the ability to differentiate into pancreatic beta cells. We demonstrated that the allele carrying the ASS mutation c.316-1G>A originates two PTC-containing alternative splicing transcripts (c.316del and c.316-460del), and two open reading frame-conserving mRNAs (c.271-513del and c.316-456del) leading to N-terminally truncated polypeptides. By retaining the C-terminal domain, these isoforms sustained the endoplasmic reticulum stress response in beta cells. Otherwise, PTC-carrying transcripts were regulated by the nonsense-mediated decay (NMD) in basal conditions. Exposure to cell stress inducers and proinflammatory cytokines affected expression levels of the NMD-related gene SMG7 (>twofold decrease; p<0.001) without eliciting a robust unfolded protein response in WFS1 beta cells. This resulted in a dramatic accumulation of the PTC-containing isoforms c.316del (>100-fold increase over basal; p<0.001) and c.316-460del (>20-fold increase over basal; p<0.001), predisposing affected beta cells to undergo apoptosis. Cas9-mediated recovery of ASS retrieved the canonical transcriptional landscape, rescuing the normal phenotype in patient-derived beta cells. CONCLUSIONS/INTERPRETATION This study represents a new model to study wolframin, highlighting how each single mutation of the WFS1 gene can determine dramatically different functional outcomes. Our data point to increased vulnerability of WFS1 beta cells to stress and inflammation and we postulate that this is triggered by escaping NMD and accumulation of mutated transcripts and truncated proteins. These findings pave the way for further studies on the molecular basis of genotype-phenotype relationship in WS1, to uncover the key determinants that might be targeted to ameliorate the clinical outcome of patients affected by this rare disease. DATA AVAILABILITY The in silico predicted N-terminal domain structure file of WT wolframin was deposited in the ModelArchive, together with procedures, ramachandran plots, inter-residue distance deviation and IDDT scores, and Gromacs configuration files (doi/10.5452/ma-cg3qd). The deep-sequencing data as fastq files used to generate consensus sequences of AS isoforms of WFS1 are available in the SRA database (BioProject PRJNA1109747).
Collapse
Affiliation(s)
- Raniero Chimienti
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Silvia Torchio
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Genetics and Developmental Biology (UMR3215 / U934), Institut Curie, Paris, France.
| | - Gabriel Siracusano
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valentina Zamarian
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Monaco
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Tiffany Lombardo
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvia Pellegrini
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Manenti
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Cuozzo
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Greta Rossi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Molecular Genetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Vania Broccoli
- Genetics and Developmental Biology (UMR3215 / U934), Institut Curie, Paris, France
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy
| | | | - Giorgio Casari
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Genome-Phenome Relationship, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Frontino
- Department of Pediatrics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Fair B, Buen Abad Najar CF, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of unproductive splicing on human gene expression. Nat Genet 2024; 56:1851-1861. [PMID: 39223315 PMCID: PMC11387194 DOI: 10.1038/s41588-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Alternative splicing (AS) in human genes is widely viewed as a mechanism for enhancing proteomic diversity. AS can also impact gene expression levels without increasing protein diversity by producing 'unproductive' transcripts that are targeted for rapid degradation by nonsense-mediated decay (NMD). However, the relative importance of this regulatory mechanism remains underexplored. To better understand the impact of AS-NMD relative to other regulatory mechanisms, we analyzed population-scale genomic data across eight molecular assays, covering various stages from transcription to cytoplasmic decay. We report threefold more unproductive splicing compared with prior estimates using steady-state RNA. This unproductive splicing compounds across multi-intronic genes, resulting in 15% of transcript molecules from protein-coding genes being unproductive. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are as often associated with NMD-induced expression level differences as with differences in protein isoform usage. Our findings suggest that much of the impact of AS is mediated by NMD-induced changes in gene expression rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Ma Z, Sharma R, Rogers AN. Physiological Consequences of Nonsense-Mediated Decay and Its Role in Adaptive Responses. Biomedicines 2024; 12:1110. [PMID: 38791071 PMCID: PMC11117581 DOI: 10.3390/biomedicines12051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway is a quality control mechanism that degrades aberrant mRNA containing one or more premature termination codons (PTCs). Recent discoveries indicate that NMD also differentially regulates mRNA from wild-type protein-coding genes despite lacking PTCs. Together with studies showing that NMD is involved in development and adaptive responses that influence health and longevity, these findings point to an expanded role of NMD that adds a new layer of complexity in the post-transcriptional regulation of gene expression. However, the extent of its control, whether different types of NMD play different roles, and the resulting physiological outcomes remain unclear and need further elucidation. Here, we review different branches of NMD and what is known of the physiological outcomes associated with this type of regulation. We identify significant gaps in the understanding of this process and the utility of genetic tools in accelerating progress in this area.
Collapse
Affiliation(s)
- Zhengxin Ma
- MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ratna Sharma
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | | |
Collapse
|
4
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
5
|
Moisan GJ, Kamath N, Apgar S, Schwehr M, Vedmurthy P, Conner O, Hayes K, Toro CP. Alternative Splicing and Nonsense-Mediated Decay of a Zebrafish GABA Receptor Subunit Transcript. Zebrafish 2024; 21:198-205. [PMID: 37751193 DOI: 10.1089/zeb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The superfamily of Cys-loop ionotropic neurotransmitter receptors includes those that detect GABA, glutamate, glycine, and acetylcholine. There is ample evidence that many Cys-loop receptor subunit genes include alternatively spliced exons. In this study, we report a novel example of alternative splicing (AS): we show that the 68-bp exon 3 in the zebrafish gabrr2b gene-which codes for the ρ2b GABAAR subunit-is an alternative cassette exon. Skipping of gabrr2b exon 3 results in a downstream frame shift and a premature termination codon (PTC). We provide evidence in larval zebrafish that transcripts containing the PTC are subject to degradation through nonsense-mediated decay. We also compile reports of AS of homologous exons in other Cys-loop receptor genes in multiple species. Our data add to a large body of research demonstrating that exon 3 in Cys-loop receptor genes is a conserved site for AS, the effects of which can vary from novel splice-isoform generation to downregulation of gene expression through transcript degradation.
Collapse
Affiliation(s)
- Gaia J Moisan
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Nitika Kamath
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Shannon Apgar
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Megan Schwehr
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Pooja Vedmurthy
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Olivya Conner
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Kyler Hayes
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Cecilia Phillips Toro
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
- Biology Department, Linfield University, McMinnville, Oregon, USA
| |
Collapse
|
6
|
Bénitière F, Necsulea A, Duret L. Random genetic drift sets an upper limit on mRNA splicing accuracy in metazoans. eLife 2024; 13:RP93629. [PMID: 38470242 DOI: 10.7554/elife.93629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance of this process remains a controversial issue. It has been noticed that the complexity of organisms (assayed by the number of distinct cell types) correlates positively with their genome-wide AS rate. This has been interpreted as evidence that AS plays an important role in adaptive evolution by increasing the functional repertoires of genomes. However, this observation also fits with a totally opposite interpretation: given that 'complex' organisms tend to have small effective population sizes (Ne), they are expected to be more affected by genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing accuracy. Thus, according to this 'drift barrier' theory, the elevated AS rate in complex organisms might simply result from a higher splicing error rate. To test this hypothesis, we analyzed 3496 transcriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide range of Ne values. Our results show a negative correlation between Ne proxies and the genome-wide AS rates among species, consistent with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast majority of the splice variant repertoire. We show that these low abundance isoforms are depleted in functional AS events, and most likely correspond to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be lower in more complex species. All these observations are consistent with the hypothesis that variation in AS rates across metazoans reflects the limits set by drift on the capacity of selection to prevent gene expression errors.
Collapse
Affiliation(s)
- Florian Bénitière
- Laboratoire de Biometrie et Biologie Evolutive, CNRS, Universite Lyon 1, Villeurbanne, France
| | - Anamaria Necsulea
- Laboratoire de Biometrie et Biologie Evolutive, CNRS, Universite Lyon 1, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biometrie et Biologie Evolutive, CNRS, Universite Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Jobbins AM, Yu S, Paterson HAB, Maude H, Kefala-Stavridi A, Speck C, Cebola I, Vernia S. Pre-RNA splicing in metabolic homeostasis and liver disease. Trends Endocrinol Metab 2023; 34:823-837. [PMID: 37673766 DOI: 10.1016/j.tem.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in sensing nutritional and hormonal inputs to maintain metabolic homeostasis. Recent studies into pre-mRNA splicing and alternative splicing (AS) and their effects on gene expression have revealed considerable transcriptional complexity in the liver, both in health and disease. While the contribution of these mechanisms to cell and tissue identity is widely accepted, their role in physiological and pathological contexts within tissues is just beginning to be appreciated. In this review, we showcase recent studies on the splicing and AS of key genes in metabolic pathways in the liver, the effect of metabolic signals on the spliceosome, and therapeutic intervention points based on RNA splicing.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sijia Yu
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Helen A B Paterson
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Antonia Kefala-Stavridi
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christian Speck
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Santiago Vernia
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
8
|
Fair B, Najar CBA, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of aberrant splicing on human gene expression levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557588. [PMID: 37745605 PMCID: PMC10515962 DOI: 10.1101/2023.09.13.557588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing (AS) is pervasive in human genes, yet the specific function of most AS events remains unknown. It is widely assumed that the primary function of AS is to diversify the proteome, however AS can also influence gene expression levels by producing transcripts rapidly degraded by nonsense-mediated decay (NMD). Currently, there are no precise estimates for how often the coupling of AS and NMD (AS-NMD) impacts gene expression levels because rapidly degraded NMD transcripts are challenging to capture. To better understand the impact of AS on gene expression levels, we analyzed population-scale genomic data in lymphoblastoid cell lines across eight molecular assays that capture gene regulation before, during, and after transcription and cytoplasmic decay. Sequencing nascent mRNA transcripts revealed frequent aberrant splicing of human introns, which results in remarkably high levels of mRNA transcripts subject to NMD. We estimate that ~15% of all protein-coding transcripts are degraded by NMD, and this estimate increases to nearly half of all transcripts for lowly-expressed genes with many introns. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are similarly likely to associate with NMD-induced expression level differences as with differences in protein isoform usage. Additionally, we used the splice-switching drug risdiplam to perturb AS at hundreds of genes, finding that ~3/4 of the splicing perturbations induce NMD. Thus, we conclude that AS-NMD substantially impacts the expression levels of most human genes. Our work further suggests that much of the molecular impact of AS is mediated by changes in protein expression levels rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Carlos Buen Abad Najar
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Present address: Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Xue J, Ma T, Zhang X. TRA2: The dominant power of alternative splicing in tumors. Heliyon 2023; 9:e15516. [PMID: 37151663 PMCID: PMC10161706 DOI: 10.1016/j.heliyon.2023.e15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The dysregulation of alternative splicing (AS) is frequently found in cancer and considered as key markers for cancer progression and therapy. Transformer 2 (TRA2), a nuclear RNA binding protein, consists of transformer 2 alpha homolog (TRA2A) and transformer 2 beta homolog (TRA2B), and plays a role in the regulation of pre-mRNA splicing. Growing evidence has been provided that TRA2A and TRA2B are dysregulated in several types of tumors, and participate in the regulation of proliferation, migration, invasion, and chemotherapy resistance in cancer cells through alteration of AS of cancer-related genes. In this review, we highlight the role of TRA2 in tumorigenesis and metastasis, and discuss potential molecular mechanisms how TRA2 influences tumorigenesis and metastasis via controlling AS of pre-mRNA. We propose that TRA2Ais a novel biomarker and therapeutic target for cancer progression and therapy.
Collapse
Affiliation(s)
- Jiancheng Xue
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- Corresponding author.
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
- Corresponding author. Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
10
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
11
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
12
|
Shih PY, Sugio A, Simon JC. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:431-450. [PMID: 36228134 DOI: 10.1146/annurev-ento-120220-020526] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran-plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant-aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant-aphid interactions. Recent technological advances have begun to reveal plant-aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant-aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant-aphid interaction mechanisms.
Collapse
Affiliation(s)
- Po-Yuan Shih
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Akiko Sugio
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Jean-Christophe Simon
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| |
Collapse
|
13
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
14
|
Osma-Garcia IC, Capitan-Sobrino D, Mouysset M, Aubert Y, Maloudi O, Turner M, Diaz-Muñoz MD. The splicing regulators TIA1 and TIAL1 are required for the expression of the DNA damage repair machinery during B cell lymphopoiesis. Cell Rep 2022; 41:111869. [PMID: 36543128 PMCID: PMC9794549 DOI: 10.1016/j.celrep.2022.111869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
B cell lymphopoiesis requires dynamic modulation of the B cell transcriptome for timely coordination of somatic mutagenesis and DNA repair in progenitor B (pro-B) cells. Here, we show that, in pro-B cells, the RNA-binding proteins T cell intracellular antigen 1 (TIA1) and TIA1-like protein (TIAL1) act redundantly to enable developmental progression. They are global splicing regulators that control the expression of hundreds of mRNAs, including those involved in DNA damage repair. Mechanistically, TIA1 and TIAL1 bind to 5' splice sites for exon definition, splicing, and expression of DNA damage sensors, such as Chek2 and Rif1. In their absence, pro-B cells show exacerbated DNA damage, altered P53 expression, and increased cell death. Our study uncovers the importance of tight regulation of RNA splicing by TIA1 and TIAL1 for the expression of integrative transcriptional programs that control DNA damage sensing and repair during B cell development.
Collapse
Affiliation(s)
- Ines C. Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Dunja Capitan-Sobrino
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Mailys Mouysset
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Yann Aubert
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Orlane Maloudi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Martin Turner
- Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Manuel D. Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France,Corresponding author
| |
Collapse
|
15
|
Zhang S, Mao M, Lv Y, Yang Y, He W, Song Y, Wang Y, Yang Y, Al Abo M, Freedman JA, Patierno SR, Wang Y, Wang Z. A widespread length-dependent splicing dysregulation in cancer. SCIENCE ADVANCES 2022; 8:eabn9232. [PMID: 35977015 PMCID: PMC9385142 DOI: 10.1126/sciadv.abn9232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Dysregulation of alternative splicing is a key molecular hallmark of cancer. However, the common features and underlying mechanisms remain unclear. Here, we report an intriguing length-dependent splicing regulation in cancers. By systematically analyzing the transcriptome of thousands of cancer patients, we found that short exons are more likely to be mis-spliced and preferentially excluded in cancers. Compared to other exons, cancer-associated short exons (CASEs) are more conserved and likely to encode in-frame low-complexity peptides, with functional enrichment in GTPase regulators and cell adhesion. We developed a CASE-based panel as reliable cancer stratification markers and strong predictors for survival, which is clinically useful because the detection of short exon splicing is practical. Mechanistically, mis-splicing of CASEs is regulated by elevated transcription and alteration of certain RNA binding proteins in cancers. Our findings uncover a common feature of cancer-specific splicing dysregulation with important clinical implications in cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Sirui Zhang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miaowei Mao
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yingqun Yang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Tech University, Shanghai 200031, China
| | - Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
16
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
18
|
Vuong JK, Ergin V, Chen L, Zheng S. Multilayered regulations of alternative splicing, NMD, and protein stability control temporal induction and tissue-specific expression of TRIM46 during axon formation. Nat Commun 2022; 13:2081. [PMID: 35440129 PMCID: PMC9019110 DOI: 10.1038/s41467-022-29786-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The gene regulation underlying axon formation and its exclusiveness to neurons remains elusive. TRIM46 is postulated to determine axonal fate. We show Trim46 mRNA is expressed before axonogenesis, but TRIM46 protein level is inhibited by alternative splicing of two cassette exons coupled separately to stability controls of Trim46 mRNA and proteins, effectively inducing functional knockout of TRIM46 proteins. Exon 8 inclusion causes nonsense-mediated mRNA decay of Trim46 transcripts. PTBP2-mediated exon 10 skipping produces transcripts encoding unstable TRIM46 proteins. During axonogenesis, transcriptional activation, decreased exon 8 inclusion, and enhanced exon 10 inclusion converge to increase TRIM46 proteins, leading to its neural-specific expression. Genetic deletion of these exons alters TRIM46 protein levels and shows TRIM46 is instructive though not always required for AnkG localization nor a determinant of AnkG density. Therefore, two concurrently but independently regulated alternative exons orchestrate the temporal induction and tissue-specific expression of TRIM46 proteins to mediate axon formation.
Collapse
Affiliation(s)
- John K Vuong
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Volkan Ergin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, CA, 91521, USA.
| |
Collapse
|
19
|
Xie M, Zuo R, Bai Z, Yang L, Zhao C, Gao F, Cheng X, Huang J, Liu Y, Li Y, Tong C, Liu S. Genome-Wide Characterization of Serine/Arginine-Rich Gene Family and Its Genetic Effects on Agronomic Traits of Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:829668. [PMID: 35251101 PMCID: PMC8889041 DOI: 10.3389/fpls.2022.829668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Serine/arginine-rich (SR) proteins are indispensable factors for RNA splicing, and they play important roles in development and abiotic stress responses. However, little information on SR genes in Brassica napus is available. In this study, 59 SR genes were identified and classified into seven subfamilies: SR, SCL, RS2Z, RSZ, RS, SR45, and SC. In each subfamily, the genes showed relatively conserved structures and motifs, but displayed distinct expression patterns in different tissues and under abiotic stress, which might be caused by the varied cis-acting regulatory elements among them. Transcriptome datasets from Pacbio/Illumina platforms showed that alternative splicing of SR genes was widespread in B. napus and the majority of paralogous gene pairs displayed different splicing patterns. Protein-protein interaction analysis indicated that SR proteins were involved in the regulation of the whole lifecycle of mRNA, from synthesis to decay. Moreover, the association mapping analysis suggested that 12 SR genes were candidate genes for regulating specific agronomic traits, which indicated that SR genes could affect the development and hence influence the important agronomic traits of B. napus. In summary, this study provided elaborate information on SR genes in B. napus, which will aid further functional studies and genetic improvement of agronomic traits in B. napus.
Collapse
|
20
|
Kumari A, Sedehizadeh S, Brook JD, Kozlowski P, Wojciechowska M. Differential fates of introns in gene expression due to global alternative splicing. Hum Genet 2022; 141:31-47. [PMID: 34907472 PMCID: PMC8758631 DOI: 10.1007/s00439-021-02409-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
The discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.
Collapse
Affiliation(s)
- Anjani Kumari
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Saam Sedehizadeh
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - John David Brook
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
- Department of Rare Human Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
21
|
The MAGOH paralogs - MAGOH, MAGOHB and their multiple isoforms. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E, Boggetto N, Krenek S, Berendonk T, Couloux A, Aury JM, Labadie K, Malinsky S, Bhullar S, Meyer E, Sperling L, Duret L, Duharcourt S. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol 2021; 19:e3001309. [PMID: 34324490 PMCID: PMC8354472 DOI: 10.1371/journal.pbio.3001309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/10/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression. A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.
Collapse
Affiliation(s)
- Diamantis Sellis
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Frédéric Guérin
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Walker Pett
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Emmanuelle Lerat
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Nicole Boggetto
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sascha Krenek
- TU Dresden, Institute of Hydrobiology, Dresden, Germany
| | | | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Sophie Malinsky
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Paris, Paris, France
| | - Simran Bhullar
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Meyer
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laurent Duret
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- * E-mail: (LD); (SD)
| | - Sandra Duharcourt
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
- * E-mail: (LD); (SD)
| |
Collapse
|
23
|
Conboy JG. Unannotated splicing regulatory elements in deep intron space. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1656. [PMID: 33887804 DOI: 10.1002/wrna.1656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Deep intron space harbors a diverse array of splicing regulatory elements that cooperate with better-known exon-proximal elements to enforce proper tissue-specific and development-specific pre-mRNA processing. Many deep intron elements have been highly conserved through vertebrate evolution, yet remain poorly annotated in the human genome. Recursive splicing exons (RS-exons) and intraexons promote noncanonical, multistep resplicing pathways in long introns, involving transient intermediate structures that are greatly underrepresented in RNA-seq datasets. Decoy splice sites and decoy exons act at a distance to inhibit splicing catalysis at annotated splice sites, with functional consequences such as exon skipping and intron retention. RNA:RNA bridges can juxtapose distant sequences within or across introns to activate deep intron splicing enhancers and silencers, to loop out exons to be skipped, or to select one member of a mutually exclusive set of exons. Similarly, protein bridges mediated by interactions among transcript-bound RNA binding proteins (RBPs) can modulate splicing outcomes. Experimental disruption of deep intron elements serving any of these functions can abrogate normal splicing, strongly suggesting that natural mutations of deep intron elements can do likewise to cause human disease. Understanding noncanonical splicing pathways and discovering deep intron regulatory signals, many of which map hundreds to many thousands of nucleotides from annotated splice junctions, is of great academic interest for basic scientists studying alternative splicing mechanisms. Hopefully, this knowledge coupled with increased analysis of deep intron sequences will also have important medical applications, as better interpretation of deep intron mutations may reveal new disease mechanisms and suggest new therapies. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- John G Conboy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, California, USA
| |
Collapse
|
24
|
Zhang Y, Wu X, Li J, Sun K, Li H, Yan L, Duan C, Liu H, Chen K, Ye Z, Liu M, Xu H. Comprehensive characterization of alternative splicing in renal cell carcinoma. Brief Bioinform 2021; 22:6210067. [PMID: 33822848 DOI: 10.1093/bib/bbab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Irregular splicing was associated with tumor formation and progression in renal cell carcinoma (RCC) and many other cancers. By using splicing data in the TCGA SpliceSeq database, RCC subtype classification was performed and splicing features and their correlations with clinical course, genetic variants, splicing factors, pathways activation and immune heterogeneity were systemically analyzed. In this research, alternative splicing was found useful for classifying RCC subtypes. Splicing inefficiency with upregulated intron retention and cassette exon was associated with advanced conditions and unfavorable overall survival of patients with RCC. Splicing characteristics like splice site strength, guanine and cytosine content and exon length may be important factors disrupting splicing balance in RCC. Other than cis-acting and trans-acting regulation, alternative splicing also differed in races and tissue types and is also affected by mutation conditions, pathway settings and the response to environmental changes. Severe irregular splicing in tumor not only indicated terrible intra-cellular homeostasis, but also changed the activity of cancer-associated pathways by different splicing effects including isoforms switching and expression regulation. Moreover, irregular splicing and splicing-associated antigens were involved in immune reprograming and formation of immunosuppressive tumor microenvironment. Overall, we have described several clinical and molecular features in RCC splicing subtypes, which may be important for patient management and targeting treatment.
Collapse
Affiliation(s)
- Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Libin Yan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital and now works in the Department of Urology, The Second Affiliated Hospital of Kunming Medical University, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| |
Collapse
|
25
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
26
|
Ghiasi SM, Rutter GA. Consequences for Pancreatic β-Cell Identity and Function of Unregulated Transcript Processing. Front Endocrinol (Lausanne) 2021; 12:625235. [PMID: 33763030 PMCID: PMC7984428 DOI: 10.3389/fendo.2021.625235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence suggests a role for alternative splicing (AS) of transcripts in the normal physiology and pathophysiology of the pancreatic β-cell. In the apparent absence of RNA repair systems, RNA decay pathways are likely to play an important role in controlling the stability, distribution and diversity of transcript isoforms in these cells. Around 35% of alternatively spliced transcripts in human cells contain premature termination codons (PTCs) and are targeted for degradation via nonsense-mediated decay (NMD), a vital quality control process. Inflammatory cytokines, whose levels are increased in both type 1 (T1D) and type 2 (T2D) diabetes, stimulate alternative splicing events and the expression of NMD components, and may or may not be associated with the activation of the NMD pathway. It is, however, now possible to infer that NMD plays a crucial role in regulating transcript processing in normal and stress conditions in pancreatic β-cells. In this review, we describe the possible role of Regulated Unproductive Splicing and Translation (RUST), a molecular mechanism embracing NMD activity in relationship to AS and translation of damaged transcript isoforms in these cells. This process substantially reduces the abundance of non-functional transcript isoforms, and its dysregulation may be involved in pancreatic β-cell failure in diabetes.
Collapse
Affiliation(s)
- Seyed M. Ghiasi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Cao Y, Di X, Zhang Q, Li R, Wang K. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol 2021; 11:603932. [PMID: 33718153 PMCID: PMC7943715 DOI: 10.3389/fonc.2021.603932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding motif protein 10 (RBM10) is involved in alternative splicing and modifies mRNA post-transcriptionally. RBM10 is abnormally expressed in the lung, breast, and colorectal cancer, female genital tumors, osteosarcoma, and other malignant tumors. It can inhibit proliferation, promote apoptosis, and inhibit invasion and metastasis. RBM10 has long been considered a tumor suppressor because it promotes apoptosis through the regulation of the MDM2-p53 negative feedback loop, Bcl-2, Bax, and other apoptotic proteins and inhibits proliferation through the Notch signaling and rap1a/Akt/CREB pathways. However, it has been recently demonstrated that RBM10 can also promote cancer. Given these different views, it is necessary to summarize the research progress of RBM10 in various fields to reasonably analyze the underlying molecular mechanisms, and provide new ideas and directions for the clinical research of RBM10 in various cancer types. In this review, we provide a new perspective on the reasons for these opposing effects on cancer biology, molecular mechanisms, research progress, and clinical value of RBM10.
Collapse
Affiliation(s)
- Yingshu Cao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Zhu J, Zhao H, Kong F, Liu B, Liu M, Dong Z. Cotranscriptional and Posttranscriptional Features of the Transcriptome in Soybean Shoot Apex and Leaf. FRONTIERS IN PLANT SCIENCE 2021; 12:649634. [PMID: 33897737 PMCID: PMC8063115 DOI: 10.3389/fpls.2021.649634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 05/13/2023]
Abstract
Transcription is the first step of central dogma, in which the genetic information stored in DNA is copied into RNA. In addition to mature RNA sequencing (RNA-seq), high-throughput nascent RNA assays have been established and applied to provide detailed transcriptional information. Here, we present the profiling of nascent RNA from trifoliate leaves and shoot apices of soybean. In combination with nascent RNA (chromatin-bound RNA, CB RNA) and RNA-seq, we found that introns were largely spliced cotranscriptionally. Although alternative splicing (AS) was mainly determined at nascent RNA biogenesis, differential AS between the leaf and shoot apex at the mature RNA level did not correlate well with cotranscriptional differential AS. Overall, RNA abundance was moderately correlated between nascent RNA and mature RNA within each tissue, but the fold changes between the leaf and shoot apex were highly correlated. Thousands of novel transcripts (mainly non-coding RNA) were detected by CB RNA-seq, including the overlap of natural antisense RNA with two important genes controlling soybean reproductive development, FT2a and Dt1. Taken together, we demonstrated the adoption of CB RNA-seq in soybean, which may shed light on gene expression regulation of important agronomic traits in leguminous crops.
Collapse
Affiliation(s)
- Jiafu Zhu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Min Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
- *Correspondence: Min Liu,
| | - Zhicheng Dong
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
- Zhicheng Dong,
| |
Collapse
|
29
|
Xu Y, Liu L, Wang X, Huang Y, Cheng Y, Zhang J, Wang J, Tian Y, Xiong J, Yang Y, Ren B, Wu W, He P, Zhang Y, Zhao B, Wang J, Yu M, Wang J, Jian R, Liu Y, Ruan Y. Identification of novel Taz isoforms and functional comparison in pluripotency maintenance of mouse embryonic stem cells. Gene 2020; 773:145383. [PMID: 33383118 DOI: 10.1016/j.gene.2020.145383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Alternative splicing (AS) is a key process to expand the diversity of mRNA and protein from the genome and it is crucial for fate determination of embryonic stem cells (ESCs) by encoding isoforms with different functions to regulate the balance between pluripotency maintenance and differentiation. Since the role of the Hippo pathway in ESCs is controversial, there may be novel isoforms of Taz, a key effector of the Hippo pathway, previously unknown to us. Here, we identified three variants of Taz in mESCs. Apart from the canonical Taz1185, there were also two novel variants, Taz402 and Taz1086. We found their structure and subcellular localization to be different, while they could all interact with TEAD2 with similar binding affinities and activate transcription. Under the LIFlow condition, overexpression of them all induced apoptosis and differentiation of mESCs, among which the phenotype of Taz1086 was the most dramatic. Taken together, we discovered novel variants of Taz and compared their structure and functional differences in mESC pluripotency maintenance. These findings will help us to understand the Taz gene and clarify its role in mESC.
Collapse
Affiliation(s)
- Yixiao Xu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yuyan Huang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, the First Hospital Affiliated to Army Medical University, Chongqing 400038, China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, the First Hospital Affiliated to Army Medical University, Chongqing 400038, China
| | - Yue Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China
| | - Binyu Zhao
- Department of Physiology, Army Medical University, Chongqing 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China.
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
30
|
García-Moreno JF, Romão L. Perspective in Alternative Splicing Coupled to Nonsense-Mediated mRNA Decay. Int J Mol Sci 2020; 21:ijms21249424. [PMID: 33321981 PMCID: PMC7764535 DOI: 10.3390/ijms21249424] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins. Interestingly, around one third of all AS events results in PTC-containing transcripts that undergo NMD. Numerous studies have reported a coordinated action between AS and NMD, in order to regulate the expression of several genes, especially those coding for RNA-binding proteins (RBPs). This coupling of AS to NMD (AS-NMD) is considered a gene expression tool that controls the ratio of productive to unproductive mRNA isoforms, ultimately degrading PTC-containing non-functional mRNAs. In this review, we focus on the mechanisms underlying AS-NMD, and how this regulatory process is able to control the homeostatic expression of numerous RBPs, including splicing factors, through auto- and cross-regulatory feedback loops. Furthermore, we discuss the importance of AS-NMD in the regulation of biological processes, such as cell differentiation. Finally, we analyze interesting recent data on the relevance of AS-NMD to human health, covering its potential roles in cancer and other disorders.
Collapse
Affiliation(s)
- Juan F. García-Moreno
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Faculty of Science, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Faculty of Science, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-508-155
| |
Collapse
|
31
|
Cruz-Garcia L, O’Brien G, Sipos B, Mayes S, Tichý A, Sirák I, Davídková M, Marková M, Turner DJ, Badie C. In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation. Int J Mol Sci 2020; 21:ijms21217851. [PMID: 33113898 PMCID: PMC7660203 DOI: 10.3390/ijms21217851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Following cell stress such as ionising radiation (IR) exposure, multiple cellular pathways are activated. We recently demonstrated that ferredoxin reductase (FDXR) has a remarkable IR-induced transcriptional responsiveness in blood. Here, we provided a first comprehensive FDXR variant profile following DNA damage. First, specific quantitative real-time polymerase chain reaction (qPCR) primers were designed to establish dose-responses for eight curated FDXR variants, all up-regulated after IR in a dose-dependent manner. The potential role of gender on the expression of these variants was tested, and neither the variants response to IR nor the background level of expression was profoundly affected; moreover, in vitro induction of inflammation temporarily counteracted IR response early after exposure. Importantly, transcriptional up-regulation of these variants was further confirmed in vivo in blood of radiotherapy patients. Full-length nanopore sequencing was performed to identify other FDXR variants and revealed the high responsiveness of FDXR-201 and FDXR-208. Moreover, FDXR-218 and FDXR-219 showed no detectable endogenous expression, but a clear detection after IR. Overall, we characterised 14 FDXR transcript variants and identified for the first time their response to DNA damage in vivo. Future studies are required to unravel the function of these splicing variants, but they already represent a new class of radiation exposure biomarkers.
Collapse
Affiliation(s)
- Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
| | - Grainne O’Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
| | - Botond Sipos
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Simon Mayes
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, 500 01 Hradec Králové, Czech Republic;
- Biomedical Research Centre, Hradec Králové University Hospital, 500 01 Hradec Králové, Czech Republic
| | - Igor Sirák
- Department of Oncology and Radiotherapy and 4th Department of Internal Medicine—Hematology, University Hospital, 500 05 Hradec Králové, Czech Republic;
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, 180 00 Prague 8, Czech Republic;
| | - Markéta Marková
- Institute of Hematology and Blood Transfusion, 128 00 Praha 2, Czech Republic;
| | - Daniel J. Turner
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
- Correspondence: ; Tel.: +44-(0)1235-825-088; Fax: +44-(0)1235-833-891
| |
Collapse
|
32
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
33
|
Kishor A, Fritz SE, Haque N, Ge Z, Tunc I, Yang W, Zhu J, Hogg JR. Activation and inhibition of nonsense-mediated mRNA decay control the abundance of alternative polyadenylation products. Nucleic Acids Res 2020; 48:7468-7482. [PMID: 32542372 DOI: 10.1093/nar/gkaa491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative polyadenylation (APA) produces transcript 3' untranslated regions (3'UTRs) with distinct sequences, lengths, stabilities and functions. We show here that APA products include a class of cryptic nonsense-mediated mRNA decay (NMD) substrates with extended 3'UTRs that gene- or transcript-level analyses of NMD often fail to detect. Transcriptome-wide, the core NMD factor UPF1 preferentially recognizes long 3'UTR products of APA, leading to their systematic downregulation. Counteracting this mechanism, the multifunctional RNA-binding protein PTBP1 regulates the balance of short and long 3'UTR isoforms by inhibiting NMD, in addition to its previously described modulation of co-transcriptional polyadenylation (polyA) site choice. Further, we find that many transcripts with altered APA isoform abundance across multiple tumor types are controlled by NMD. Together, our findings reveal a widespread role for NMD in shaping the outcomes of APA.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
|
35
|
Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon. Neuron 2020; 107:1180-1196.e8. [PMID: 32710818 DOI: 10.1016/j.neuron.2020.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/29/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Continuous neuronal survival is vital for mammals because mammalian brains have limited regeneration capability. After neurogenesis, suppression of apoptosis is needed to ensure a neuron's long-term survival. Here we describe a robust genetic program that intrinsically attenuates apoptosis competence in neurons. Developmental downregulation of the splicing regulator PTBP1 in immature neurons allows neural-specific splicing of the evolutionarily conserved Bak1 microexon 5. Exon 5 inclusion triggers nonsense-mediated mRNA decay (NMD) and unproductive translation of Bak1 transcripts (N-Bak mRNA), leading to suppression of pro-apoptotic BAK1 proteins and allowing neurons to reduce apoptosis. Germline heterozygous ablation of exon 5 increases BAK1 proteins exclusively in the brain, inflates neuronal apoptosis, and leads to early postnatal mortality. Therefore, neural-specific exon 5 splicing and depletion of BAK1 proteins uniquely repress neuronal apoptosis. Although apoptosis is important for development, attenuation of apoptosis competence through neural-specific splicing of the Bak1 microexon is essential for neuronal and animal survival.
Collapse
|
36
|
Novel splicing dysferlin mutation causing myopathy with intra-familial heterogeneity. Mol Biol Rep 2020; 47:5755-5761. [PMID: 32666437 DOI: 10.1007/s11033-020-05643-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular disorders, caused by mutations in the dysferlin gene and characterized by a high degree of clinical variability even though within the same family. This study aims to describe three cases, belonging to a consanguineous Tunisian family, sharing a new splicing mutation in the dysferlin gene and presenting intra-familial variability of dysferlinopathies: Proximal-distal weakness and distal myopathy with anterior tibial onset. We performed the next generation sequencing for mutation screening and reverse transcriptase-PCR for gene expression analysis. Routine muscle histology was used for muscle biopsy processing. The clinical presentation demonstrated heterogeneous phenotypes between the three cases: Two presented intermediate phenotypes of dysferlinopathy with proximal-distal weakness and the third had a distal myopathy with anterior tibial onset. Genetic analysis yielded a homozygous splicing mutation (c.4597-2A>G) in the dysferlin gene, giving rise to the suppression of 28 bp of the exon 43. The splicing mutation found in our family (c.4597-2A>G) is responsible for the suppression of 28 bp of the exon 43 and a wide clinical intra-familial variability.
Collapse
|
37
|
Lim KH, Han Z, Jeon HY, Kach J, Jing E, Weyn-Vanhentenryck S, Downs M, Corrionero A, Oh R, Scharner J, Venkatesh A, Ji S, Liau G, Ticho B, Nash H, Aznarez I. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun 2020; 11:3501. [PMID: 32647108 PMCID: PMC7347940 DOI: 10.1038/s41467-020-17093-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
While most monogenic diseases are caused by loss or reduction of protein function, the need for technologies that can selectively increase levels of protein in native tissues remains. Here we demonstrate that antisense-mediated modulation of pre-mRNA splicing can increase endogenous expression of full-length protein by preventing naturally occurring non-productive alternative splicing and promoting generation of productive mRNA. Bioinformatics analysis of RNA sequencing data identifies non-productive splicing events in 7,757 protein-coding human genes, of which 1,246 are disease-associated. Antisense oligonucleotides targeting multiple types of non-productive splicing events lead to increases in productive mRNA and protein in a dose-dependent manner in vitro. Moreover, intracerebroventricular injection of two antisense oligonucleotides in wild-type mice leads to a dose-dependent increase in productive mRNA and protein in the brain. The targeting of natural non-productive alternative splicing to upregulate expression from wild-type or hypomorphic alleles provides a unique approach to treating genetic diseases. Restoration of normal gene expression is one way to treat monogenic disorders. Here the authors target naturally occurring non-productive alternative splicing using antisense oligonucleotides to promote the production of functional proteins.
Collapse
Affiliation(s)
| | - Zhou Han
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | - Jacob Kach
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | | | | | | | - Raymond Oh
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | | | - Sophina Ji
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | - Gene Liau
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | - Huw Nash
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | |
Collapse
|
38
|
Humphrey J, Birsa N, Milioto C, McLaughlin M, Ule AM, Robaldo D, Eberle AB, Kräuchi R, Bentham M, Brown AL, Jarvis S, Bodo C, Garone M, Devoy A, Soraru G, Rosa A, Bozzoni I, Fisher EMC, Mühlemann O, Schiavo G, Ruepp MD, Isaacs AM, Plagnol V, Fratta P. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res 2020; 48:6889-6905. [PMID: 32479602 PMCID: PMC7337901 DOI: 10.1093/nar/gkaa410] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.
Collapse
Affiliation(s)
- Jack Humphrey
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Nicol Birsa
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
| | - Carmelo Milioto
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Martha McLaughlin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Agnieszka M Ule
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Robaldo
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea B Eberle
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Rahel Kräuchi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Matthew Bentham
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Seth Jarvis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cristian Bodo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Anny Devoy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
| | - Gianni Soraru
- Department of Neurosciences, Università degli Studi di Padova, Padova 35121, Italy
| | - Alessandro Rosa
- Sapienza University of Rome, Rome 00185, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Irene Bozzoni
- Sapienza University of Rome, Rome 00185, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London WC1N 3BG, UK
| | - Marc-David Ruepp
- UK Dementia Research Institute
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Vincent Plagnol
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
39
|
Gangras P, Gallagher TL, Parthun MA, Yi Z, Patton RD, Tietz KT, Deans NC, Bundschuh R, Amacher SL, Singh G. Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3'UTR intron-containing NMD targets. PLoS Genet 2020; 16:e1008830. [PMID: 32502192 PMCID: PMC7310861 DOI: 10.1371/journal.pgen.1008830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 06/23/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.
Collapse
Affiliation(s)
- Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Thomas L. Gallagher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Michael A. Parthun
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Zhongxia Yi
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Robert D. Patton
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
| | - Kiel T. Tietz
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Ohio, United States of America
| | - Sharon L. Amacher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Ohio, United States of America
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children’s Hospital, Ohio, United States of America
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| |
Collapse
|
40
|
Premature termination codon readthrough in Drosophila varies in a developmental and tissue-specific manner. Sci Rep 2020; 10:8485. [PMID: 32444687 PMCID: PMC7244557 DOI: 10.1038/s41598-020-65348-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Despite their essential function in terminating translation, readthrough of stop codons occurs more frequently than previously supposed. However, little is known about the regulation of stop codon readthrough by anatomical site and over the life cycle of animals. Here, we developed a set of reporters to measure readthrough in Drosophila melanogaster. A focused RNAi screen in whole animals identified upf1 as a mediator of readthrough, suggesting that the stop codons in the reporters were recognized as premature termination codons (PTCs). We found readthrough rates of PTCs varied significantly throughout the life cycle of flies, being highest in older adult flies. Furthermore, readthrough rates varied dramatically by tissue and, intriguingly, were highest in fly brains, specifically neurons and not glia. This was not due to differences in reporter abundance or nonsense-mediated mRNA decay (NMD) surveillance between these tissues. Readthrough rates also varied within neurons, with cholinergic neurons having highest readthrough compared with lowest readthrough rates in dopaminergic neurons. Overall, our data reveal temporal and spatial variation of PTC-mediated readthrough in animals, and suggest that readthrough may be a potential rescue mechanism for PTC-harboring transcripts when the NMD surveillance pathway is inhibited.
Collapse
|
41
|
Prognostic Value and Potential Regulatory Mechanism of Alternative Splicing in Geriatric Breast Cancer. Genes (Basel) 2020; 11:genes11020200. [PMID: 32079071 PMCID: PMC7074345 DOI: 10.3390/genes11020200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Breast cancer has the highest mortality and morbidity among women, especially in elderly women over 60 years old. Abnormal alternative splicing (AS) events are associated with the occurrence and development of geriatric breast cancer (GBC), yet strong evidence is lacking for the prognostic value of AS in GBC and the regulatory network of AS in GBC, which may highlight the mechanism through which AS contributes to GBC. In the present study, we obtained splicing event information (SpliceSeq) and clinical information for GBC from The Cancer Genome Atlas, and we constructed a GBC prognosis model based on AS events to predict the survival outcomes of GBC. Kaplan–Meier analysis was conducted to evaluate the predictive accuracy among different molecular subtypes of GBC. We conducted enrichment analysis and constructed a splicing network between AS and the splicing factor (SF) to examine the possible regulatory mechanisms of AS in GBC. We constructed eight prognostic signatures with very high statistical accuracy in predicting GBC survival outcomes from 45,421 AS events of 10,480 genes detected in 462 GBC patients; the prognostic model based on exon skip (ES) events had the highest accuracy, indicating its significant value in GBC prognosis. The constructed regulatory SF–AS network may explain the potential regulatory mechanism between SF and AS, which may be the mechanism through which AS events contribute to GBC survival outcomes. The findings confirm that AS events have a significant prognostic value in GBC, and we found a few effective prognostic signatures. We also hypothesized the mechanism underlying AS in GBC and discovered a potential regulatory mechanism between SF and AS.
Collapse
|
42
|
Xing Y, Yang W, Liu G, Cui X, Meng H, Zhao H, Zhao X, Li J, Liu Z, Zhang MQ, Cai L. Dynamic Alternative Splicing During Mouse Preimplantation Embryo Development. Front Bioeng Biotechnol 2020; 8:35. [PMID: 32117919 PMCID: PMC7019016 DOI: 10.3389/fbioe.2020.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanism of alternative pre-mRNA splicing (AS) during preimplantation development is largely unknown. In order to capture the dynamic changes of AS occurring during embryogenesis, we carried out bioinformatics analysis based on scRNA-seq data over the time-course preimplantation development in mouse. We detected numerous previously-unreported differentially expressed genes at specific developmental stages and investigated the nature of AS at both minor and major zygotic genome activation (ZGA). The AS and differential AS atlas over preimplantation development were established. The differentially alternatively spliced genes (DASGs) are likely to be key splicing factors (SFs) during preimplantation development. We also demonstrated that there is a regulatory cascade of AS events in which some key SFs are regulated by differentially AS of their own gene transcripts. Moreover, 212 isoform switches (ISs) during preimplantation development were detected, which may be critical for decoding the mechanism of early embryogenesis. Importantly, we uncovered that zygotic AS activation (ZASA) is in conformity with ZGA and revealed that AS is coupled with transcription during preimplantation development. Our results may provide a deeper insight into the regulation of early embryogenesis.
Collapse
Affiliation(s)
- Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Wuritu Yang
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiangjun Cui
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hu Meng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jun Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Zhe Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, United States
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
43
|
Frankiw L, Mann M, Li G, Joglekar A, Baltimore D. Alternative splicing coupled with transcript degradation modulates OAS1g antiviral activity. RNA (NEW YORK, N.Y.) 2020; 26:126-136. [PMID: 31740586 PMCID: PMC6961538 DOI: 10.1261/rna.073825.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 05/17/2023]
Abstract
At the heart of an innate immune response lies a tightly regulated gene expression program. This precise regulation is crucial because small changes can shift the balance from protective to destructive immunity. Here we identify a frequently used alternative splice site in the gene oligoadenylate synthetase 1g (Oas1g), a key component of the 2-5A antiviral system. Usage of this splice site leads to the generation of a transcript subject to decay, and removal of the site leads to increased expression of Oas1g and an improved antiviral response. However, removal of the splice site also leads to an increase in apoptotic cell death, suggesting this splicing event exists as a compromise between the pathogen protective benefits and collateral damage associated with OAS1g activity. Across the innate immune response, we show that a multitude of alternative splicing events predicted to lead to decay exist, and thus have the potential to play a significant role in the regulation of gene expression in innate immunity.
Collapse
Affiliation(s)
- Luke Frankiw
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mati Mann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Alok Joglekar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
44
|
Kulichová K, Kumar V, Steinbachová L, Klodová B, Timofejeva L, Juříček M, Honys D, Hafidh S. PRP8A and PRP8B spliceosome subunits act co-ordinately to control pollen tube attraction in Arabidopsis. Development 2020; 147:dev.186742. [DOI: 10.1242/dev.186742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
Precise guided pollen tube growth by the female gametophyte is a pre-requisite for successful sexual reproduction in flowering plants. Cysteine-rich proteins (CRPs) secreted from the embryo sac are known pollen tube attractants perceived by pollen tube receptor-like kinases (RLK's). How pre-mRNA splicing facilitates this cell-to-cell communication is not understood. Here, we report novel function of Pre-mRNA PROCESSING factor 8 paralogs, PRP8A and PRP8B, as regulators of pollen tube attraction. Double mutant prp8a prp8b ovules cannot attract pollen tubes, and prp8a prp8b pollen tubes fail in sensing ovules attraction signals. Only 3% of ovule-expressed genes were misregulated in prp8a prp8b. Combination of RNA-seq and MYB98/LURE1.2-YFP reporter revealed the expression of MYB98, LUREs and 49 other CRPs were downregulated suggesting loss of synergid cell fate. Differential Exon usage (DEU) and Intron-retention (IR) analysis revealed autoregulation of PPR8A/PRP8B splicing. In vivo, PRP8A coimmunoprecipitates with splicing enhancer AtSF3A1, suggesting involvement of PRP8A in 3′-splice site selection. Our data hint that PRP8A/PRP8B module exhibit spliceosome-autoregulation to facilitate pollen tube attraction via transcriptional regulation of MYB98, CRPs and LURE pollen tube attractants.
Collapse
Affiliation(s)
- Katarína Kulichová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ljudmilla Timofejeva
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Miloslav Juříček
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Plant Experimental Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| |
Collapse
|
45
|
Latorre E, Mesonero JE, Harries LW. Alternative splicing in serotonergic system: Implications in neuropsychiatric disorders. J Psychopharmacol 2019; 33:1352-1363. [PMID: 31210090 DOI: 10.1177/0269881119856546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The serotonergic system is a key component of physiological brain function and is essential for proper neurological activity. Numerous neuropsychiatric disorders are associated with deregulation of the serotonergic system. Accordingly, many pharmacological treatments are focused on modulation of this system. While providing a promising line of therapeutic moderation, these approaches may be complicated due to the presence of alternative splicing events for key genes in this pathway. Alternative splicing is a co-transcriptional process by which different mRNA transcripts can be produced from the same gene. These different isoforms may have diverse activities and functions, and their relative balance is often critical for the maintenance of homeostasis. Alternative splicing greatly increases the production of proteins, augmenting cell plasticity, and provides an important control point for regulation of gene expression. AIM The objective of this narrative review is to discuss the potential impact of alternative splicing of different components of the serotonergic system and speculate on their involvement in several neuropsychiatric disorders. CONCLUSIONS The specific role of each isoform in disease and their relative activities in the signalling pathways involved are yet to be determined. We need to gain a better understanding of the basis of alternative isoforms of the serotonergic system in order to fully understand their impact and be able to develop new effective pharmacological isoform-specific targets.
Collapse
Affiliation(s)
- Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
46
|
Classes of non-conventional tetraspanins defined by alternative splicing. Sci Rep 2019; 9:14075. [PMID: 31575878 PMCID: PMC6773723 DOI: 10.1038/s41598-019-50267-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 11/08/2022] Open
Abstract
Tetraspanins emerge as a family of membrane proteins mediating an exceptional broad diversity of functions. The naming refers to their four transmembrane segments, which define the tetraspanins' typical membrane topology. In this study, we analyzed alternative splicing of tetraspanins. Besides isoforms with four transmembrane segments, most mRNA sequences are coding for isoforms with one, two or three transmembrane segments, representing structurally mono-, di- and trispanins. Moreover, alternative splicing may alter transmembrane topology, delete parts of the large extracellular loop, or generate alternative N- or C-termini. As a result, we define structure-based classes of non-conventional tetraspanins. The increase in gene products by alternative splicing is associated with an unexpected high structural variability of tetraspanins. We speculate that non-conventional tetraspanins have roles in regulating ER exit and modulating tetraspanin-enriched microdomain function.
Collapse
|
47
|
Dvinge H, Guenthoer J, Porter PL, Bradley RK. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res 2019; 29:1591-1604. [PMID: 31434678 PMCID: PMC6771400 DOI: 10.1101/gr.246678.118] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Alternative splicing of pre-mRNAs plays a pivotal role during the establishment and maintenance of human cell types. Characterizing the trans-acting regulatory proteins that control alternative splicing has therefore been the focus of much research. Recent work has established that even core protein components of the spliceosome, which are required for splicing to proceed, can nonetheless contribute to splicing regulation by modulating splice site choice. We here show that the RNA components of the spliceosome likewise influence alternative splicing decisions. Although these small nuclear RNAs (snRNAs), termed U1, U2, U4, U5, and U6 snRNA, are present in equal stoichiometry within the spliceosome, we found that their relative levels vary by an order of magnitude during development, across tissues, and across cancer samples. Physiologically relevant perturbation of individual snRNAs drove widespread gene-specific differences in alternative splicing but not transcriptome-wide splicing failure. Genes that were particularly sensitive to variations in snRNA abundance in a breast cancer cell line model were likewise preferentially misspliced within a clinically diverse cohort of invasive breast ductal carcinomas. As aberrant mRNA splicing is prevalent in many cancers, we propose that a full understanding of such dysregulated pre-mRNA processing requires study of snRNAs, as well as protein splicing factors. Together, our data show that the RNA components of the spliceosome are not merely basal factors, as has long been assumed. Instead, these noncoding RNAs constitute a previously uncharacterized layer of regulation of alternative splicing, and contribute to the establishment of global splicing programs in both healthy and malignant cells.
Collapse
Affiliation(s)
- Heidi Dvinge
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Peggy L Porter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
48
|
Kavalecz N, Ág N, Karaffa L, Scazzocchio C, Flipphi M, Fekete E. A spliceosomal twin intron (stwintron) participates in both exon skipping and evolutionary exon loss. Sci Rep 2019; 9:9940. [PMID: 31289343 PMCID: PMC6616335 DOI: 10.1038/s41598-019-46435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Spliceosomal twin introns (stwintrons) are introns where any of the three consensus sequences involved in splicing is interrupted by another intron (internal intron). In Aspergillus nidulans, a donor-disrupted stwintron (intron-1) is extant in the transcript encoding a reticulon-like protein. The orthologous transcript of Aspergillus niger can be alternatively spliced; the exon downstream the stwintron could be skipped by excising a sequence that comprises this stwintron, the neighbouring intron-2, and the exon bounded by these. This process involves the use of alternative 3' splice sites for the internal intron, the resulting alternative intervening sequence being a longer 3'-extended stwintron. In 29 species of Onygenales, a multi-step splicing process occurs in the orthologous transcript, in which a complex intervening sequence including the stwintron and neigbouring intron-2, generates by three splicing reactions a "second order intron" which must then be excised with a fourth splicing event. The gene model in two species can be envisaged as one canonical intron (intron-1) evolved from this complex intervening sequence of nested canonical introns found elsewhere in Onygenales. Postulated splicing intermediates were experimentally verified in one or more species. This work illustrates a role of stwintrons in both alternative splicing and the evolution of intron structure.
Collapse
Affiliation(s)
- Napsugár Kavalecz
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Norbert Ág
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, SW7 2AZ, UK.,Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 9198, Gif-sur-Yvette, 91405, France
| | - Michel Flipphi
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
49
|
Nakagaki-Silva EE, Gooding C, Llorian M, Jacob AG, Richards F, Buckroyd A, Sinha S, Smith CW. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. eLife 2019; 8:46327. [PMID: 31283468 PMCID: PMC6613909 DOI: 10.7554/elife.46327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) programs are primarily controlled by regulatory RNA-binding proteins (RBPs). It has been proposed that a small number of master splicing regulators might control cell-specific splicing networks and that these RBPs could be identified by proximity of their genes to transcriptional super-enhancers. Using this approach we identified RBPMS as a critical splicing regulator in differentiated vascular smooth muscle cells (SMCs). RBPMS is highly down-regulated during phenotypic switching of SMCs from a contractile to a motile and proliferative phenotype and is responsible for 20% of the AS changes during this transition. RBPMS directly regulates AS of numerous components of the actin cytoskeleton and focal adhesion machineries whose activity is critical for SMC function in both phenotypes. RBPMS also regulates splicing of other splicing, post-transcriptional and transcription regulators including the key SMC transcription factor Myocardin, thereby matching many of the criteria of a master regulator of AS in SMCs.
Collapse
Affiliation(s)
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Anne McLaren Laboratory, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Richards
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Adrian Buckroyd
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Anne McLaren Laboratory, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
50
|
Nakano M, Fukami T, Nakajima M. Adenosine Deaminases Acting on RNA Downregulate the Expression of Constitutive Androstane Receptor in the Human Liver–Derived Cells by Attenuating Splicing. J Pharmacol Exp Ther 2019; 370:408-415. [DOI: 10.1124/jpet.119.260109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
|