1
|
Li H, Yang H, Liu L, Zheng J, Shi Q, Li B, Wang X, Zhang Y, Zhou R, Zhang J, Chen ZZ, Wang CY, Wang Y, Huang X, Liu Z. One stone two birds: Introducing piperazine into a series of nucleoside derivatives as potent and selective PRMT5 inhibitors. Eur J Med Chem 2024; 281:116970. [PMID: 39488968 DOI: 10.1016/j.ejmech.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
The protein arginine methyltransferase 5 (PRMT5) has emerged as potential target for the treatment of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors targeting either S-adenosyl methionine (SAM) pocket or substrate binding pocket. Here, we rationally designed a series of nucleoside derivatives incorporated with piperazine as novel PRMT5 inhibitors occupying both pockets. The representative compound 36 exhibited highly potent PRMT5 inhibition activity as well as good selectivity over other methyltransferases. Further cellular experiments revealed that compound 36 potently reduced the level of symmetric dimethylarginines (sDMA) and inhibited the proliferation of MOLM-13 cell lines by inducing apoptosis and cell cycle arrest. Moreover, compound 36 had more favorable metabolic stability and aqueous solubility than JNJ64619178 (9). Meanwhile, it obviously suppressed the tumor growth in a MOLM-13 tumor xenograft model. These results clearly indicate that 36 is a highly potent and selective PRMT5 inhibitor worthy for further development.
Collapse
Affiliation(s)
- Huaxuan Li
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hong Yang
- Lingang Laboratory, Shanghai, 200031, China
| | - Li Liu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | | | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xingcan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying Zhang
- Lingang Laboratory, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruilin Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jian Zhang
- Thoracic Surgery Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xun Huang
- Lingang Laboratory, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Zhiqing Liu
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Kumar R, Ranganathan P. PRMT5: splicing up tolerance. J Clin Invest 2024; 134:e185701. [PMID: 39403925 PMCID: PMC11473145 DOI: 10.1172/jci185701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Expression of tissue-restricted antigens (TRAs) within the thymus is critical for the establishment of self-tolerance; however, exact mechanisms regulating the expression of TRAs has proven more complex than previously appreciated. In this issue of the JCI, Muro et al. identify a central role for protein arginine methyltransferase 5 (PRMT5) in posttranscriptional regulation of TRAs and thereby central tolerance. Using conditional KO mice, the authors showed that thymic deficiency of Prmt5 predisposed mice to developing autoimmune diseases while enhancing antitumor efficacy. These studies provide insight into the role of PRMT5 in shaping the T cell repertoire with implications for the development of therapies.
Collapse
Affiliation(s)
- Rathan Kumar
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center and
- Biological Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center and
| |
Collapse
|
3
|
Liang L, Gao M, Li W, Tang J, He Q, Zeng F, Cao J, Liu S, Chen Y, Li X, Zhou Y. CircGSK3β mediates PD-L1 transcription through miR-338-3p/PRMT5/H3K4me3 to promote breast cancer cell immune evasion and tumor progression. Cell Death Discov 2024; 10:426. [PMID: 39366935 PMCID: PMC11452702 DOI: 10.1038/s41420-024-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Circular RNA (circRNA) plays a pivotal role in breast cancer onset and progression. Understanding the biological functions and underlying molecular mechanisms of dysregulated circRNAs in breast cancer is crucial for elucidating its pathogenesis and identifying potential therapeutic targets. In this study, we investigated the role and molecular mechanism of circGSK3β in breast cancer. We found that circGSK3β is highly expressed in breast cancer cell lines, where it promotes cell proliferation, migration, and invasion, thereby driving breast cancer progression. Furthermore, we observed a close association between circGSK3β expression levels and immune evasion in breast cancer cells. Mechanistically, circGSK3β acts as a competing endogenous RNA (ceRNA) by interacting with miR-338-3p, thereby promoting breast cancer cell proliferation, migration, and invasion. Additionally, circGSK3β positively regulates the expression of the target gene PRMT5 through its interaction with miR-338-3p. This, in turn, enhances H3K4me3 recruitment to the promoter region of PD-L1, resulting in upregulation of PD-L1 expression and consequent immune evasion in breast cancer. In summary, our findings underscore the significance of the circGSK3β-miR-338-3p-PRMT5-H3K4me3 axis in promoting breast cancer progression and immune evasion. CircGSK3β emerges as a critical player in breast cancer pathogenesis, potentially serving as a diagnostic and prognostic marker, and offering novel insights into the role of circRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Lin Liang
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Mengxiang Gao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qian He
- Department of Radiation Oncology, Hunan Cancer Hospital & the Afliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Feng Zeng
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Yan Chen
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Watts J, Minden MD, Bachiashvili K, Brunner AM, Abedin S, Crossman T, Zajac M, Moroz V, Egger JL, Tarkar A, Kremer BE, Barbash O, Borthakur G. Phase I/II study of the clinical activity and safety of GSK3326595 in patients with myeloid neoplasms. Ther Adv Hematol 2024; 15:20406207241275376. [PMID: 39290981 PMCID: PMC11406655 DOI: 10.1177/20406207241275376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background GSK3326595 is a potent, selective, reversible protein arginine methyltransferase 5 (PRMT5) inhibitor under investigation for treatment of myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). In preclinical models of AML, PRMT5 inhibition decreased proliferation and increased cell death, supporting additional clinical research in myeloid neoplasms. Objectives To determine the clinical activity, safety, tolerability, dosing, additional measures of clinical activity, pharmacokinetics, and pharmacodynamics of GSK3326595. Design In part 1 of this open-label, multicenter, multipart, phase I/II study, adults with relapsed/refractory myeloid neoplasms (e.g., MDS, CMML, and AML) received monotherapy with 400 or 300 mg oral GSK3326595 once daily. Study termination occurred prior to part 2 enrollment. Methods Clinical activity was determined by the clinical benefit rate (CBR; proportion of patients achieving complete remission (CR), complete marrow remission (mCR), partial remission, stable disease (SD) >8 weeks, or hematologic improvement). Adverse events (AEs) were assessed by incidence and severity. Exploratory examination of spliceosome mutations was performed to determine the relationship between genomic profiles and clinical response to GSK3326595. Results Thirty patients with a median age of 73.5 years (range, 47-90) were enrolled; 13 (43%) and 17 (57%) received 400 and 300 mg of GSK3326595, respectively. Five (17%) patients met CBR criteria: 4 (13%) with SD >8 weeks and 1 (3%) achieving mCR. Of five patients with clinical benefit: three had SRSF2 mutation, one U2AF1, and one was splicing factor wild-type. Frequent GSK3326595-related AEs were decreased platelet count (27%), dysgeusia (23%), fatigue (20%), and nausea (20%). GSK3326595 had rapid absorption, with a T max of approximately 2 h and a terminal half-life of 4-6 h. Conclusion GSK3326595 monotherapy had limited clinical activity in heavily pretreated patients despite robust target engagement. The safety profile was broadly consistent with other published PRMT5 inhibitor studies. Trial registration ClinicalTrials.gov: NCT03614728.
Collapse
Affiliation(s)
- Justin Watts
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Kimo Bachiashvili
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Sameem Abedin
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy Crossman
- Oncology Clinical Development, GSK, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | | | | | | | - Aarti Tarkar
- Oncology Clinical Development, GSK, Collegeville, PA, USA
| | | | - Olena Barbash
- Oncology Clinical Development, GSK, Collegeville, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
He Y, Qi S, Chen L, Zhu J, Liang L, Chen X, Zhang H, Zhuo L, Zhao S, Liu S, Xie T. The roles and mechanisms of SREBP1 in cancer development and drug response. Genes Dis 2024; 11:100987. [PMID: 38560498 PMCID: PMC10978545 DOI: 10.1016/j.gendis.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 04/04/2024] Open
Abstract
Cancer occurrence and development are closely related to increased lipid production and glucose consumption. Lipids are the basic component of the cell membrane and play a significant role in cancer cell processes such as cell-to-cell recognition, signal transduction, and energy supply, which are vital for cancer cell rapid proliferation, invasion, and metastasis. Sterol regulatory element-binding transcription factor 1 (SREBP1) is a key transcription factor regulating the expression of genes related to cholesterol biosynthesis, lipid homeostasis, and fatty acid synthesis. In addition, SREBP1 and its upstream or downstream target genes are implicated in various metabolic diseases, particularly cancer. However, no review of SREBP1 in cancer biology has yet been published. Herein, we summarized the roles and mechanisms of SREBP1 biological processes in cancer cells, including SREBP1 modification, lipid metabolism and reprogramming, glucose and mitochondrial metabolism, immunity, and tumor microenvironment, epithelial-mesenchymal transition, cell cycle, apoptosis, and ferroptosis. Additionally, we discussed the potential role of SREBP1 in cancer prognosis, drug response such as drug sensitivity to chemotherapy and radiotherapy, and the potential drugs targeting SREBP1 and its corresponding pathway, elucidating the potential clinical application based on SREBP1 and its corresponding signal pathway.
Collapse
Affiliation(s)
- Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Linda Liang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shujuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
7
|
Abe Y, Sano T, Otsuka N, Ogawa M, Tanaka N. PRMT5-mediated methylation of STAT3 is required for lung cancer stem cell maintenance and tumour growth. Commun Biol 2024; 7:593. [PMID: 38760429 PMCID: PMC11101626 DOI: 10.1038/s42003-024-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3, suggesting the presence of a positive feedback loop in cancer cells. Furthermore, methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed, NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall, our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Abe
- Laboratory of Molecular Analysis, Nippon Medical School, Tokyo, Japan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Naoki Otsuka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Masashi Ogawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan.
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
8
|
Liang JH, Wang WT, Wang R, Gao R, Du KX, Duan ZW, Zhang XY, Li Y, Wu JZ, Yin H, Shen HR, Wang L, Li JY, Guo JR, Xu W. PRMT5 activates lipid metabolic reprogramming via MYC contributing to the growth and survival of mantle cell lymphoma. Cancer Lett 2024; 591:216877. [PMID: 38615930 DOI: 10.1016/j.canlet.2024.216877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.
Collapse
Affiliation(s)
- Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Wei-Ting Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Zi-Wen Duan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Xin-Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jin-Ran Guo
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| |
Collapse
|
9
|
Zhang J, Liu X, Sa N, Zhang JH, Cai YS, Wang KM, Xu W, Jiang CS, Zhu KK. Synthesis and biological evaluation of 1-phenyl-tetrahydro-β-carboline-based first dual PRMT5/EGFR inhibitors as potential anticancer agents. Eur J Med Chem 2024; 269:116341. [PMID: 38518523 DOI: 10.1016/j.ejmech.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Protein arginine methyltransferase 5 (PRMT5) and epidermal growth factor receptor (EGFR) are both involved in the regulation of various cancer-related processes, and their dysregulation or overexpression has been observed in many types of tumors. In this study, we designed and synthesized a series of 1-phenyl-tetrahydro-β-carboline (THβC) derivatives as the first class of dual PRMT5/EGFR inhibitors. Among the synthesized compounds, 10p showed the most potent dual PRMT5/EGFR inhibitory activity, with IC50 values of 15.47 ± 1.31 and 19.31 ± 2.14 μM, respectively. Compound 10p also exhibited promising antiproliferative activity against A549, MCF7, HeLa, and MDA-MB-231 cell lines, with IC50 values below 10 μM. Molecular docking studies suggested that 10p could bind to PRMT5 and EGFR through hydrophobic, π-π, and cation-π interactions. Furthermore, 10p displayed favorable pharmacokinetic properties and oral bioavailability (F = 30.6%) in rats, and administrated orally 10p could significantly inhibit the growth of MCF7 orthotopic xenograft tumors. These results indicate that compound 10p is a promising hit compound for the development of novel and effective dual PRMT5/EGFR inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China; School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xuliang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Na Sa
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yong-Si Cai
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Wang YJ, Cao JB, Yang J, Liu T, Yu HL, He ZX, Bao SL, He XX, Zhu XJ. PRMT5-mediated homologous recombination repair is essential to maintain genomic integrity of neural progenitor cells. Cell Mol Life Sci 2024; 81:123. [PMID: 38459149 PMCID: PMC10923982 DOI: 10.1007/s00018-024-05154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jian-Bo Cao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Tong Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Shi-Lai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
11
|
Jadon N, Shanthalingam S, Tew GN, Minter LM. PRMT5 regulates epigenetic changes in suppressive Th1-like iTregs in response to IL-12 treatment. Front Immunol 2024; 14:1292049. [PMID: 38259494 PMCID: PMC10800960 DOI: 10.3389/fimmu.2023.1292049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Induced regulatory T cells (iTregs) are a heterogeneous population of immunosuppressive T cells with therapeutic potential. Treg cells show a range of plasticity and can acquire T effector-like capacities, as is the case for T helper 1 (Th1)-like iTregs. Thus, it is important to distinguish between functional plasticity and lineage instability. Aplastic anemia (AA) is an autoimmune disorder characterized by immune-mediated destruction of hematopoietic stem and progenitor cells in the bone marrow (BM). Th1-like 1 iTregs can be potent suppressors of aberrant Th1-mediated immune responses such as those that drive AA disease progression. Here we investigated the function of the epigenetic enzyme, protein arginine methyltransferase 5 (PRMT5), its regulation of the iTreg-destabilizing deacetylase, sirtuin 1 (Sirt1) in suppressive Th1-like iTregs, and the potential for administering Th1-like iTregs as a cell-based therapy for AA. Methods We generated Th1-like iTregs by culturing iTregs with IL-12, then assessed their suppressive capacity, expression of iTreg suppression markers, and enzymatic activity of PRMT5 using histone symmetric arginine di-methylation (H3R2me2s) as a read out. We used ChIP sequencing on Th1 cells, iTregs, and Th1-like iTregs to identify H3R2me2s-bound genes unique to Th1-like iTregs, then validated targets using CHiP-qPCR. We knocked down PRMT5 to validate its contribution to Th1-like iTreg lineage commitment. Finally we tested the therapeutic potential of Th1-like iTregs using a Th1-mediated mouse model of AA. Results Exposing iTregs to the Th1 cytokine, interleukin-12 (IL-12), during early events of differentiation conveyed increased suppressive function. We observed increased PRMT5 enzymatic activity, as measured by H3R2me2s, in Th1-like iTregs, which was downregulated in iTregs. Using ChIP-sequencing we discovered that H3R2me2s is abundantly bound to the Sirt1 promoter region in Th1-like iTregs to negatively regulate its expression. Furthermore, administering Th1-like iTregs to AA mice provided a survival benefit. Conclusions Knocking down PRMT5 in Th1-like iTregs concomitantly reduced their suppressive capacity, supporting the notion that PRMT5 is important for the superior suppressive capacity and stability of Th1-like iTregs. Conclusively, therapeutic administration of Th1-like iTregs in a mouse model of AA significantly extended their survival and they may have therapeutic potential.
Collapse
Affiliation(s)
- Nidhi Jadon
- Graduate Program in Animal Biotechnology and Biomedical Sciences, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Graduate Program in Animal Biotechnology and Biomedical Sciences, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
13
|
Liu H, Dong X, Jia K, Yuan B, Ren Z, Pan X, Wu J, Li J, Zhou J, Wang RX, Qu L, Sun J, Pan LL. Protein arginine methyltransferase 5-mediated arginine methylation stabilizes Kruppel-like factor 4 to accelerate neointimal formation. Cardiovasc Res 2023; 119:2142-2156. [PMID: 37201513 DOI: 10.1093/cvr/cvad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/28/2023] [Accepted: 03/01/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Accumulating evidence supports the indispensable role of protein arginine methyltransferase 5 (PRMT5) in the pathological progression of several human cancers. As an important enzyme-regulating protein methylation, how PRMT5 participates in vascular remodelling remains unknown. The aim of this study was to investigate the role and underlying mechanism of PRMT5 in neointimal formation and to evaluate its potential as an effective therapeutic target for the condition. METHODS AND RESULTS Aberrant PRMT5 overexpression was positively correlated with clinical carotid arterial stenosis. Vascular smooth muscle cell (SMC)-specific PRMT5 knockout inhibited intimal hyperplasia with an enhanced expression of contractile markers in mice. Conversely, PRMT5 overexpression inhibited SMC contractile markers and promoted intimal hyperplasia. Furthermore, we showed that PRMT5 promoted SMC phenotypic switching by stabilizing Kruppel-like factor 4 (KLF4). Mechanistically, PRMT5-mediated KLF4 methylation inhibited ubiquitin-dependent proteolysis of KLF4, leading to a disruption of myocardin (MYOCD)-serum response factor (SRF) interaction and MYOCD-SRF-mediated the transcription of SMC contractile markers. CONCLUSION Our data demonstrated that PRMT5 critically mediated vascular remodelling by promoting KLF4-mediated SMC phenotypic conversion and consequently the progression of intimal hyperplasia. Therefore, PRMT5 may represent a potential therapeutic target for intimal hyperplasia-associated vascular diseases.
Collapse
Affiliation(s)
- He Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Kunpeng Jia
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Baohui Yuan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, P. R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|
14
|
O'Brien S, Butticello M, Thompson C, Wilson B, Wyce A, Mahajan V, Kruger R, Mohammad H, Fedoriw A. Inhibiting PRMT5 induces DNA damage and increases anti-proliferative activity of Niraparib, a PARP inhibitor, in models of breast and ovarian cancer. BMC Cancer 2023; 23:775. [PMID: 37596538 PMCID: PMC10436459 DOI: 10.1186/s12885-023-11260-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Inhibitors of Poly (ADP-Ribose) Polymerases (PARP) provide clinical benefit to patients with breast and ovarian cancers, by compromising the DNA repair activity of cancer cells. Although these agents extend progression-free survival in many patients, responses can be short lived with many patients ultimately progressing. Identification of combination partners that increase dependence of cancer cells to the DNA repair activity of PARPs may represent a strategy to increase the utility of PARP inhibitors. Protein arginine methyltransferase 5 (PRMT5) regulates DNA damage response pathways through splicing and protein modification, and inhibitors of PRMT5 have recently entered clinical trials. METHODS The effect of PRMT5 inhibition on the levels of DNA damage and repair markers including γH2AX, RAD51, and 53BP1 was determined using high content immunofluorescent imaging. The anti-proliferative activity of the combination of PRMT5 and PARP inhibitors was evaluated using in vitro models of breast and ovarian cancers using both cell lines and ex vivo patient derived xenografts. Finally, the combinations of PRMT5 and PARP inhibitors were evaluated in cell line xenograft models in vivo. RESULTS Inhibition of PRMT5 by GSK3326595 led to increased levels of markers of DNA damage. The addition of GSK3326595 to the PARP inhibitor, niraparib, resulted in increased growth inhibition of breast and ovarian cancer cell lines and patient derived spheroids. In vivo, the combination improved the partial effects on tumor growth inhibition achieved by either single agent, producing complete tumor stasis and regression. CONCLUSION These data demonstrate that inhibition of PRMT5 induced signatures of DNA damage in models of breast and ovarian cancer. Furthermore, combination with the PARP inhibitor, Niraparib, resulted in increased anti-tumor activity in vitro and in vivo. Overall, these data suggest inhibition of PRMT5 as a mechanism to broaden and enhance the clinical application of PARP inhibitors.
Collapse
Affiliation(s)
- Shane O'Brien
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | | | | | - Boris Wilson
- Synthetic Lethality RU, GlaxoSmithKline, Collegeville, USA
| | - Anastasia Wyce
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Vivek Mahajan
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Ryan Kruger
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Helai Mohammad
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Andy Fedoriw
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA.
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA.
| |
Collapse
|
15
|
Yin S, Liu L, Gan W. PRMT1 and PRMT5: on the road of homologous recombination and non-homologous end joining. GENOME INSTABILITY & DISEASE 2023; 4:197-209. [PMID: 37663901 PMCID: PMC10470524 DOI: 10.1007/s42764-022-00095-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 09/05/2023]
Abstract
DNA double-strand breaks (DSBs) are widely accepted to be the most deleterious form of DNA lesions that pose a severe threat to genome integrity. Two predominant pathways are responsible for repair of DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR relies on a template to faithfully repair breaks, while NHEJ is a template-independent and error-prone repair mechanism. Multiple layers of regulation have been documented to dictate the balance between HR and NHEJ, such as cell cycle and post-translational modifications (PTMs). Arginine methylation is one of the most common PTMs, which is catalyzed by protein arginine methyltransferases (PRMTs). PRMT1 and PRMT5 are the predominate PRMTs that promote asymmetric dimethylarginine and symmetric dimethylarginine, respectively. They have emerged to be crucial regulators of DNA damage repair. In this review, we summarize current understanding and unaddressed questions of PRMT1 and PRMT5 in regulation of HR and NHEJ, providing insights into their roles in DSB repair pathway choice and the potential of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
17
|
Chu WH, Yang N, Zhang JH, Li Y, Song JL, Deng ZP, Meng N, Zhang J, Zhu KK, Jiang CS. Discovery of tetrahydroisoquinolineindole derivatives as first dual PRMT5 inhibitors/hnRNP E1 upregulators: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 258:115625. [PMID: 37429083 DOI: 10.1016/j.ejmech.2023.115625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an epigenetics related enzyme that has been validated as an important therapeutic target for treating various types of cancer. Upregulation of tumor suppressor hnRNP E1 has also been considered as an effective antitumor therapy. In this study, a series of tetrahydroisoquinolineindole hybrids were designed and prepared, and compounds 3m and 3s4 were found to be selective inhibitors of PRMT5 and upregulators of hnRNP E1. Molecular docking studies indicated that compounds 3m occupied the substrate site of PRMT5 and formed essential interactions with amino acid residues. Furthermore, compounds 3m and 3s4 exerted antiproliferative effects against A549 cells by inducing apoptosis and inhibiting cell migration. Importantly, silencing of hnRNP E1 eliminated the antitumor effect of 3m and 3s4 on the apoptosis and migration in A549 cells, suggesting a regulatory relationship between PRMT5 and hnRNP E1. Additionally, compound 3m exhibited high metabolic stability on human liver microsomes (T1/2 = 132.4 min). In SD rats, the bioavailability of 3m was 31.4%, and its PK profiles showed satisfactory AUC and Cmax values compared to the positive control. These results suggest that compound 3m is the first class of dual PRMT5 inhibitor and hnRNP E1 upregulator that deserves further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Wen-Hui Chu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Na Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jia-Li Song
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Zhi-Peng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
18
|
Kim HM, Zheng X, Lee E. Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression. Int J Mol Sci 2023; 24:11032. [PMID: 37446210 PMCID: PMC10342072 DOI: 10.3390/ijms241311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chromatin structure plays a fundamental role in regulating gene expression, with histone modifiers shaping the structure of chromatin by adding or removing chemical changes to histone proteins. The p53 transcription factor controls gene expression, binds target genes, and regulates their activity. While p53 has been extensively studied in cancer research, specifically in relation to fundamental cellular processes, including gene transcription, apoptosis, and cell cycle progression, its association with histone modifiers has received limited attention. This review explores the interplay between histone modifiers and p53 in regulating gene expression. We discuss how histone modifications can influence how p53 binds to target genes and how this interplay can be disrupted in cancer cells. This review provides insights into the complex mechanisms underlying gene regulation and their implications for potential cancer therapy.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | | | |
Collapse
|
19
|
Brobbey C, Yin S, Liu L, Ball LE, Howe PH, Delaney JR, Gan W. Autophagy dictates sensitivity to PRMT5 inhibitor in breast cancer. Sci Rep 2023; 13:10752. [PMID: 37400460 DOI: 10.1038/s41598-023-37706-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes mono-methylation and symmetric di-methylation on arginine residues and has emerged as a potential antitumor target with inhibitors being tested in clinical trials. However, it remains unknown how the efficacy of PRMT5 inhibitors is regulated. Here we report that autophagy blockage enhances cellular sensitivity to PRMT5 inhibitor in triple negative breast cancer cells. Genetic ablation or pharmacological inhibition of PRMT5 triggers cytoprotective autophagy. Mechanistically, PRMT5 catalyzes monomethylation of ULK1 at R532 to suppress ULK1 activation, leading to attenuation of autophagy. As a result, ULK1 inhibition blocks PRMT5 deficiency-induced autophagy and sensitizes cells to PRMT5 inhibitor. Our study not only identifies autophagy as an inducible factor that dictates cellular sensitivity to PRMT5 inhibitor, but also unearths a critical molecular mechanism by which PRMT5 regulates autophagy through methylating ULK1, providing a rationale for the combination of PRMT5 and autophagy inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Charles Brobbey
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
20
|
Zheng J, Li B, Wu Y, Wu X, Wang Y. Targeting Arginine Methyltransferase PRMT5 for Cancer Therapy: Updated Progress and Novel Strategies. J Med Chem 2023. [PMID: 37366223 DOI: 10.1021/acs.jmedchem.3c00250] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a predominant type II protein arginine methyltransferase, PRMT5 plays critical roles in various normal cellular processes by catalyzing the mono- and symmetrical dimethylation of a wide range of histone and nonhistone substrates. Clinical studies have revealed that high expression of PRMT5 is observed in different solid tumors and hematological malignancies and is closely associated with cancer initiation and progression. Accordingly, PRMT5 is becoming a promising anticancer target and has received great attention in both the pharmaceutical industry and the academic community. In this Perspective, we comprehensively summarize recent advances in the development of first-generation PRMT5 enzymatic inhibitors and highlight novel strategies targeting PRMT5 in the past 5 years. We also discuss the challenges and opportunities of PRMT5 inhibition, with the aim of shedding light on future PRMT5 drug discovery.
Collapse
Affiliation(s)
- Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqi Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoshuang Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Ju X, Yu Y, Ren W, Dong L, Meng X, Deng H, Nan Y, Ding Q. The PRMT5/WDR77 complex restricts hepatitis E virus replication. PLoS Pathog 2023; 19:e1011434. [PMID: 37276230 PMCID: PMC10270597 DOI: 10.1371/journal.ppat.1011434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Yanying Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Wenlin Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Xianbin Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Zheng Z, Nan B, Liu C, Tang D, Li W, Zhao L, Nie G, He Y. Inhibition of histone methyltransferase PRMT5 attenuates cisplatin-induced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway. J Pharm Anal 2023; 13:590-602. [PMID: 37440906 PMCID: PMC10334280 DOI: 10.1016/j.jpha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5 (PRMT5) in cisplatin-induced hearing loss. The effects of PRMT5 inhibition on cisplatin-induced auditory injury were determined using immunohistochemistry, apoptosis assays, and auditory brainstem response. The mechanism of PRMT5 inhibition on hair cell survival was assessed using RNA-seq and Cleavage Under Targets and Tagment-quantitative polymerase chain reaction (CUT&Tag-qPCR) analyses in the HEI-OC1 cell line. Pharmacological inhibition of PRMT5 significantly alleviated cisplatin-induced damage to hair cells and spiral ganglion neurons in the cochlea and decreased apoptosis by protecting mitochondrial function and preventing the accumulation of reactive oxygen species. CUT&Tag-qPCR analysis demonstrated that inhibition of PRMT5 in HEI-OC1 cells reduced the accumulation of H4R3me2s/H3R8me2s marks at the promoter region of the Pik3ca gene, thus activating the expression of Pik3ca. These findings suggest that PRMT5 inhibitors have strong potential as agents against cisplatin-induced ototoxicity and can lay the foundation for further research on treatment strategies of hearing loss.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Dongmei Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Wen Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Liping Zhao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| |
Collapse
|
23
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
24
|
Hong E, Barczak W, Park S, Heo JS, Ooshima A, Munro S, Hong CP, Park J, An H, Park JO, Park SH, La Thangue NB, Kim SJ. Combination treatment of T1-44, a PRMT5 inhibitor with Vactosertib, an inhibitor of TGF-β signaling, inhibits invasion and prolongs survival in a mouse model of pancreatic tumors. Cell Death Dis 2023; 14:93. [PMID: 36765032 PMCID: PMC9918730 DOI: 10.1038/s41419-023-05630-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-β1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-β1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Shonagh Munro
- Argonaut Therapeutics Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK
| | | | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Nick B La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
25
|
BRG1: Promoter or Suppressor of Cancer? The Outcome of BRG1's Interaction with Specific Cellular Pathways. Int J Mol Sci 2023; 24:ijms24032869. [PMID: 36769189 PMCID: PMC9917617 DOI: 10.3390/ijms24032869] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BRG1 is one of two catalytic subunits of the SWI/SNF ATP-dependent chromatin-remodeling complex. In cancer, it has been hypothesized that BRG1 acts as a tumor suppressor. Further study has shown that, under certain circumstances, BRG1 acts as an oncogene. Targeted knockout of BRG1 has proven successful in most cancers in suppressing tumor growth and proliferation. Furthermore, BRG1 effects cancer proliferation in oncogenic KRAS mutated cancers, with varying directionality. Thus, dissecting BRG1's interaction with various cellular pathways can highlight possible intermediates that can facilitate the design of different treatment methods, including BRG1 inhibition. Autophagy and apoptosis are two important cellular responses to stress. BRG1 plays a direct role in autophagy and apoptosis and likely promotes autophagy and suppresses apoptosis, supporting unfettered cancer growth. PRMT5 inhibits transcription by interacting with ATP-dependent chromatin remodeling complexes, such as SWI/SNF. When PRMT5 associates with the SWI/SNF complex, including BRG1, it represses tumor suppressor genes. The Ras/Raf/MAPK/ERK1/2 pathway in cancers is a signal transduction pathway involved in the transcription of genes related to cancer survival. BRG1 has been shown to effect KRAS-driven cancer growth. BRG1 associates with several proteins within the signal transduction pathway. In this review, we analyze BRG1 as a promising target for cancer inhibition and possible synergy with other cancer treatments.
Collapse
|
26
|
Ernzen K, Melvin C, Yu L, Phelps C, Niewiesk S, Green PL, Panfil AR. The PRMT5 inhibitor EPZ015666 is effective against HTLV-1-transformed T-cell lines in vitro and in vivo. Front Microbiol 2023; 14:1101544. [PMID: 36819050 PMCID: PMC9932813 DOI: 10.3389/fmicb.2023.1101544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the infectious cause of adult T-cell leukemia/lymphoma (ATL), an extremely aggressive and fatal malignancy of CD4+ T-cells. Due to the chemotherapy-resistance of ATL and the absence of long-term therapy regimens currently available for ATL patients, there is an urgent need to characterize novel therapeutic targets against this disease. Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that is directly involved in the pathogenesis of multiple different lymphomas through the transcriptional regulation of relevant oncogenes. Recently, our group identified that PRMT5 is overexpressed in HTLV-1-transformed T-cell lines, during the HTLV-1-mediated T-cell immortalization process, and in ATL patient samples. The objective of this study was to determine the importance of PRMT5 on HTLV-1 infected cell viability, T-cell transformation, and ultimately disease induction. Inhibition of PRMT5 enzymatic activity with a commercially available small molecule inhibitor (EPZ015666) resulted in selective in vitro toxicity of actively proliferating and transformed T-cells. EPZ015666-treatment resulted in a dose-dependent increase in apoptosis in HTLV-1-transformed and ATL-derived cell lines compared to uninfected Jurkat T-cells. Using a co-culture model of infection and immortalization, we found that EPZ015666 is capable of blocking HTLV-1-mediated T-cell immortalization in vitro, indicating that PRMT5 enzymatic activity is essential for the HTLV-1 T-cell transformation process. Administration of EPZ015666 in both NSG xenograft and HTLV-1-infected humanized immune system (HIS) mice significantly improved survival outcomes. The cumulative findings of this study demonstrate that the epigenetic regulator PRMT5 is critical for the survival, transformation, and pathogenesis of HTLV-1, illustrating the value of this cellular enzyme as a potential therapeutic target for the treatment of ATL.
Collapse
Affiliation(s)
- Kyle Ernzen
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Corrine Melvin
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Lianbo Yu
- Department of Biomedical Informatics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Cameron Phelps
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Patrick L. Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Scagnoli F, Palma A, Favia A, Scuoppo C, Illi B, Nasi S. A New Insight into MYC Action: Control of RNA Polymerase II Methylation and Transcription Termination. Biomedicines 2023; 11:biomedicines11020412. [PMID: 36830948 PMCID: PMC9952900 DOI: 10.3390/biomedicines11020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
MYC oncoprotein deregulation is a common catastrophic event in human cancer and limiting its activity restrains tumor development and maintenance, as clearly shown via Omomyc, an MYC-interfering 90 amino acid mini-protein. MYC is a multifunctional transcription factor that regulates many aspects of transcription by RNA polymerase II (RNAPII), such as transcription activation, pause release, and elongation. MYC directly associates with Protein Arginine Methyltransferase 5 (PRMT5), a protein that methylates a variety of targets, including RNAPII at the arginine residue R1810 (R1810me2s), crucial for proper transcription termination and splicing of transcripts. Therefore, we asked whether MYC controls termination as well, by affecting R1810me2S. We show that MYC overexpression strongly increases R1810me2s, while Omomyc, an MYC shRNA, or a PRMT5 inhibitor and siRNA counteract this phenomenon. Omomyc also impairs Serine 2 phosphorylation in the RNAPII carboxyterminal domain, a modification that sustains transcription elongation. ChIP-seq experiments show that Omomyc replaces MYC and reshapes RNAPII distribution, increasing occupancy at promoter and termination sites. It is unclear how this may affect gene expression. Transcriptomic analysis shows that transcripts pivotal to key signaling pathways are both up- or down-regulated by Omomyc, whereas genes directly controlled by MYC and belonging to a specific signature are strongly down-regulated. Overall, our data point to an MYC/PRMT5/RNAPII axis that controls termination via RNAPII symmetrical dimethylation and contributes to rewiring the expression of genes altered by MYC overexpression in cancer cells. It remains to be clarified which role this may have in tumor development.
Collapse
Affiliation(s)
- Fiorella Scagnoli
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Annarita Favia
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Barbara Illi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Sergio Nasi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| |
Collapse
|
28
|
Chen Y, Liang W, Du J, Ma J, Liang R, Tao M. PRMT6 functionally associates with PRMT5 to promote colorectal cancer progression through epigenetically repressing the expression of CDKN2B and CCNG1. Exp Cell Res 2023; 422:113413. [PMID: 36400182 DOI: 10.1016/j.yexcr.2022.113413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Protein arginine methyltransferase 6 (PRMT6) is a type I arginine methyltransferase that asymmetrically dimethylates histone H3 arginine 2 (H3R2me2a). However, the biological roles and underlying molecular mechanisms of PRMT6 in colorectal cancer (CRC) remain unclear. METHODS PRMT6 expression in CRC tissue was examined using immunohistochemistry. The effect of PRMT6 on CRC cells was investigated in vitro and in vivo. Mass spectrometry, co-immunoprecipitation and GST pulldown assays were performed to identify interaction partners of PRMT6. RNA-seq, chromatin immunoprecipitation, Western blot and qRT-PCR assays were used to investigate the mechanism of PRMT6 in gene regulation. RESULTS PRMT6 is significantly upregulated in CRC tissues and facilitates cell proliferation of CRC cells in vitro and in vivo. Through RNA-seq analysis, CDKN2B (p15INK4b) and CCNG1 were identified as new transcriptional targets of PRMT6. PRMT6-dependent H3R2me2a mark was predominantly deposited at the promoters of CDKN2B and CCNG1 in CRC cells. Furthermore, PRMT5 was firstly characterized as an interaction partner of PRMT6. Notably, H3R2me2a coincides with PRMT5-mediated H4R3me2s and H3R8me2s marks at the promoters of CDKN2B and CCNG1 genes, thus leading to transcriptional repression of these genes. CONCLUSIONS PRMT6 functionally associates with PRMT5 to promote CRC progression through epigenetically repressing the expression of CDKN2B and CCNG1. These insights raise the possibility that combinational intervention of PRMT6 and PRMT5 may be a promising strategy for CRC therapy.
Collapse
Affiliation(s)
- Yuzhong Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Wanqing Liang
- Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Jun Du
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Jiachi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Rongrui Liang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China.
| |
Collapse
|
29
|
Chen Y, Shi Q, Yang H, Li J, Zhou K, Zhang J, Wang Z, Shi H, Xiong B, Liu J, Huang X, Liu T. Structure-activity Relationship Study of a Series of Nucleoside Derivatives Bearing Sulfonamide Scaffold as Potent and Selective PRMT5 Inhibitors. Bioorg Chem 2022; 130:106228. [DOI: 10.1016/j.bioorg.2022.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
30
|
Asberry AM, Cai X, Deng X, Liu S, Santiago U, Sims H, Liang W, Xu X, Wan J, Jiang W, Camacho C, Dai M, Hu CD. Discovery and Biological Characterization of PRMT5:MEP50 Protein-Protein Interaction Inhibitors. J Med Chem 2022; 65:13793-13812. [PMID: 36206451 PMCID: PMC11167723 DOI: 10.1021/acs.jmedchem.2c01000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a master epigenetic regulator and an extensively validated therapeutic target in multiple cancers. Notably, PRMT5 is the only PRMT that requires an obligate cofactor, methylosome protein 50 (MEP50), to function. We developed compound 17, a novel small-molecule PRMT5:MEP50 protein-protein interaction (PPI) inhibitor, after initial virtual screen hit identification and analogue refinement. Molecular docking indicated that compound 17 targets PRMT5:MEP50 PPI by displacing the MEP50 W54 burial into a hydrophobic pocket of the PRMT5 TIM barrel. In vitro analysis indicates IC50 < 500 nM for prostate and lung cancer cells with selective, specific inhibition of PRMT5:MEP50 substrate methylation and target gene expression, and RNA-seq analysis suggests that compound 17 may dysregulate TGF-β signaling. Compound 17 provides a proof of concept in targeting PRMT5:MEP50 PPI, as opposed to catalytic targeting, as a novel mechanism of action and supports further preclinical development of inhibitors in this class.
Collapse
Affiliation(s)
- Andrew M. Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, 47907, USA
| | - Xinpei Cai
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 46202, USA
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Hunter Sims
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Weida Liang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xueyong Xu
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 46202, USA
- The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
31
|
Zhou W, Yadav GP, Yang X, Qin F, Li C, Jiang QX. Cryo-EM structure-based selection of computed ligand poses enables design of MTA-synergic PRMT5 inhibitors of better potency. Commun Biol 2022; 5:1054. [PMID: 36192627 PMCID: PMC9530242 DOI: 10.1038/s42003-022-03991-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
Projected potential of 2.5-4.0 Å cryo-EM structures for structure-based drug design is not well realized yet. Here we show that a 3.1 Å structure of PRMT5 is suitable for selecting computed poses of a chemical inhibitor and its analogs for enhanced potency. PRMT5, an oncogenic target for various cancer types, has many inhibitors manifesting little cooperativity with MTA, a co-factor analog accumulated in MTAP-/- cells. To achieve MTA-synergic inhibition, a pharmacophore from virtual screen leads to a specific inhibitor (11-2 F). Cryo-EM structures of 11-2 F / MTA-bound human PRMT5/MEP50 complex and its apo form resolved at 3.1 and 3.2 Å respectively show that 11-2 F in the catalytic pocket shifts the cofactor-binding pocket away by ~2.0 Å, contributing to positive cooperativity. Computational analysis predicts subtype specificity of 11-2 F among PRMTs. Structural analysis of ligands in the binding pockets is performed to compare poses of 11-2 F and its redesigned analogs and identifies three new analogs predicted to have significantly better potency. One of them, after synthesis, is ~4 fold more efficient in inhibiting PRMT5 catalysis than 11-2 F, with strong MTA-synergy. These data suggest the feasibility of employing near-atomic resolution cryo-EM structures and computational analysis of ligand poses for small molecule therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Gaya P Yadav
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203, USA
- G.P.Y at the Department of Biochemistry and Biophysics, Texas A &M University, College Station, TX, 77843, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Feng Qin
- Department of Physiology and Biophysics, the State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA.
| | - Qiu-Xing Jiang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203, USA.
- Department of Physiology and Biophysics, the State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
32
|
Liu C, Tang D, Zheng Z, Lu X, Li W, Zhao L, He Y, Li H. A PRMT5 inhibitor protects against noise-induced hearing loss by alleviating ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113992. [PMID: 35994911 DOI: 10.1016/j.ecoenv.2022.113992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the effect of LLY-283, a selective inhibitor of protein arginine methyltransferase 5 (PRMT5), on a noise-induced hearing loss (NIHL) mouse model and to identify a potential target for a therapeutic intervention against NIHL. Eight-week-old male C57BL/6 mice were used. The auditory brainstem response was measured 2 days after noise exposure. The apoptosis of hair cells (HCs) was detected by caspase-3/7 staining, whereas the accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. We demonstrated that the death of HCs and loss of cochlear synaptic ribbons induced by noise exposure could be significantly reduced by the presence of LLY-283. LLY-283 pretreatment before noise exposure notably decreased 4-HNE and caspase-3/7 levels in the cochlear HCs. We also noticed that the number of spiral ganglion neurons (SGNs) was notably increased after LLY-283 pretreatment. Furthermore, we showed that LLY-283 could increase the expression level of p-AKT in the SGNs. The underlying mechanism involves alleviation of ROS accumulation and activation of the PI3K/AKT pathway, indicating that LLY-283 might be a potential candidate for therapeutic intervention against NIHL.
Collapse
Affiliation(s)
- Chang Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Dongmei Tang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Zhiwei Zheng
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Wen Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
33
|
Brobbey C, Liu L, Yin S, Gan W. The Role of Protein Arginine Methyltransferases in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23179780. [PMID: 36077176 PMCID: PMC9456308 DOI: 10.3390/ijms23179780] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
In response to DNA damage, cells have developed a sophisticated signaling pathway, consisting of DNA damage sensors, transducers, and effectors, to ensure efficient and proper repair of damaged DNA. During this process, posttranslational modifications (PTMs) are central events that modulate the recruitment, dissociation, and activation of DNA repair proteins at damage sites. Emerging evidence reveals that protein arginine methylation is one of the common PTMs and plays critical roles in DNA damage response. Protein arginine methyltransferases (PRMTs) either directly methylate DNA repair proteins or deposit methylation marks on histones to regulate their transcription, RNA splicing, protein stability, interaction with partners, enzymatic activities, and localization. In this review, we summarize the substrates and roles of each PRMTs in DNA damage response and discuss the synergistic anticancer effects of PRMTs and DNA damage pathway inhibitors, providing insight into the significance of arginine methylation in the maintenance of genome integrity and cancer therapies.
Collapse
|
34
|
Wu S, Yin Y, Wang X. The epigenetic regulation of the germinal center response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194828. [PMID: 35643396 DOI: 10.1016/j.bbagrm.2022.194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
In response to T-cell-dependent antigens, antigen-experienced B cells migrate to the center of the B-cell follicle to seed the germinal center (GC) response after cognate interactions with CD4+ T cells. These GC B cells eventually mature into memory and long-lived antibody-secreting plasma cells, thus generating long-lived humoral immunity. Within GC, B cells undergo somatic hypermutation of their B cell receptors (BCR) and positive selection for the emergence of high-affinity antigen-specific B-cell clones. However, this process may be dangerous, as the accumulation of aberrant mutations could result in malignant transformation of GC B cells or give rise to autoreactive B cell clones that can cause autoimmunity. Because of this, better understanding of GC development provides diagnostic and therapeutic clues to the underlying pathologic process. A productive GC response is orchestrated by multiple mechanisms. An emerging important regulator of GC reaction is epigenetic modulation, which has key transcriptional regulatory properties. In this review, we summarize the current knowledge on the biology of epigenetic mechanisms in the regulation of GC reaction and outline its importance in identification of immunotherapy decision making.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
35
|
Abstract
Background: PRMT5 is an epigenetics-related enzyme, which plays a critical role in cancer development. Hence PRMT5 inhibition has been validated as a promising therapeutic strategy. Methods & Results: We synthesized a series of methylpiperazinyl derivatives as novel PRMT5 inhibitors that were achieved by scaffold-hopping from EPZ015666 by virtual screening followed by rational drug design. Among all compounds 43g, bearing a thiourea linker, showed antitumor activity across multiple cancer cell lines and reduced the level of symmetric arginine dimethylation of SmD3 dose-dependently. Moreover, 43g selectively inhibited PRMT5 among protein arginine methyltransferase isoforms. Further proteomics analysis revealed that 43g remarkably reduced the global arginine dimethylation level in a cellular context. Conclusion: This work provides new chemical templates for future structural optimization of PRMT5-related cancer treatments.
Collapse
|
36
|
Bhattacharjee S, Rehman I, Basu S, Nandy S, Richardson JM, Das BB. Interplay between symmetric arginine dimethylation and ubiquitylation regulates TDP1 proteostasis for the repair of topoisomerase I-DNA adducts. Cell Rep 2022; 39:110940. [PMID: 35705029 DOI: 10.1016/j.celrep.2022.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety and is implicated in the repair of trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). Protein arginine methyltransferase 5 (PRMT5) catalyzes arginine methylation of TDP1 at the residues R361 and R586. Here, we establish mechanistic crosstalk between TDP1 arginine methylation and ubiquitylation, which is critical for TDP1 homeostasis and cellular responses to Top1 poisons. We show that R586 methylation promotes TDP1 ubiquitylation, which facilitates ubiquitin/proteasome-dependent TDP1 turnover by impeding the binding of UCHL3 (deubiquitylase enzyme) with TDP1. TDP1-R586 also promotes TDP1-XRCC1 binding and XRCC1 foci formation at Top1cc-damage sites. Intriguingly, R361 methylation enhances the 3'-phosphodiesterase activity of TDP1 in real-time fluorescence-based cleavage assays, and this was rationalized using structural modeling. Together, our findings establish arginine methylation as a co-regulator of TDP1 proteostasis and activity, which modulates the repair of trapped Top1cc.
Collapse
Affiliation(s)
- Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Rehman
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saini Basu
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Souvik Nandy
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
37
|
Crabtree JS. Epigenetic Regulation in Gastroenteropancreatic Neuroendocrine Tumors. Front Oncol 2022; 12:901435. [PMID: 35747820 PMCID: PMC9209739 DOI: 10.3389/fonc.2022.901435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms are a rare, diverse group of neuroendocrine tumors that form in the pancreatic and gastrointestinal tract, and often present with side effects due to hormone hypersecretion. The pathogenesis of these tumors is known to be linked to several genetic disorders, but sporadic tumors occur due to dysregulation of additional genes that regulate proliferation and metastasis, but also the epigenome. Epigenetic regulation in these tumors includes DNA methylation, chromatin remodeling and regulation by noncoding RNAs. Several large studies demonstrate the identification of epigenetic signatures that may serve as biomarkers, and others identify innovative, epigenetics-based targets that utilize both pharmacological and theranostic approaches towards the development of new treatment approaches.
Collapse
|
38
|
Yao B, Zhu S, Wei X, Chen MK, Feng Y, Li Z, Xu X, Zhang Y, Wang Y, Zhou J, Tang N, Ji C, Jiang P, Zhao SC, Qin C, Feng N. The circSPON2/miR-331-3p axis regulates PRMT5, an epigenetic regulator of CAMK2N1 transcription and prostate cancer progression. Mol Cancer 2022; 21:119. [PMID: 35624451 PMCID: PMC9137111 DOI: 10.1186/s12943-022-01598-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most frequently diagnosed malignancy in men, and its mechanism remains poorly understood. Therefore, it is urgent to discover potential novel diagnostic biomarkers and therapeutic targets that can potentially facilitate the development of efficient anticancer strategies. METHODS A series of functional in vitro and in vivo experiments were conducted to evaluate the biological behaviors of PCa cells. RNA pulldown, Western blot, luciferase reporter, immunohistochemistry and chromatin immunoprecipitation assays were applied to dissect the detailed underlying mechanisms. High-throughput sequencing was performed to screen for differentially expressed circRNAs in PCa and adjacent normal tissues. RESULTS Upregulation of protein arginine methyltransferase 5 (PRMT5) is associated with poor progression-free survival and the activation of multiple signaling pathways in PCa. PRMT5 inhibits the transcription of CAMK2N1 by depositing the repressive histone marks H4R3me2s and H3R8me2s on the proximal promoter region of CAMK2N1, and results in malignant progression of PCa both in vitro and in vivo. Moreover, the expression of circSPON2, a candidate circRNA in PCa tissues identified by RNA-seq, was found to be associated with poor clinical outcomes in PCa patients. Further results showed that circSPON2 induced PCa cell proliferation and migration, and that the circSPON2-induced effects were counteracted by miR-331-3p. Particularly, circSPON2 acted as a competitive endogenous RNA (ceRNA) of miR-331-3p to attenuate the repressive effects of miR-331-3p on its downstream target PRMT5. CONCLUSIONS Our findings showed that the epigenetic regulator PRMT5 aggravates PCa progression by inhibiting the transcription of CAMK2N1 and is modulated by the circSPON2/miR-331-3p axis, which may serve as a potential therapeutic target for patients with aggressive PCa.
Collapse
Affiliation(s)
- Bing Yao
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Sha Zhu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming-Kun Chen
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Yangkun Feng
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhimin Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinyu Xu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Yuwei Zhang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Wang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Jingwan Zhou
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Ningyuan Tang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Chengjian Ji
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jiang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China. .,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chao Qin
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ninghan Feng
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China. .,Wuxi Clinical College, Nantong University, Wuxi, 214002, China.
| |
Collapse
|
39
|
Huang X, Yang Y, Zhu D, Zhao Y, Wei M, Li K, Zhu HH, Zheng X. PRMT5-mediated RNF4 methylation promotes therapeutic resistance of APL cells to As 2O 3 by stabilizing oncoprotein PML-RARα. Cell Mol Life Sci 2022; 79:319. [PMID: 35622143 PMCID: PMC11072021 DOI: 10.1007/s00018-022-04358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Acute promyelocytic leukemia (APL) is a hematological malignancy driven by the oncoprotein PML-RARα, which can be treated with arsenic trioxide (As2O3) or/and all-trans retinoic acid. The protein arginine methyltransferase 5 (PRMT5) is involved in tumorigenesis. However, little is known about the biological function and therapeutic potential of PRMT5 in APL. Here, we show that PRMT5 is highly expressed in APL patients. PRMT5 promotes APL by interacting with PML-RARα and suppressing its ubiquitination and degradation. Mechanistically, PRMT5 attenuates the interaction between PML-RARα and its ubiquitin E3 ligase RNF4 by methylating RNF4 at Arg164. Notably, As2O3 treatment triggers the dissociation of PRMT5 from PML nuclear bodies, attenuating RNF4 methylation and promoting RNF4-mediated PML-RARα ubiquitination and degradation. Moreover, knockdown of PRMT5 and pharmacological inhibition of PRMT5 with the specific inhibitor EPZ015666 significantly inhibit APL cells growth. The combination of EPZ015666 with As2O3 shows synergistic effects on As2O3-induced differentiation of bone marrow cells from APL mice, as well as on apoptosis and differentiation of primary APL cells from APL patients. These findings provide mechanistic insight into the function of PRMT5 in APL pathogenesis and demonstrate that inhibition of PRMT5, alone or in combination with As2O3, might be a promising therapeutic strategy against APL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Cell Line, Tumor/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Humans
- Isoquinolines/pharmacology
- Isoquinolines/therapeutic use
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Methylation
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/therapeutic use
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Xinping Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Min Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Hu Zhu
- Department of Hematology and Institute of Hematology, Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
40
|
Rong D, Zhou K, Fang W, Yang H, Zhang Y, Shi Q, Huang Y, Li J, Dong H, Li L, Ding J, Huang X, Wang Y. Structure-Aided Design, Synthesis, and Biological Evaluation of Potent and Selective Non-Nucleoside Inhibitors Targeting Protein Arginine Methyltransferase 5. J Med Chem 2022; 65:7854-7875. [PMID: 35612488 DOI: 10.1021/acs.jmedchem.2c00398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PRMT5 is a major type II protein arginine methyltransferase and plays important roles in diverse cellular processes. Overexpression of PRMT5 is implicated in various types of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors, the most potent of which is usually derived from nucleoside structures. Here, we designed a novel series of non-nucleoside PRMT5 inhibitors through the structure-aided drug design approach. SAR exploration and metabolic stability optimization led to the discovery of compound 41 as a potent PRMT5 inhibitor with good selectivity. Additionally, compound 41 exerted antiproliferative effects against A375 cells by inducing apoptosis and potently inhibited the methyltransferase activity of PRMT5 in cells. Moreover, it showed attractive pharmacokinetic properties and markedly suppressed the tumor growth in an A375 tumor xenograft model. These results clearly indicate that 41 is a highly potent and selective non-nucleoside PRMT5 inhibitor.
Collapse
Affiliation(s)
- Deqin Rong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kaixin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuting Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Jiayi Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Hui Dong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lanlan Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Jian Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China.,Lingang Laboratory, Shanghai 200031, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
41
|
Ye Q, Zhang J, Zhang C, Yi B, Kazama K, Liu W, Sun X, Liu Y, Sun J. Endothelial PRMT5 plays a crucial role in angiogenesis after acute ischemic injury. JCI Insight 2022; 7:e152481. [PMID: 35531958 PMCID: PMC9090242 DOI: 10.1172/jci.insight.152481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) has been shown to be an important posttranslational mechanism involved in various biological processes. Herein, we sought to investigate whether PRMT5, a major type II enzyme, is involved in pathological angiogenesis and, if so, to elucidate the molecular mechanism involved. Our results show that PRMT5 expression is significantly upregulated in ischemic tissues and hypoxic endothelial cells (ECs). Endothelial-specific Prmt5-KO mice were generated to define the role of PRMT5 in hindlimb ischemia-induced angiogenesis. We found that these mice exhibited impaired recovery of blood perfusion and motor function of the lower limbs, an impairment that was accompanied by decreased vascular density and increased necrosis as compared with their WT littermates. Furthermore, both pharmacological and genetic inhibition of PRMT5 significantly attenuated EC proliferation, migration, tube formation, and aortic ring sprouting. Mechanistically, we showed that inhibition of PRMT5 markedly attenuated hypoxia-induced factor 1-α (HIF-1α) protein stability and vascular endothelial growth factor-induced (VEGF-induced) signaling pathways in ECs. Our results provide compelling evidence demonstrating a crucial role of PRMT5 in hypoxia-induced angiogenesis and suggest that inhibition of PRMT5 may provide novel therapeutic strategies for the treatment of abnormal angiogenesis-related diseases, such as cancer and diabetic retinopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bing Yi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Szewczyk MM, Luciani GM, Vu V, Murison A, Dilworth D, Barghout SH, Lupien M, Arrowsmith CH, Minden MD, Barsyte-Lovejoy D. PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biol 2022; 51:102282. [PMID: 35305370 PMCID: PMC8933703 DOI: 10.1016/j.redox.2022.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues leading to regulation of transcription and splicing programs. Although PRMT5 has emerged as an attractive oncology target, the molecular determinants of PRMT5 dependency in cancer remain incompletely understood. Our transcriptomic analysis identified PRMT5 regulation of the activating transcription factor 4 (ATF4) pathway in acute myelogenous leukemia (AML). PRMT5 inhibition resulted in the expression of unstable, intron-retaining ATF4 mRNA that is detained in the nucleus. Concurrently, the decrease in the spliced cytoplasmic transcript of ATF4 led to lower levels of ATF4 protein and downregulation of ATF4 target genes. Upon loss of functional PRMT5, cells with low ATF4 displayed increased oxidative stress, growth arrest, and cellular senescence. Interestingly, leukemia cells with EVI1 oncogene overexpression demonstrated dependence on PRMT5 function. EVI1 and ATF4 regulated gene signatures were inversely correlated. We show that EVI1-high AML cells have reduced ATF4 levels, elevated baseline reactive oxygen species and increased sensitivity to PRMT5 inhibition. Thus, EVI1-high cells demonstrate dependence on PRMT5 function and regulation of oxidative stress response. Overall, our findings identify the PRMT5-ATF4 axis to be safeguarding the cellular redox balance that is especially important in high oxidative stress states, such as those that occur with EVI1 overexpression.
Collapse
Affiliation(s)
| | - Genna M Luciani
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
43
|
Wang Z, Xiong L, Xiong Q. Purification and Identification of Natural Inhibitors of Protein Arginine Methyltransferases from Plants. Mol Cell Biol 2022; 42:e0052321. [PMID: 35311588 PMCID: PMC9022574 DOI: 10.1128/mcb.00523-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Protein arginine methyltransferase (PRMT) enzymes catalyze posttranslational modifications of target proteins and are often upregulated in human cancers. In this study, we purified two chemical compounds from seeds of Foeniculum vulgare based on their ability to inhibit the enzymatic activity of PRMT5. These two compounds were identified as Pheophorbide a (PPBa) and Pheophorbide b (PPBb), two breakdown products of chlorophyll. PPBa and PPBb inhibited the enzymatic activity of both Type I and Type II PRMTs with IC50 values at sub micromole concentrations, inhibited the arginine methylation of histones in cells, and suppressed proliferation of prostate cancer cells. Molecular docking results predicted that PPBa binds to an allosteric site in the PRMT5 structure with a high affinity (ΔG = -9.0 kcal/mol) via hydrogen bond, ionic, and π-π stacking interactions with amino acid residues in PRMT5. Another group of natural compounds referred to as protoporphyrins and sharing structural similarity with pheophorbide also inhibited the PRMT enzymatic activity. This study is the first report on the PRMT-inhibitory activity of the tetrapyrrole macrocycles and provides useful information regarding the application of these compounds as natural therapeutic reagents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhengxin Wang
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| | - Ling Xiong
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, USA
| | | |
Collapse
|
44
|
Drozda A, Kurpisz B, Arasimowicz-Jelonek M, Kuźnicki D, Jagodzik P, Guan Y, Floryszak-Wieczorek J. Nitric Oxide Implication in Potato Immunity to Phytophthora infestans via Modifications of Histone H3/H4 Methylation Patterns on Defense Genes. Int J Mol Sci 2022; 23:ijms23074051. [PMID: 35409411 PMCID: PMC8999698 DOI: 10.3390/ijms23074051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) is an essential redox-signaling molecule operating in many physiological and pathophysiological processes. However, evidence on putative NO engagement in plant immunity by affecting defense gene expressions, including histone modifications, is poorly recognized. Exploring the effect of biphasic NO generation regulated by S-nitrosoglutathione reductase (GNSOR) activity after avr Phytophthora infestans inoculation, we showed that the phase of NO decline at 6 h post-inoculation (hpi) was correlated with the rise of defense gene expressions enriched in the TrxG-mediated H3K4me3 active mark in their promoter regions. Here, we report that arginine methyltransferase PRMT5 catalyzing histone H4R3 symmetric dimethylation (H4R3sme2) is necessary to ensure potato resistance to avr P. infestans. Both the pathogen and S-nitrosoglutathione (GSNO) altered the methylation status of H4R3sme2 by transient reduction in the repressive mark in the promoter of defense genes, R3a and HSR203J (a resistance marker), thereby elevating their transcription. In turn, the PRMT5-selective inhibitor repressed R3a expression and attenuated the hypersensitive response to the pathogen. In conclusion, we postulate that lowering the NO level (at 6 hpi) might be decisive for facilitating the pathogen-induced upregulation of stress genes via histone lysine methylation and PRMT5 controlling potato immunity to late blight.
Collapse
Affiliation(s)
- Andżelika Drozda
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
| | - Barbara Kurpisz
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.A.-J.); (P.J.)
| | - Daniel Kuźnicki
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
| | - Przemysław Jagodzik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.A.-J.); (P.J.)
| | - Yufeng Guan
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.A.-J.); (P.J.)
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, 60-637 Poznan, Poland; (A.D.); (B.K.); (D.K.); (Y.G.)
- Correspondence: ; Tel.: +48-61-848-71-81
| |
Collapse
|
45
|
Chen M, Cen C, Wang N, Shen Z, Wang M, Liu B, Li J, Cui X, Wang Y, Gao F. The functions of Wt1 in mouse gonad development and somatic cells differentiation. Biol Reprod 2022; 107:269-274. [PMID: 35244683 DOI: 10.1093/biolre/ioac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms' tumour 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yanbo Wang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Hu R, Zhou B, Chen Z, Chen S, Chen N, Shen L, Xiao H, Zheng Y. PRMT5 Inhibition Promotes PD-L1 Expression and Immuno-Resistance in Lung Cancer. Front Immunol 2022; 12:722188. [PMID: 35111150 PMCID: PMC8801487 DOI: 10.3389/fimmu.2021.722188] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Protein arginine transferase 5 (PRMT5) has been implicated as an important modulator of tumorigenesis as it promotes tumor cell proliferation, invasion, and metastasis. Studies have largely focused on PRMT5 regulating intrinsic changes in tumors; however, the effects of PRMT5 on the tumor microenvironment and particularly immune cells are largely unknown. Here we found that targeting PRMT5 by genetic or pharmacological inhibition reduced lung tumor progression in immunocompromised mice; however, the effects were weakened in immunocompetent mice. PRMT5 inhibition not only decreased tumor cell survival but also increased the tumor cell expression of CD274 in vitro and in vivo, which activated the PD1/PD-L1 axis and eliminated CD8+T cell antitumor immunity. Mechanistically, PRMT5 regulated CD274 gene expression through symmetric dimethylation of histone H4R3, increased deposition of H3R4me2s on CD274 promoter loci, and inhibition of CD274 gene expression. Targeting PRMT5 reduced this inhibitory effect and promoted CD274 expression in lung cancer. However, PRMT5 inhibitors represent a double-edged sword as they may selectively kill cancer cells but may also disrupt the antitumor immune response. The combination of PRMT5 inhibition and ani-PD-L1 therapy resulted in an increase in the number and enhanced the function of tumor-infiltrating T cells. Our findings address an unmet clinical need in which combining PRMT5 inhibition with anti-PD-L1 therapy could be a promising strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rui Hu
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdai Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Xin Hua Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Smith CR, Aranda R, Bobinski TP, Briere DM, Burns AC, Christensen JG, Clarine J, Engstrom LD, Gunn RJ, Ivetac A, Jean-Baptiste R, Ketcham JM, Kobayashi M, Kuehler J, Kulyk S, Lawson JD, Moya K, Olson P, Rahbaek L, Thomas NC, Wang X, Waters LM, Marx MA. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5•MTA Complex for the Treatment of MTAP-Deleted Cancers. J Med Chem 2022; 65:1749-1766. [PMID: 35041419 DOI: 10.1021/acs.jmedchem.1c01900] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of MTAP-deleted cancers. Here, we report the discovery of development candidate MRTX1719. MRTX1719 is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in MTAP-deleted cells compared to MTAP-wild-type cells. Daily oral administration of MRTX1719 to tumor xenograft-bearing mice demonstrated dose-dependent inhibition of PRMT5-dependent symmetric dimethylarginine protein modification in MTAP-deleted tumors that correlated with antitumor activity. A 4-(aminomethyl)phthalazin-1(2H)-one hit was identified through a fragment-based screen, followed by X-ray crystallography, to confirm binding to the PRMT5•MTA complex. Fragment growth supported by structural insights from X-ray crystallography coupled with optimization of pharmacokinetic properties aided the discovery of development candidate MRTX1719.
Collapse
Affiliation(s)
| | - Ruth Aranda
- Mirati Therapeutics, San Diego, California 92121, United States
| | | | - David M Briere
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Aaron C Burns
- Mirati Therapeutics, San Diego, California 92121, United States
| | | | - Jeffery Clarine
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Lars D Engstrom
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Robin J Gunn
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Anthony Ivetac
- Mirati Therapeutics, San Diego, California 92121, United States
| | | | - John M Ketcham
- Mirati Therapeutics, San Diego, California 92121, United States
| | | | - Jon Kuehler
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Svitlana Kulyk
- Mirati Therapeutics, San Diego, California 92121, United States
| | - J David Lawson
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Krystal Moya
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Peter Olson
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Lisa Rahbaek
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Nicole C Thomas
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Xiaolun Wang
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Laura M Waters
- Mirati Therapeutics, San Diego, California 92121, United States
| | - Matthew A Marx
- Mirati Therapeutics, San Diego, California 92121, United States
| |
Collapse
|
48
|
Owens JL, Beketova E, Liu S, Shen Q, Pawar JS, Asberry AM, Yang J, Deng X, Elzey BD, Ratliff TL, Cheng L, Choo CR, Citrin DE, Polascik TJ, Wang B, Huang J, Li C, Wan J, Hu CD. Targeting protein arginine methyltransferase 5 (PRMT5) suppresses radiation-induced neuroendocrine differentiation and sensitizes prostate cancer cells to radiation. Mol Cancer Ther 2022; 21:448-459. [PMID: 35027481 DOI: 10.1158/1535-7163.mct-21-0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/17/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Prostate cancer remains the second leading cause of cancer death among American men. Radiation therapy (RT) is a potentially curative treatment for localized prostate cancer, and failure to control localized disease contributes to the majority of prostate cancer deaths. Neuroendocrine differentiation (NED) in prostate cancer, a process by which prostate adenocarcinoma cells transdifferentiate into neuroendocrine-like (NE-like) cells, is an emerging mechanism of resistance to cancer therapies and contributes to disease progression. NED also occurs in response to treatment to promote the development of treatment-induced neuroendocrine prostate cancer (NEPC), a highly-aggressive and terminal stage disease. We previously demonstrated that by mimicking clinical RT protocol, fractionated ionizing radiation (FIR) induces prostate cancer cells to undergo NED in vitro and in vivo. Here, we performed transcriptomic analysis and confirmed that FIR-induced NE-like cells share some features of clinical NEPC, suggesting that FIR-induced NED represents a clinically-relevant model. Further, we demonstrated that protein arginine methyltransferase 5 (PRMT5), a master epigenetic regulator of the DNA damage response and a putative oncogene in prostate cancer, along with its cofactors pICln and MEP50, mediate FIR-induced NED. Knockdown of PRMT5, pICln, or MEP50 during FIR-inhibited NED sensitized prostate cancer cells to radiation. Significantly, PRMT5 knockdown in prostate cancer xenograft tumors in mice during FIR prevented NED, enhanced tumor killing, significantly reduced and delayed tumor recurrence, and prolonged overall survival. Collectively, our results demonstrate that PRMT5 promotes FIR-induced NED and suggests that targeting PRMT5 may be a novel and effective radiosensitization approach for prostate cancer RT.
Collapse
Affiliation(s)
- Jake L Owens
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Elena Beketova
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Qi Shen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Andrew M Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Jie Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Xuehong Deng
- Medicinal Chemistry and Molecular Pharmacolog, Purdue University West Lafayette
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University West Lafayette
| | - Timothy L Ratliff
- Comparative Pathobiology and the Center for Cancer Research, Purdue University West Lafayette
| | - Liang Cheng
- Pathology and Laboratory Medicine, Indiana University School of Medicine
| | | | | | | | - Bangchen Wang
- Department of Pathology, Duke University School of Medicine
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine
| | | | - Jun Wan
- Medical and Molecular Genetics, Indiana University School of Medicine
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| |
Collapse
|
49
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
50
|
Protein Arginine Methyltransferase 5 Promotes the Migration of AML Cells by Regulating the Expression of Leukocyte Immunoglobulin-Like Receptor B4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7329072. [PMID: 34712735 PMCID: PMC8548104 DOI: 10.1155/2021/7329072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults with poor prognosis. Especially for AML-M5 type, due to the strong cell migration ability, the possibility of extramedullary invasion is large and widespread, which leads to poor therapeutic effect. Previous studies have found that protein arginine methyltransferase 5 (PRMT5) could promote the proliferation and differentiation of leukemic cells in AML, but its regulation on the invasive ability of AML cells remains unclear. This study was designed to explore the role of PRMT5 in regulating the invasion of AML cells and to investigate the mechanisms. Patient samples were collected for detection of PRMT5 expression level. AML cells were used for exploring the function of PRMT5. The results of clinical samples showed that the expression of PRMT5 was significantly increased in newly diagnosed and recurrent AML patients, and the expression of leukocyte immunoglobulin-like receptor B4 (LILRB4) was positively correlated with the level of PRMT5. In the cell experiment in vitro, we found that when PRMT5 was knocked down, the invasion, migration, and adhesion capacities of MV-4-11 cells and THP-1 cells were decreased, and the mRNA and protein levels of LILRB4 were also decreased. Moreover, we screened related signaling pathways and found that PRMT5 affected the expression of downstream LILRB4 by activating mTOR pathway, which in turn enhanced the invasive ability of AML cells. Taken together, PRMT5 plays an important role in the invasion of AML, which acts via regulating the expression of LILRB4. PRMT5 could act as a potential therapeutic candidate for AML.
Collapse
|