1
|
Bacterial Resistance to Antimicrobial Agents. Antibiotics (Basel) 2021; 10:antibiotics10050593. [PMID: 34067579 PMCID: PMC8157006 DOI: 10.3390/antibiotics10050593] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial pathogens as causative agents of infection constitute an alarming concern in the public health sector. In particular, bacteria with resistance to multiple antimicrobial agents can confound chemotherapeutic efficacy towards infectious diseases. Multidrug-resistant bacteria harbor various molecular and cellular mechanisms for antimicrobial resistance. These antimicrobial resistance mechanisms include active antimicrobial efflux, reduced drug entry into cells of pathogens, enzymatic metabolism of antimicrobial agents to inactive products, biofilm formation, altered drug targets, and protection of antimicrobial targets. These microbial systems represent suitable focuses for investigation to establish the means for their circumvention and to reestablish therapeutic effectiveness. This review briefly summarizes the various antimicrobial resistance mechanisms that are harbored within infectious bacteria.
Collapse
|
2
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
3
|
Verma P, Tiwari M, Tiwari V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microb Pathog 2021; 152:104766. [PMID: 33545327 DOI: 10.1016/j.micpath.2021.104766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is an ESKAPE pathogen known to cause fatal nosocomial infections. With the surge of multidrug resistance (MDR) in the bacterial system, effective treatment measures have become very limited. The MDR in A. baumannii is contributed by various factors out of which efflux pumps have gained major attention due to their broad substrate specificity and wide distribution among bacterial species. The efflux pumps are involved in the MDR as well as contribute to other physiological processes in bacteria, therefore, it is critically important to inhibit efflux pumps in order to combat emerging resistance. The present review provides insight about the different efflux pump systems in A. baumannii and their role in multidrug resistance. A major focus has been put on the different strategies and alternate therapeutics to inhibit the efflux system. This includes use of different efflux pump inhibitors-natural, synthetic or combinatorial therapy. The use of phage therapy and nanoparticles for inhibiting efflux pumps have also been discussed here. Moreover, the present review provides the knowledge of barriers in development of efflux pump inhibitors (EPIs) and their approval for commercialization. Here, different prospectives have been discussed to improve the therapeutic development process and make it more compatible for clinical use.
Collapse
Affiliation(s)
- Privita Verma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
4
|
Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2019; 1459:38-68. [PMID: 31588569 DOI: 10.1111/nyas.14239] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance-nodulation-cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB-TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single-site substitutions and highlight regions that are more sensitive to perturbation.
Collapse
Affiliation(s)
- Jessica Kobylka
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Reinke T Müller
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Holcomb J, Doughan M, Spellmon N, Lewis B, Perry E, Zhang Y, Nico L, Wan J, Chakravarthy S, Shang W, Miao Q, Stemmler T, Yang Z. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains. PLoS One 2018; 13:e0191371. [PMID: 29346419 PMCID: PMC5773207 DOI: 10.1371/journal.pone.0191371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
The Nogo-B receptor (NgBR) is involved in oncogenic Ras signaling through directly binding to farnesylated Ras. It recruits farnesylated Ras to the non-lipid-raft membrane for interaction with downstream effectors. However, the cytosolic domain of NgBR itself is only partially folded. The lack of several conserved secondary structural elements makes this domain unlikely to form a complete farnesyl binding pocket. We find that inclusion of the extracellular and transmembrane domains that contain additional conserved residues to the cytosolic region results in a well folded protein with a similar size and shape to the E.coli cis-isoprenyl transferase (UPPs). Small Angle X-ray Scattering (SAXS) analysis reveals the radius of gyration (Rg) of our NgBR construct to be 18.2 Å with a maximum particle dimension (Dmax) of 61.0 Å. Ab initio shape modeling returns a globular molecular envelope with an estimated molecular weight of 23.0 kD closely correlated with the calculated molecular weight. Both Kratky plot and pair distribution function of NgBR scattering reveal a bell shaped peak which is characteristic of a single globularly folded protein. In addition, circular dichroism (CD) analysis reveals that our construct has the secondary structure contents similar to the UPPs. However, this result does not agree with the currently accepted topological orientation of NgBR which might partition this construct into three separate domains. This discrepancy suggests another possible NgBR topology and lends insight into a potential molecular basis of how NgBR facilitates farnesylated Ras recruitment.
Collapse
Affiliation(s)
- Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Maysaa Doughan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brianne Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Emerson Perry
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yingxue Zhang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Lindsey Nico
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Junmei Wan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Srinivas Chakravarthy
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Weifeng Shang
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Qing Miao
- Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Timothy Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
The topologies of α-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.
Collapse
|
7
|
Vitrac H, Dowhan W, Bogdanov M. Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1291-1300. [PMID: 28432030 DOI: 10.1016/j.bbamem.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Nelson JW, Atilho RM, Sherlock ME, Stockbridge RB, Breaker RR. Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. Mol Cell 2016; 65:220-230. [PMID: 27989440 DOI: 10.1016/j.molcel.2016.11.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 01/25/2023]
Abstract
The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.
Collapse
Affiliation(s)
- James W Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Ruben M Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Randy B Stockbridge
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Ohta N, Kato Y, Watanabe H, Mori H, Matsuura T. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes. Sci Rep 2016; 6:36466. [PMID: 27808179 PMCID: PMC5093552 DOI: 10.1038/srep36466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach.
Collapse
Affiliation(s)
- Naoki Ohta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-tyou, Ikoma, Nara, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
10
|
LeBarron J, London E. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1812-20. [PMID: 27131444 DOI: 10.1016/j.bbamem.2016.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
We examined how hydrophobic peptide-accelerated transleaflet lipid movement (flip-flop) was affected by peptide sequence and vesicle composition and properties. A peptide with a completely hydrophobic sequence had little if any effect upon flip-flop. While peptides with a somewhat less hydrophobic sequence accelerated flip-flop, the half-time remained slow (hours) with substantial (0.5mol%) peptide in the membranes. It appears that peptide-accelerated lipid flip-flop involves a rare event that may reflect a rare state of the peptide or lipid bilayer. There was no simple relationship between peptide overall hydrophobicity and flip-flop. In addition, flip-flop was not closely linked to whether the peptides were in a transmembrane or non-transmembrane (interfacial) inserted state. Flip-flop was also not associated with peptide-induced pore formation. We found that peptide-accelerated flip-flop is initially faster in small (highly curved) unilamellar vesicles relative to that in large unilamellar vesicles. Peptide-accelerated flip-flop was also affected by lipid composition, being slowed in vesicles with thick bilayers or those containing 30% cholesterol. Interestingly, these factors also slow spontaneous lipid flip-flop in the absence of peptide. Combined with previous studies, the results are most consistent with acceleration of lipid flip-flop by peptide-induced thinning of bilayer width.
Collapse
Affiliation(s)
- Jamie LeBarron
- Dept. of Biochemistry and Cell Biology, Stony Brook, NY 11794-5215, United States
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook, NY 11794-5215, United States
| |
Collapse
|
11
|
Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 2015; 33:76-91. [PMID: 26282926 DOI: 10.1016/j.sbi.2015.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Hendrik W van Veen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Satoshi Murakami
- Division of Structure and Function of Biomolecules, Department of Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Klaas M Pos
- Institute of Biochemistry, Goethe Universität Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
12
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Brill S, Sade-Falk O, Elbaz-Alon Y, Schuldiner S. Specificity determinants in small multidrug transporters. J Mol Biol 2014; 427:468-77. [PMID: 25479374 DOI: 10.1016/j.jmb.2014.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 01/16/2023]
Abstract
Multiple-antibiotic resistance has become a major global public health concern, and to overcome this problem, it is necessary to understand the resistance mechanisms that allow survival of the microorganisms at the molecular level. One mechanism responsible for such resistance involves active removal of the antibiotic from the pathogen cell by MDTs (multidrug transporters). A prominent MDT feature is their high polyspecificity allowing for a single transporter to confer resistance against a range of drugs. Here we present the molecular mechanism underlying substrate recognition in EmrE, a small MDT from Escherichia coli. EmrE is known to have a substrate preference for aromatic, cationic compounds, such as methyl viologen (MV(2+)). In this work, we use a combined bioinformatic and biochemical approach to identify one of the major molecular determinants involved in MV(2+) transport and resistance. Replacement of an Ala residue with Ser in weakly resistant SMRs from Bacillus pertussis and Mycobacterium tuberculosis enables them to provide robust resistance to MV(2+) and to transport MV(2+) and has negligible effects on the interaction with other substrates. This shows that the residue identified herein is uniquely positioned in the binding site so as to be exclusively involved in the mediating of MV(2+) transport and resistance, both in EmrE and in other homologues. This work provides clues toward uncovering how specificity is achieved within the binding pocket of a polyspecific transporter that may open new possibilities as to how these transporters can be manipulated to bind a designed set of drugs.
Collapse
Affiliation(s)
- Shlomo Brill
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Ofir Sade-Falk
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Yael Elbaz-Alon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Shimon Schuldiner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
14
|
Wang J, Rath A, Deber CM. Functional response of the small multidrug resistance protein EmrE to mutations in transmembrane helix 2. FEBS Lett 2014; 588:3720-5. [PMID: 25157436 DOI: 10.1016/j.febslet.2014.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
Abstract
Escherichia coli EmrE is a small multidrug resistance protein encompassing four transmembrane (TM) sequences that oligomerizes to confer resistance to antimicrobials. Here we examined the effects on in vivo protein accumulation and ethidium resistance activity of single residue substitutions at conserved and variable positions in EmrE transmembrane segment 2 (TM2). We found that activity was reduced when conserved residues localized to one TM2 surface were replaced. Our findings suggest that conserved TM2 positions tolerate greater residue diversity than conserved sites in other EmrE TM sequences, potentially reflecting a source of substrate polyspecificity.
Collapse
Affiliation(s)
- Jun Wang
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Arianna Rath
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Charles M Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1A8, Canada.
| |
Collapse
|
15
|
Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C. A family of fluoride-specific ion channels with dual-topology architecture. eLife 2013; 2:e01084. [PMID: 23991286 PMCID: PMC3755343 DOI: 10.7554/elife.01084] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/23/2013] [Indexed: 11/13/2022] Open
Abstract
Fluoride ion, ubiquitous in soil, water, and marine environments, is a chronic threat to microorganisms. Many prokaryotes, archea, unicellular eukaryotes, and plants use a recently discovered family of F− exporter proteins to lower cytoplasmic F− levels to counteract the anion’s toxicity. We show here that these ‘Fluc’ proteins, purified and reconstituted in liposomes and planar phospholipid bilayers, form constitutively open anion channels with extreme selectivity for F− over Cl−. The active channel is a dimer of identical or homologous subunits arranged in antiparallel transmembrane orientation. This dual-topology assembly has not previously been seen in ion channels but is known in multidrug transporters of the SMR family, and is suggestive of an evolutionary antecedent of the inverted repeats found within the subunits of many membrane transport proteins. DOI:http://dx.doi.org/10.7554/eLife.01084.001 Fluorine is the thirteenth-most abundant element in the Earth’s crust, and fluoride ions are found in both soil and water, where they accumulate through the weathering of rocks or from industrial pollution. However, high levels of fluoride ions can inhibit two processes essential to life: the production of energy by glycolysis and the synthesis of DNA and RNA bases. In polluted areas, organisms such as bacteria, algae and plants must remove fluoride ions from their cells in order to survive. Since ions cannot freely cross lipid membranes, organisms use proteins called channels or carriers to move ions into and out of their cells. Channel proteins form a pore, or channel, in the cell membrane, through which ions can quickly move from areas of high concentration to areas of low concentration. In contrast, carrier proteins can transport ions in both directions—that is, to and from areas of high concentration—but they are slower than channel proteins. A family of proteins that export fluoride from microbe and plant cells, thus allowing them to grow in the presence of this toxic ion, was discovered recently, but it was not clear if these proteins function as channels or as carrier proteins. Now, Stockbridge et al. find that these proteins, called Fluc proteins, are fluoride channels with an unusual architecture. Fluc proteins are found in many species of bacteria, and Stockbridge et al. show that a number of these, when purified and inserted into a lipid membrane, are channel proteins. Additionally, they do not transport related ions such as chloride, which means that they are unusually selective for ion channels. Two Fluc polypeptides associate to form a channel in the cell membrane, and Stockbridge et al. show that these two subunits are arranged in an antiparallel formation. Although this architecture is unprecedented among ion channels, it has been observed in carrier proteins in a range of organisms, and may indicate that Fluc proteins offer an evolutionary model for many carrier proteins. DOI:http://dx.doi.org/10.7554/eLife.01084.002
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Biochemistry , Howard Hughes Medical Institute, Brandeis University , Waltham , United States
| | | | | | | |
Collapse
|
16
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:10321-4. [PMID: 23939862 DOI: 10.1002/anie.201303091] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Anindita Gayen
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA) http://www.nyu.edu/fas/dept/chemistry/traasethgroup/
| | | | | |
Collapse
|
17
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Lloris-Garcerá P, Slusky JSG, Seppälä S, Prieß M, Schäfer LV, von Heijne G. In vivo trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models'. J Mol Biol 2013; 425:4642-51. [PMID: 23920359 DOI: 10.1016/j.jmb.2013.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/10/2013] [Accepted: 07/28/2013] [Indexed: 11/28/2022]
Abstract
The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Kolbusz MA, Slotboom DJ, Lolkema JS. Genomic distribution of the small multidrug resistance protein EmrE over 29Escherichia colistrains reveals two forms of the protein. FEBS J 2012; 280:244-55. [DOI: 10.1111/febs.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Magdalena A. Kolbusz
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Dirk J. Slotboom
- Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Juke S. Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| |
Collapse
|
20
|
Kolbusz MA, Slotboom DJ, Lolkema JS. Role of individual positive charges in the membrane orientation and activity of transporters of the small multidrug resistance family. Biochemistry 2012; 51:8867-76. [PMID: 23043311 DOI: 10.1021/bi300854c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of individual positively charged residues on the orientation in the membrane was analyzed in three dual-topology transporters of the small multidrug resistance (SMR) family: AAVE4701aave of Acidovorax avenae, EMREecol of Escherichia coli, and RRUA0272rrub of Rhodospirillum rubrum. It is shown that (i) individual positive charges have different impacts on the orientation, (ii) positive charges that are conserved in the three different proteins do not have the same impact on the orientation, (iii) positive charges in odd- and even-numbered loops have different impacts, (iv) for some, but not all, the impact depends on the presence of other positive charges, and (v) proteins from which all positive charges are removed in some cases are dual-topology proteins and in other cases have a single orientation. A small number of positive charges placed in the loops of the latter proteins results in the violation of the so-called positive-inside rule that has been reported previously [Kolbusz, M. A., et al. (2010) J. Mol. Biol. 402, 127-138]. We conclude that each positive charge shifts the distribution between the two orientations toward the state that has the positive charge in the cytoplasm but that intrinsic factors other than positive charges determine the orientation as well. The ability of the mutants of AAVE4701aave and EMREecol to confer resistance against ethidium bromide revealed an essential role in catalysis for a conserved pair of positive charges in the second loop. No significant relation between activity and the relative orientation of the monomeric subunits in the dimer could be demonstrated.
Collapse
Affiliation(s)
- Magdalena A Kolbusz
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
21
|
Transforming a drug/H+ antiporter into a polyamine importer by a single mutation. Proc Natl Acad Sci U S A 2012; 109:16894-9. [PMID: 23035252 DOI: 10.1073/pnas.1211831109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EmrE, a multidrug antiporter from Escherichia coli, has presented biochemists with unusual surprises. Here we describe the transformation of EmrE, a drug/H(+) antiporter to a polyamine importer by a single mutation. Antibiotic resistance in microorganisms may arise by mutations at certain chromosomal loci. To investigate this phenomenon, we used directed evolution of EmrE to assess the rate of development of novel specificities in existing multidrug transporters. Strikingly, when a library of random mutants of EmrE was screened for resistance to two major antibacterial drugs--norfloxacin, a fluoroquinolone, and erythromycin, a macrolide--proteins with single mutations were found capable of conferring resistance. The mutation conferring erythromycin resistance resulted from substitution of a fully conserved and essential tryptophan residue to glycine, and, as expected, this protein lost its ability to recognize and transport the classical EmrE substrates. However, this protein functions now as an electrochemical potential driven importer of a new set of substrates: aliphatic polyamines. This mutant provides a unique paradigm to understand the function and evolution of distinct modes of transport.
Collapse
|
22
|
Abstract
WT lactose permease of Escherichia coli (LacY) reconstituted into proteoliposomes loaded with a pH-sensitive fluorophore exhibits robust uphill H(+) translocation coupled with downhill lactose transport. However, galactoside binding by mutants defective in lactose-induced H(+) translocation is not accompanied by release of an H(+) on the interior of the proteoliposomes. Because the pK(a) value for galactoside binding is ∼10.5, protonation of LacY likely precedes sugar binding at physiological pH. Consistently, purified WT LacY, as well as the mutants, binds substrate at pH 7.5-8.5 in detergent, but no change in ambient pH is observed, demonstrating directly that LacY already is protonated when sugar binds. However, a kinetic isotope effect (KIE) on the rate of binding is observed, indicating that deuterium substitution for protium affects an H(+) transfer reaction within LacY that is associated with sugar binding. At neutral pH or pD, both the rate of sugar dissociation (k(off)) and the forward rate (k(on)) are slower in D(2)O than in H(2)O (KIE is ∼2), and, as a result, no change in affinity (K(d)) is observed. Alkaline conditions enhance the effect of D(2)O on k(off), the KIE increases to 3.6-4.0, and affinity for sugar increases compared with H(2)O. In contrast, LacY mutants that exhibit pH-independent high-affinity binding up to pH 11.0 (e.g., Glu325 → Gln) exhibit the same KIE (1.5-1.8) at neutral or alkaline pH (pD). Proton inventory studies exhibit a linear relationship between k(off) and D(2)O concentration at neutral and alkaline pH, indicating that internal transfer of a single H(+) is involved in the KIE.
Collapse
|
23
|
Bogdanov M, Dowhan W. Lipid-dependent generation of dual topology for a membrane protein. J Biol Chem 2012; 287:37939-48. [PMID: 22969082 DOI: 10.1074/jbc.m112.404103] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is unknown. We posit that such duality is determined by both the protein sequence and the membrane lipid composition wherein a spatial or temporal change in the latter can result in a post-assembly change in protein structure and function. To investigate whether co-existence of multiple topological conformers is dependent on the membrane lipid composition, we determined the topological organization of lactose permease in an Escherichia coli model cell system in which phosphatidylethanolamine membrane content can be systematically varied. At intermediate levels of phosphatidylethanolamine a mixture of native and topologically mis-oriented conformers co-existed. There was no threshold level of phosphatidylethanolamine determining a sharp transition from one conformer to the other. Co-existing conformers were not in rapid equilibrium at a static lipid composition indicating that duality of topology is established during an early folding step. Depletion of intermediate levels of phosphatidylethanolamine after final protein assembly resulted in complete mis-orientation of the native conformer. Combined with previous results, such topological dynamics are reversible in both directions. We propose a thermodynamically based model for how lipid-protein interactions can result in a mixed topological organization and how changes in lipid composition can result in changes in the ratio of topologically distinct conformers of proteins. These observations demonstrate a potential lipid-dependent biological switch for generating dynamic structural and functional heterogeneity for a protein within the same membrane or between different membranes in more complex eukaryotic cells.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas 77303, USA.
| | | |
Collapse
|
24
|
Lloris-Garcerá P, Bianchi F, Slusky JSG, Seppälä S, Daley DO, von Heijne G. Antiparallel dimers of the small multidrug resistance protein EmrE are more stable than parallel dimers. J Biol Chem 2012; 287:26052-9. [PMID: 22700980 DOI: 10.1074/jbc.m112.357590] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred. Blue-native PAGE analyses of intact oligomers and disulfide cross-linking demonstrate that in membranes, the proteins form parallel dimers only if no oppositely orientated partner is present. Co-expression of oppositely orientated proteins almost exclusively yields antiparallel dimers. Finally, parallel dimers can be disrupted and converted into antiparallel dimers by heating of detergent-solubilized protein. Importantly, in vivo function is correlated clearly to the presence of antiparallel dimers. Our results suggest that an antiparallel arrangement of the subunits in the dimer is more stable than a parallel organization and likely corresponds to the functional form of the protein.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|