1
|
Liu C, Zhong Q, Kang K, Ma R, Song C. Asymmetrical calcium ions induced stress and remodeling in lipid bilayer membranes. Phys Chem Chem Phys 2025; 27:740-753. [PMID: 39607744 DOI: 10.1039/d4cp01715c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ca2+ ions play crucial roles in regulating many chemical and biological processes, but their impact on lipid bilayer membranes remains elusive, especially when the impacts on the two leaflets are asymmetrical. Using a recently developed multisite Ca2+ model, we performed molecular dynamics simulations to study the impact of Ca2+ on the properties of membranes composed of POPC and POPS and observed that both the structure and fluidity of the membranes were significantly affected. In particular, we examined the influence of asymmetrically distributed Ca2+ on asymmetric lipid bilayers and found that imbalanced stress in the two leaflets was generated, with the negatively charged leaflet on the Ca2+-rich side becoming more condensed, which in turn induced membrane curvature that bent the membrane away from the Ca2+-rich side. We employed continuum mechanics to study the large-scale deformations of a spherical vesicle and found that the vesicle can go through vesiculation to form a multi-spherical shape in which a number of spheres are connected with infinitesimal necks, depending on the specific Ca2+ distributions. These results provide new insights into the underlying mechanisms of many biological phenomena involving Ca2+-membrane interactions and may lead to new methods for manipulating the membrane curvature of vesicles in chemical, biological, and nanosystems.
Collapse
Affiliation(s)
- Chang Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Zhong
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Kai Kang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rui Ma
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Chen Song
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Shinoda S, Sakai Y, Matsui T, Uematsu M, Koyama-Honda I, Sakamaki JI, Yamamoto H, Mizushima N. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 2024; 12:RP92189. [PMID: 38831696 PMCID: PMC11152571 DOI: 10.7554/elife.92189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.
Collapse
Affiliation(s)
- Saori Shinoda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Masaaki Uematsu
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
3
|
Rysiewicz B, Błasiak E, Dziedzicka-Wasylewska M, Polit A. The polybasic region in Gαi proteins: Relevant or not? Insights from Gαi 3 research. Cell Signal 2024; 118:111138. [PMID: 38467243 DOI: 10.1016/j.cellsig.2024.111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Heterotrimeric G proteins are responsible for signal transduction from G-protein-coupled receptors (GPCRs) to intracellular effectors. This process is only possible when G proteins are located on the inner side of the cell membrane due to the specific localization of GPCR receptors. The Gα subunit is directed to the cell membrane through several signals, including modification by fatty acid moieties, interaction with the Gβγ complex, and, as observed in some Gα proteins, the presence of basic amino acid residues in the N-terminal region. In this work, we focused on investigating the influence of the polybasic region on the localization and function of a representative member of the Gαi family, Gαi3. Through the use of confocal microscopy and fluorescence lifetime microscopy, we showed that, in the case of this protein, neutralizing the positive charge does not significantly affect its abundance in the cell membrane. However, it does affect its spatial arrangement concerning the dopamine D2 receptor and influences inhibitory effect of Gαi3 on intracellular cAMP production triggered by D2 receptor stimulation. Moreover, in this work, we have shown, for the first time, that nonlipidated Gαi3 binds to negatively charged lipids through electrostatic interactions, and membrane fluidity plays a significant role in this interaction.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
4
|
Wu Z, Li L, Zhu L, Wang R, Dong Y, Zhang Y, Wang Y, Wang J, Zhu L. Structural determinants for membrane binding of the EGFR juxtamembrane domain. FEBS Lett 2024; 598:1402-1410. [PMID: 38589226 DOI: 10.1002/1873-3468.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Overactivation of the epidermal growth factor receptor (EGFR) is critical for the development of multiple cancers. Previous studies have shown that the cell membrane is a key regulator of EGFR kinase activity through its interaction with the EGFR juxtamembrane domain (JM). However, the lipid recognition specificity of EGFR-JM and its interaction details remain unclear. Using lipid strip and liposome pulldown assays, we showed that EGFR-JM could specifically interact with PI(4,5)P2-or phosphatidylserine-containing membranes. We further characterized the JM-membrane interaction using NMR-titration-based chemical shift perturbation and paramagnetic relaxation enhancement analyses, and found that residues I649 - L659 comprised the membrane-binding site. Furthermore, the membrane-binding region contains the predicted dimerization motif of JM, 655LRRLL659, suggesting that membrane binding may affect JM dimerization and, therefore, regulate kinase activation.
Collapse
Affiliation(s)
- Ziwei Wu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Ling Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lina Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Runhan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yingkui Dong
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yaoyao Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lei Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Thakur GCN, Uday A, Cebecauer M, Roos WH, Cwiklik L, Hof M, Jurkiewicz P, Melcrová A. Charge of a transmembrane peptide alters its interaction with lipid membranes. Colloids Surf B Biointerfaces 2024; 235:113765. [PMID: 38309153 DOI: 10.1016/j.colsurfb.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.
Collapse
Affiliation(s)
- Garima C N Thakur
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic.
| | - Adéla Melcrová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Jin H, Liu D, Ni Y, Wang H, Long D. Quantitative Ensemble Interpretation of Membrane Paramagnetic Relaxation Enhancement (mPRE) for Studying Membrane-Associated Intrinsically Disordered Proteins. J Am Chem Soc 2024; 146:791-800. [PMID: 38146836 DOI: 10.1021/jacs.3c10847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
An understanding of the functional role played by a membrane-associated intrinsically disordered protein (IDP) requires characterization of its heterogeneous conformations as well as its poses relative to the membranes, which is of great interest but technically challenging. Here, we explore the membrane paramagnetic relaxation enhancement (mPRE) for constructing ensembles of IDPs that dynamically associate with membrane mimetics incorporating spin-labeled lipids. To accurately interpret the mPRE Γ2 rates, both the dynamics of IDPs and spin probe molecules are taken into account, with the latter described by a weighted three-dimensional (3D) grid model built based on all-atom simulations. The IDP internal conformations, orientations, and immersion depths in lipid bilayers are comprehensively optimized in the Γ2-based ensemble modeling. Our approach is tested and validated on the example of POPG bicelle-bound disordered cytoplasmic domain of CD3ε (CD3εCD), a component of the T-cell receptor (TCR) complex. The mPRE-derived CD3εCD ensemble provides new insights into the IDP-membrane fuzzy association, in particular for the tyrosine-based signaling motif that plays a critical role in TCR signaling. The comparative analysis of the ensembles for wild-type CD3εCD and mutants that mimic the mono- and dual-phosphorylation effects suggests a delicate membrane regulatory mechanism for activation and inhibition of the TCR activity.
Collapse
Affiliation(s)
- Hong Jin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu Ni
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Wadeesirisak K, Castano S, Vaysse L, Bonfils F, Peruch F, Rattanaporn K, Liengprayoon S, Lecomte S, Bottier C. Interactions of REF1 and SRPP1 rubber particle proteins from Hevea brasiliensis with synthetic phospholipids: Effect of charge and size of lipid headgroup. Biochem Biophys Res Commun 2023; 679:205-214. [PMID: 37708579 DOI: 10.1016/j.bbrc.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
According to the fatty acid and headgroup compositions of the phospholipids (PL) from Hevea brasiliensis latex, three synthetic PL were selected (i.e. POPA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to investigate the effect of PL headgroup on the interactions with two major proteins of Hevea latex, i.e. Rubber Elongation Factor (REF1) and Small Rubber Particle Protein (SRPP1). Protein/lipid interactions were screened using two models (lipid vesicles in solution or lipid monolayers at air/liquid interface). Calcein leakage, surface pressure, ellipsometry, microscopy and spectroscopy revealed that both REF1 and SRPP1 displayed stronger interactions with anionic POPA and POPG, as compared to zwitterionic POPC. A particular behavior of REF1 was observed when interacting with POPA monolayers (i.e. aggregation + modification of secondary structure from α-helices to β-sheets, characteristic of its amyloid aggregated form), which might be involved in the irreversible coagulation mechanism of Hevea rubber particles.
Collapse
Affiliation(s)
- Kanthida Wadeesirisak
- Institute of Food Research and Product Development, Kasetsart University, 10900, Bangkok, Thailand
| | - Sabine Castano
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, F-33600, Pessac, France
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Bonfils
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 10900, Bangkok, Thailand
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, 10900, Bangkok, Thailand
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, F-33600, Pessac, France.
| | - Céline Bottier
- CIRAD, UPR BioWooEB, F-34398, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France.
| |
Collapse
|
8
|
Nguyen D, Wu J, Corrigan P, Li Y. Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration. NANOSCALE 2023; 15:16112-16130. [PMID: 37753922 DOI: 10.1039/d3nr00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Janus nanoparticles (NPs) with charged/hydrophobic compartments have garnered attention for their potential antimicrobial activity. These NPs have been shown to disrupt lipid bilayers in experimental studies, yet the underlying mechanisms of this disruption at the particle-membrane interface remain unclear. To address this knowledge gap, the present study conducts a computational investigation to systematically examine the disruption of lipid bilayers induced by amphiphilic Janus NPs. The focus of this study is on the combined effects of the hydrophobicity of the Janus NP, referred to as the Janus balance, defined as the ratio of hydrophilic to hydrophobic surface coverage, and the concentration of charged phospholipids on the interactions between Janus NPs and lipid bilayers. Computational simulations were conducted using a coarse-grained molecular dynamics (MD) approach. The results of these MD simulations reveal that while the area change of the bilayer increases monotonically with the Janus balance, the effect of charged lipid concentration in the membrane is not easy to be predicted. Specifically, it was found that the concentration of negatively charged lipids is directly proportional to the intensity of membrane disruption. Conversely, positively charged lipids have a negligible effect on membrane defects. This study provides molecular insights into the significant role of Janus balance in the disruption of lipid bilayers by Janus NPs and supports the selectivity of Janus NPs for negatively charged lipid membranes. Furthermore, the anisotropic properties of Janus NPs were found to play a crucial role in their ability to disrupt the membrane via the combination of hydrophobic and electrostatic interactions. This finding is validated by testing the current Janus NP design on a bacterial membrane-mimicking model. This computational study may serve as a foundation for further studies aimed at optimizing the properties of Janus NPs for specific antimicrobial applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - James Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick Corrigan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Guillas I, Lhomme M, Pionneau C, Matheron L, Ponnaiah M, Galier S, Lebreton S, Delbos M, Ma F, Darabi M, Khoury PE, Abifadel M, Couvert P, Giral P, Lesnik P, Guerin M, Le Goff W, Kontush A. Identification of the specific molecular and functional signatures of pre-beta-HDL: relevance to cardiovascular disease. Basic Res Cardiol 2023; 118:33. [PMID: 37639039 DOI: 10.1007/s00395-023-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
While low concentrations of high-density lipoprotein-cholesterol (HDL-C) are widely accepted as an independent cardiovascular risk factor, HDL-C-rising therapies largely failed, suggesting the importance of both HDL functions and individual subspecies. Indeed HDL particles are highly heterogeneous, with small, dense pre-beta-HDLs being considered highly biologically active but remaining poorly studied, largely reflecting difficulties for their purification. We developed an original experimental approach allowing the isolation of sufficient amounts of human pre-beta-HDLs and revealing the specificity of their proteomic and lipidomic profiles and biological activities. Pre-beta-HDLs were enriched in highly poly-unsaturated species of phosphatidic acid and phosphatidylserine, and in an unexpectedly high number of proteins implicated in the inflammatory response, including serum paraoxonase/arylesterase-1, vitronectin and clusterin, as well as in complement regulation and immunity, including haptoglobin-related protein, complement proteins and those of the immunoglobulin class. Interestingly, amongst proteins associated with lipid metabolism, phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase were strongly enriched in, or restricted to, pre-beta-HDL. Furthermore, pre-beta-HDL potently mediated cellular cholesterol efflux and displayed strong anti-inflammatory activities. A correlational network analysis between lipidome, proteome and biological activities highlighted 15 individual lipid and protein components of pre-beta-HDL relevant to cardiovascular disease, which may constitute novel diagnostic targets in a pathological context of altered lipoprotein metabolism.
Collapse
Affiliation(s)
- Isabelle Guillas
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France.
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), ICANalytics Lipidomic, Paris, France
| | - Cédric Pionneau
- Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-Génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Lucrèce Matheron
- Institut de Biologie Paris-Seine, Sorbonne Université, 75005, Paris, France
| | - Maharajah Ponnaiah
- Institute of Cardiometabolism and Nutrition (ICAN), ICANalytics Lipidomic, Paris, France
| | - Sophie Galier
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Sandrine Lebreton
- Université Paris Est Créteil, Université Paris Diderot, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, 75005, Paris, France
| | - Marie Delbos
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Feng Ma
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Maryam Darabi
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
- INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Philippe Couvert
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
- Pôle de Biologie Médicale et Pathologie, Centre de Génétique Moléculaire et Chromosomique, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Philippe Giral
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Philippe Lesnik
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Maryse Guerin
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Wilfried Le Goff
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Anatol Kontush
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| |
Collapse
|
10
|
Choi JY, Lopes L, Ben Mamoun C, Voelker DR. Maturation of the malarial phosphatidylserine decarboxylase is mediated by high affinity binding to anionic phospholipids. J Biol Chem 2023; 299:104659. [PMID: 36997087 PMCID: PMC10172927 DOI: 10.1016/j.jbc.2023.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lauren Lopes
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, Denver, Colorado, USA.
| |
Collapse
|
11
|
Gu X, Liu D, Yu Y, Wang H, Long D. Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions. J Am Chem Soc 2023; 145:10295-10303. [PMID: 37116086 DOI: 10.1021/jacs.3c01597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Peripheral membrane proteins can adopt distinct orientations on the surfaces of lipid bilayers that are often short-lived and challenging to characterize by conventional experimental methods. Here we describe a robust approach for mapping protein orientational landscapes through quantitative interpretation of paramagnetic relaxation enhancement (PRE) data arising from membrane mimetics with spin-labeled lipids. Theoretical analysis, followed by experimental verification, reveals insights into the distinct properties of the PRE observables that are generally distorted in the case of stably membrane-anchored proteins. To suppress the artifacts, we demonstrate that undistorted Γ2 values can be obtained via transient membrane anchoring, based on which a computational framework is established for deriving accurate orientational ensembles obeying Boltzmann statistics. Application of the approach to KRas4B, a classical peripheral membrane protein whose orientations are critical for its functions and drug design, reveals four distinct orientational states that are close but not identical to those reported previously. Similar orientations are also found for a truncated KRas4B without the hypervariable region (HVR) that can sample a broader range of orientations, suggesting a confinement role of the HVR geometrically prohibiting severe tilting. Comparison of the KRas4B Γ2 rates measured using nanodiscs containing different types of anionic lipids reveals identical Γ2 patterns for the G-domain but different ones for the HVR, indicating only the latter is able to selectively interact with anionic lipids.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
13
|
Gao Y, Zhu Y, Sun Q, Chen D. Argonaute-dependent ribosome-associated protein quality control. Trends Cell Biol 2023; 33:260-272. [PMID: 35981909 DOI: 10.1016/j.tcb.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Ribosome-associated protein quality control (RQC) is a protein surveillance mechanism that eliminates defective nascent polypeptides. The E3 ubiquitin ligase, Ltn1, is a key regulator of RQC that targets substrates for ubiquitination. Argonaute proteins (AGOs) are central players in miRNA-mediated gene silencing and have recently been shown to also regulate RQC by facilitating Ltn1. Therefore, AGOs directly coordinate post-transcriptional gene silencing and RQC, ensuring efficient gene silencing. We summarize the principles of RQC and the functions of AGOs in miRNA-mediated gene silencing, and discuss how AGOs associate with the endoplasmic reticulum (ER) to assist Ltn1 in controlling RQC. We highlight that RQC not only eliminates defective nascent polypeptides but also removes unwanted protein products when AGOs participate.
Collapse
Affiliation(s)
- Yajie Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China.
| |
Collapse
|
14
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Saydakova S, Morozova K, Snytnikova O, Morozova M, Boldyreva L, Kiseleva E, Tsentalovich Y, Kozhevnikova E. The Effect of Dietary Phospholipids on the Ultrastructure and Function of Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021788. [PMID: 36675301 PMCID: PMC9866517 DOI: 10.3390/ijms24021788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary composition substantially determines human health and affects complex diseases, including obesity, inflammation and cancer. Thus, food supplements have been widely used to accommodate dietary composition to the needs of individuals. Among the promising supplements are dietary phospholipids (PLs) that are commonly found as natural food ingredients and as emulsifier additives. The aim of the present study was to evaluate the effect of major PLs found as food supplements on the morphology of intestinal epithelial cells upon short-term and long-term high-dose feeding in mice. In the present report, the effect of short-term and long-term high dietary PL content was studied in terms of intestinal health and leaky gut syndrome in male mice. We used transmission electron microscopy to evaluate endothelial morphology at the ultrastructural level. We found mitochondrial damage and lipid droplet accumulation in the intracristal space, which rendered mitochondria more sensitive to respiratory uncoupling as shown by a mitochondrial respiration assessment in the intestinal crypts. However, this mitochondrial damage was insufficient to induce intestinal permeability. We propose that high-dose PL treatment impairs mitochondrial morphology and acts through extensive membrane utilization via the mitochondria. The data suggest that PL supplementation should be used with precaution in individuals with mitochondrial disorders.
Collapse
Affiliation(s)
- Snezhanna Saydakova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Ksenia Morozova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga Snytnikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Maryana Morozova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Lidiya Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Elena Kiseleva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | | | - Elena Kozhevnikova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
16
|
STIM Proteins and Regulation of SOCE in ER-PM Junctions. Biomolecules 2022; 12:biom12081152. [PMID: 36009047 PMCID: PMC9405863 DOI: 10.3390/biom12081152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
ER-PM junctions are membrane contact sites formed by the endoplasmic reticulum (ER) and plasma membrane (PM) in close apposition together. The formation and stability of these junctions are dependent on constitutive and dynamic enrichment of proteins, which either contribute to junctional stability or modulate the lipid levels of both ER and plasma membranes. The ER-PM junctions have come under much scrutiny recently as they serve as hubs for assembling the Ca2+ signaling complexes. This review summarizes: (1) key findings that underlie the abilities of STIM proteins to accumulate in ER-PM junctions; (2) the modulation of Orai/STIM complexes by other components found within the same junction; and (3) how Orai1 channel activation is coordinated and coupled with downstream signaling pathways.
Collapse
|
17
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
18
|
Liu C, Zhang Y, Ge L, Li L, Wu B, Wang J. Biochemical and NMR studies reveal specific interaction between STIMATE C-tail and PI(4,5)P 2 or PI(3,4,5)P 3-containing membrane. Biochem Biophys Res Commun 2022; 597:16-22. [PMID: 35121178 DOI: 10.1016/j.bbrc.2022.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
STIMATE is an endoplasmic reticulum (ER) resident membrane protein that plays key roles in regulating calcium signaling occurring at ER-plasma membrane (PM) junctions. It is also involved in the regulation of ER-PM junction maintenance. STIMATE contains multiple putative transmembrane domains with a polybasic C tail (STIMATE-CT) that directly interacts with stromal interaction molecule 1 (STIM1) to promote STIM1 conformational switch. Here using liposome pulldown assay, we show that STIMATE-CT can specifically interact with PI(4,5)P2 or PI(3,4,5)P3-containing membrane. NMR analysis indicates that STIMATE-CT is intrinsically disordered. Furthermore, NMR titration with bicelles and mutation analysis reveal that the regions of 242VRYR245 and 284KKKK287 in STIMATE-CT are both essential for its membrane binding.
Collapse
Affiliation(s)
- Chongxu Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Youjia Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Liang Ge
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ling Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
19
|
Simulation of receptor triggering by kinetic segregation shows role of oligomers and close-contacts. Biophys J 2022; 121:1660-1674. [PMID: 35367423 PMCID: PMC9117938 DOI: 10.1016/j.bpj.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of T cells, key players of the immune system, involves local evacuation of phosphatase CD45 from a region of the T cell's surface, segregating it from the T cell receptor. What drives this evacuation? In the presence of antigen, what ensures evacuation happens in the subsecond timescales necessary to initiate signaling? In the absence of antigen, what mechanisms ensure that evacuation does not happen spontaneously, which could cause signaling errors? Phenomena known to influence spatial organization of CD45 or similar surface molecules include diffusive motion in the lipid bilayer, oligomerization reactions, and mechanical compression against a nearby surface, such as that of the cell presenting the antigen. Computer simulations can investigate hypothesized spatiotemporal mechanisms of T cell signaling. The challenge to computational studies of evacuation is that the base process, spontaneous evacuation by simple diffusion, is in the extreme rare event limit, meaning direct stochastic simulation is unfeasible. Here, we combine particle-based spatial stochastic simulation with the weighted ensemble method for rare events to compute the mean first passage time for cell surface availability by surface reorganization of CD45. We confirm mathematical estimates that, at physiological concentrations, spontaneous evacuation is extremely rare, roughly 300 years. We find that dimerization decreases the time required for evacuation. A weak bimolecular interaction (dissociation constant estimate 460 μM) is sufficient for an order of magnitude reduction of spontaneous evacuation times, and oligomerization to hexamers reduces times to below 1 s. This introduces a mechanism whereby externally induced CD45 oligomerization could significantly modify T cell function. For large regions of close contact, such as those induced by large microvilli, molecular size and compressibility imply a nonzero reentry probability of 60%, decreasing evacuation times. Simulations show that these reduced evacuation times are still unrealistically long (even with a fourfold variation centered around previous estimates of parameters), suggesting that a yet-to-be-described mechanism, besides compressional exclusion at a close contact, drives evacuation.
Collapse
|
20
|
Electrostatic influence on IL-1 transport through the GSDMD pore. Proc Natl Acad Sci U S A 2022; 119:2120287119. [PMID: 35115408 PMCID: PMC8833203 DOI: 10.1073/pnas.2120287119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
A variety of signals, including inflammasome activation, trigger the formation of large transmembrane pores by gasdermin D (GSDMD). There are primarily two functions of the GSDMD pore, to drive lytic cell death, known as pyroptosis, and to permit the release of leaderless interleukin-1 (IL-1) family cytokines, a process that does not require pyroptosis. We are interested in the mechanism by which the GSDMD pore channels IL-1 release from living cells. Recent studies revealed that electrostatic interaction, in addition to cargo size, plays a critical role in GSDMD-dependent protein release. Here, we determined computationally that to enable electrostatic filtering against pro-IL-1β, acidic lipids in the membrane need to effectively neutralize positive charges in the membrane-facing patches of the GSDMD pore. In addition, we predicted that salt has an attenuating effect on electrostatic filtering and then validated this prediction using a liposome leakage assay. A calibrated electrostatic screening factor is necessary to account for the experimental observations, suggesting that ion distribution within the pore may be different from the bulk solution. Our findings corroborate the electrostatic influence of IL-1 transport exerted by the GSDMD pore and reveal extrinsic factors, including lipid and salt, that affect the electrostatic environment.
Collapse
|
21
|
Umair M, Sultana T, Xiaoyu Z, Senan AM, Jabbar S, Khan L, Abid M, Murtaza MA, Kuldeep D, Al‐Areqi NAS, Zhaoxin L. LC-ESI-QTOF/MS characterization of antimicrobial compounds with their action mode extracted from vine tea ( Ampelopsis grossedentata) leaves. Food Sci Nutr 2022; 10:422-435. [PMID: 35154679 PMCID: PMC8825723 DOI: 10.1002/fsn3.2679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Ahmed M. Senan
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Labiba Khan
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesPir Mehr Ali Shah, Arid Agriculture University RawalpindiRawalpindiPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Dhama Kuldeep
- Division of PathologyICAR‐Indian Veterinary, Research InstituteIzatnagarIndia
| | - Niyazi A. S. Al‐Areqi
- Department of ChemistryFaculty of Applied ScienceTaiz UniversityTaizRepublic of Yemen
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
22
|
Noack LC, Bayle V, Armengot L, Rozier F, Mamode-Cassim A, Stevens FD, Caillaud MC, Munnik T, Mongrand S, Pleskot R, Jaillais Y. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. THE PLANT CELL 2022; 34:302-332. [PMID: 34010411 PMCID: PMC8774046 DOI: 10.1093/plcell/koab135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Adiilah Mamode-Cassim
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
- Agroécologie, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Floris D Stevens
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic
| | | |
Collapse
|
23
|
Minuz P, De Toni L, Dall'Acqua S, Di Nisio A, Sabovic I, Castelli M, Meneguzzi A, Foresta C. Interference of C6O4 on platelet aggregation pathways: Cues on the new-generation of perfluoro-alkyl substance. ENVIRONMENT INTERNATIONAL 2021; 154:106584. [PMID: 33895438 DOI: 10.1016/j.envint.2021.106584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Health concerns associated with the exposure to legacy perfluoro-alkyl substances (PFAS) led to the development of new-generation PFAS, such as C6O4. Here we investigated the possible effects of C6O4 on the platelet's activation profile, by incubating human platelets from healthy donors with C6O4 at different concentrations and evaluating the effects on activation, production and phenotype of platelets micro-particles (MPV) and aggregation under-flow. Based on the eventual platelet pro-aggregation profile detected, the preventive effect of acetylsalicylic acid (ASA) was also explored. METHODS Adhesion-induced platelet aggregation of platelet rich plasma (PRP) under flow was evaluated on collagen-coated microchip at a shear stress of 10 Dyne. The turbidimetric method was used to investigate platelet aggregation. Finally, the in vitro generation of pro-coagulant MPV in PRP was evaluated by flow cytometry, as characterized by CD41 and annexin V positive events, under resting conditions and after stimulation with agonists at low shear stress. RESULTS The generation of platelet aggregates under flow was significantly increased by the pretreatment of PRP with 100-200 ng/mL C6O4, compared to both the control condition and the experiment performed in presence of ASA. Arachidonic acid (AA), ADP and collagen induced an higher maximal aggregation, at turbidimetric evaluation, when PRP was pretreated with 100-500 ng/mL C6O4. In addition, PRP stimulated with AA also showed a steeper slope of the aggregation curve. The aggregation induced by the tested agonists was almost abolished by ASA. Finally, pretreatment with C6O4 increased the number of MPV in resting conditions and in presence of ADP and TRAP. ASA tended to reduce MPV generation. CONCLUSIONS Exposure to C6O4 associates with an increased platelet response to agonists, translating into a possible increased risk of cardiovascular events. Pending a further clarification on the toxicokinetics of this compound, our results claim the possible prophylactic use of ASA.
Collapse
Affiliation(s)
- Pietro Minuz
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Luca De Toni
- Department of Medicine and Unit of Andrology and Reproduction Medicine, University of Padova, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Andrea Di Nisio
- Department of Medicine and Unit of Andrology and Reproduction Medicine, University of Padova, Padova, Italy
| | - Iva Sabovic
- Department of Medicine and Unit of Andrology and Reproduction Medicine, University of Padova, Padova, Italy
| | - Marco Castelli
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Alessandra Meneguzzi
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Carlo Foresta
- Department of Medicine and Unit of Andrology and Reproduction Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
24
|
Prakaash D, Cook GP, Acuto O, Kalli AC. Multi-scale simulations of the T cell receptor reveal its lipid interactions, dynamics and the arrangement of its cytoplasmic region. PLoS Comput Biol 2021; 17:e1009232. [PMID: 34280187 PMCID: PMC8321403 DOI: 10.1371/journal.pcbi.1009232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
The T cell receptor (TCR-CD3) initiates T cell activation by binding to peptides of Major Histocompatibility Complexes (pMHC). The TCR-CD3 topology is well understood but the arrangement and dynamics of its cytoplasmic tails remains unknown, limiting our grasp of the signalling mechanism. Here, we use molecular dynamics simulations and modelling to investigate the entire TCR-CD3 embedded in a model membrane. Our study demonstrates conformational changes in the extracellular and transmembrane domains, and the arrangement of the TCR-CD3 cytoplasmic tails. The cytoplasmic tails formed highly interlaced structures while some tyrosines within the immunoreceptor tyrosine-based activation motifs (ITAMs) penetrated the hydrophobic core of the membrane. Interactions between the cytoplasmic tails and phosphatidylinositol phosphate lipids in the inner membrane leaflet led to the formation of a distinct anionic lipid fingerprint around the TCR-CD3. These results increase our understanding of the TCR-CD3 dynamics and the importance of membrane lipids in regulating T cell activation.
Collapse
Affiliation(s)
- Dheeraj Prakaash
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Graham P. Cook
- Leeds Institute of Medical Research at St James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Clapis JR, Fan MJ, Kovarik ML. Supported bilayer membranes for reducing cell adhesion in microfluidic devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1535-1540. [PMID: 33690748 DOI: 10.1039/d0ay01992e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The high surface area-to-volume ratio of microfluidic channels makes them susceptible to fouling and clogging when used for biological analyses, including cell-based assays. We evaluated the role of electrostatic and van der Waals interactions in cell adhesion in PDMS microchannels coated with supported lipid bilayers and identified conditions that resulted in minimal cell adhesion. For low ionic strength buffer, optimum results were obtained for a zwitterionic coating of pure egg phosphatidylcholine; for a rich growth medium, the best results were obtained for zwitterionic bilayers or those with slight negative or moderate positive charge from the incorporation of 5-10 mol% egg phosphatidylglycerol or 30 mol% ethylphosphocholine. In both solutions, the presence of 10 g L-1 glucose in the cell suspension reduced cell adhesion. Under optimum conditions, all cells were consistently removed from the channels, demonstrating the utility of these coatings for whole-cell microfluidic assays. These results provide practical information for immediate application and suggest future research areas on cell-lipid interactions.
Collapse
Affiliation(s)
- Julia R Clapis
- Department of Chemistry, Trinity College, 300 Summit St., Hartford, CT 06106, USA.
| | | | | |
Collapse
|
26
|
Connolly A, Panes R, Tual M, Lafortune R, Bellemare-Pelletier A, Gagnon E. TMEM16F mediates bystander TCR-CD3 membrane dissociation at the immunological synapse and potentiates T cell activation. Sci Signal 2021; 14:eabb5146. [PMID: 33758060 DOI: 10.1126/scisignal.abb5146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrostatic interactions regulate many aspects of T cell receptor (TCR) activity, including enabling the dynamic binding of the TCR-associated CD3ε and CD3ζ chains to anionic lipids in the plasma membrane to prevent spontaneous phosphorylation. Substantial changes in the electrostatic potential of the plasma membrane occur at the immunological synapse, the interface between a T cell and an antigen-presenting cell. Here, we investigated how the electrostatic interactions that promote dynamic membrane binding of the TCR-CD3 cytoplasmic domains are modulated during signaling and affect T cell activation. We found that Ca2+-dependent activation of the phosphatidylserine scramblase TMEM16F, which was previously implicated in T cell activation, reduced the electrostatic potential of the plasma membrane during immunological synapse formation by locally redistributing phosphatidylserine. This, in turn, increased the dissociation of bystander TCR-CD3 cytoplasmic domains from the plasma membrane and enhanced TCR-dependent signaling and consequently T cell activation. This study establishes the molecular basis for the role of TMEM16F in bystander TCR-induced signal amplification and identifies enhancement of TMEM16F function as a potential therapeutic strategy for promoting T cell activation.
Collapse
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Rébecca Panes
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Margaux Tual
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Raphaël Lafortune
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Angélique Bellemare-Pelletier
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| |
Collapse
|
27
|
Polit A, Mystek P, Błasiak E. Every Detail Matters. That Is, How the Interaction between Gα Proteins and Membrane Affects Their Function. MEMBRANES 2021; 11:222. [PMID: 33804791 PMCID: PMC8003949 DOI: 10.3390/membranes11030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
In highly organized multicellular organisms such as humans, the functions of an individual cell are dependent on signal transduction through G protein-coupled receptors (GPCRs) and subsequently heterotrimeric G proteins. As most of the elements belonging to the signal transduction system are bound to lipid membranes, researchers are showing increasing interest in studying the accompanying protein-lipid interactions, which have been demonstrated to not only provide the environment but also regulate proper and efficient signal transduction. The mode of interaction between the cell membrane and G proteins is well known. Despite this, the recognition mechanisms at the molecular level and how the individual G protein-membrane attachment signals are interrelated in the process of the complex control of membrane targeting of G proteins remain unelucidated. This review focuses on the mechanisms by which mammalian Gα subunits of G proteins interact with lipids and the factors responsible for the specificity of membrane association. We summarize recent data on how these signaling proteins are precisely targeted to a specific site in the membrane region by introducing well-defined modifications as well as through the presence of polybasic regions within these proteins and interactions with other components of the heterocomplex.
Collapse
Affiliation(s)
- Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.M.); (E.B.)
| | | | | |
Collapse
|
28
|
Meneguzzi A, Fava C, Castelli M, Minuz P. Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front Endocrinol (Lausanne) 2021; 12:706352. [PMID: 34305819 PMCID: PMC8298860 DOI: 10.3389/fendo.2021.706352] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Polyfluoro- and perfluoro-alkyl substances (PFAS) are organic chemicals extensively used worldwide for industry and consumer products. Due to their chemical stability, PFAS represent a major cause of environmental pollution. PFAS accumulate in animal and human blood and tissues exerting their toxicity. We performed a review of the epidemiological studies exploring the relationship between exposure to PFAS and thromboembolic cardiovascular disease. An increase in cardiovascular disease or death related to PFAS exposure has been reported from cross-sectional and longitudinal observational studies with evidence concerning the relation with early vascular lesions and atherosclerosis. Several studies indicate an alteration in lipid and glucose metabolism disorders and increased blood pressure as a possible link with cardiovascular thromboembolic events. We also examined the recent evidence indicating that legacy and new PFAS can be incorporated in platelet cell membranes giving a solid rationale to the observed increase risk of cardiovascular events in the populations exposed to PFAS by directly promoting thrombus formation. Exposure to PFAS has been related to altered plasma membrane fluidity and associated with altered calcium signal and increased platelet response to agonists, both in vitro and ex vivo in subjects exposed to PFAS. All the functional responses are increased in platelets by incorporation of PFAS: adhesion, aggregation, microvesicles release and experimental thrombus formation. These findings offer mechanistic support the hypothesis that platelet-centred mechanisms may be implicated in the increase in cardiovascular events observed in populations chronically exposed to PFAS.
Collapse
|
29
|
Doktorova M, Symons JL, Levental I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat Chem Biol 2020; 16:1321-1330. [PMID: 33199908 PMCID: PMC7747298 DOI: 10.1038/s41589-020-00688-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of lipid asymmetry across the two leaflets of the plasma membrane (PM) bilayer is a ubiquitous feature of eukaryotic cells. Loss of this asymmetry has been widely associated with cell death. However, increasing evidence points to the physiological importance of non-apoptotic, transient changes in PM asymmetry. Such transient scrambling events are associated with a range of biological functions, including intercellular communication and intracellular signaling. Thus, regulation of interleaflet lipid distribution in the PM is a broadly important but underappreciated cellular process with key physiological and structural consequences. Here, we compile the mounting evidence revealing multifaceted, functional roles of PM asymmetry and transient loss thereof. We discuss the consequences of reversible asymmetry on PM structure, biophysical properties and interleaflet coupling. We argue that despite widespread recognition of broad aspects of membrane asymmetry, its importance in cell biology demands more in-depth investigation of its features, regulation, and physiological and pathological implications.
Collapse
Affiliation(s)
| | - Jessica L Symons
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
30
|
Corin K, Bowie JU. How bilayer properties influence membrane protein folding. Protein Sci 2020; 29:2348-2362. [PMID: 33058341 DOI: 10.1002/pro.3973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023]
Abstract
The question of how proteins manage to organize into a unique three-dimensional structure has been a major field of study since the first protein structures were determined. For membrane proteins, the question is made more complex because, unlike water-soluble proteins, the solvent is not homogenous or even unique. Each cell and organelle has a distinct lipid composition that can change in response to environmental stimuli. Thus, the study of membrane protein folding requires not only understanding how the unfolded chain navigates its way to the folded state, but also how changes in bilayer properties can affect that search. Here we review what we know so far about the impact of lipid composition on bilayer physical properties and how those properties can affect folding. A better understanding of the lipid bilayer and its effects on membrane protein folding is not only important for a theoretical understanding of the folding process, but can also have a practical impact on our ability to work with and design membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
31
|
Aseervatham J, Li X, Mitchell CK, Lin YP, Heidelberger R, O’Brien J. Calmodulin Binding to Connexin 35: Specializations to Function as an Electrical Synapse. Int J Mol Sci 2020; 21:E6346. [PMID: 32882943 PMCID: PMC7504508 DOI: 10.3390/ijms21176346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
Calmodulin binding is a nearly universal property of gap junction proteins, imparting a calcium-dependent uncoupling behavior that can serve in an emergency to decouple a stressed cell from its neighbors. However, gap junctions that function as electrical synapses within networks of neurons routinely encounter large fluctuations in local cytoplasmic calcium concentration; frequent uncoupling would be impractical and counterproductive. We have studied the properties and functional consequences of calmodulin binding to the electrical synapse protein Connexin 35 (Cx35 or gjd2b), homologous to mammalian Connexin 36 (Cx36 or gjd2). We find that specializations in Cx35 calmodulin binding sites make it relatively impervious to moderately high levels of cytoplasmic calcium. Calmodulin binding to a site in the C-terminus causes uncoupling when calcium reaches low micromolar concentrations, a behavior prevented by mutations that eliminate calmodulin binding. However, milder stimuli promote calcium/calmodulin-dependent protein kinase II activity that potentiates coupling without interference from calmodulin binding. A second calmodulin binding site in the end of the Cx35 cytoplasmic loop, homologous to a calmodulin binding site present in many connexins, binds calmodulin with very low affinity and stoichiometry. Together, the calmodulin binding sites cause Cx35 to uncouple only at extreme levels of intracellular calcium.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Xiaofan Li
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Cheryl K. Mitchell
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Ruth Heidelberger
- Department of Neurobiology & Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
32
|
Umair M, Jabbar S, Sultana T, Ayub Z, Abdelgader SA, Xiaoyu Z, Chong Z, Fengxia L, Xiaomei B, Zhaoxin L. Chirality of the biomolecules enhanced its stereospecific action of dihydromyricetin enantiomers. Food Sci Nutr 2020; 8:4843-4856. [PMID: 32994946 PMCID: PMC7500803 DOI: 10.1002/fsn3.1766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 02/03/2023] Open
Abstract
The present study explores the effect of chirality of the biological macromolecules, its functional aspects, and its interaction with other food components. Dihydromyricetin (DHM) is a natural novel flavonol isolated from the vine tea (Ampelopsis grossedentata) leaves. However, limited progress in enantiopure separation methods of such compounds hinder in the development of enantiopure functional studies. This study is an attempt to develop a simple, accurate, and sensitive extraction method for the separation of the enantiopure DHM from vine tea leaves. In addition, the identification and purity of the extracted enantiopure (-)-DHM were further determined by the proton nuclear magnetic resonance (1H-NMR) and the carbon nuclear magnetic resonance (13C-NMR). The study further evaluates the antimicrobial activity of isolated (-)-DHM in comparison with racemate (+)-DHM, against selected foodborne pathogens, whereas the action mode of enantiopure (-)-DHM to increase the integrity and permeability of the bacterial cell membrane was visualized by confocal laser scanning microscopy using green fluorescence nucleic acid dye (SYTO-9) and propidium iodide (PI). Moreover, the morphological changes in the bacterial cell structure were observed through field emission scanning electron microscope. During analyzing the cell morphology of B. cereus (AS11846), it was confirmed that enantiopure (-)-DHM could increase the cell permeability that leads to the released of internal cell constituents and, thus, causes cell death. Therefore, the present study provides an insight into the advancement of enantiopure isolation along with its antimicrobial effect which could be served as an effective approach of biosafety.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research Centre (NARC)IslamabadPakistan
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zubaria Ayub
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | | | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Zhang Chong
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Fengxia
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Bie Xiaomei
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
33
|
Chao Y, Gao S, Li N, Zhao H, Qian Y, Zha H, Chen W, Dong X. Lipidomics Reveals the Therapeutic Effects of EtOAc Extract of Orthosiphon stamineus Benth. on Nephrolithiasis. Front Pharmacol 2020; 11:1299. [PMID: 32973524 PMCID: PMC7472562 DOI: 10.3389/fphar.2020.01299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Background Nephrolithiasis is a systemic metabolic disease with a high prevalence worldwide and is closely related to lipid-mediated oxidative stress and inflammation. Orthosiphon stamineus Benth. (OS) is a traditional medicinal herb mainly containing flavonoids, caffeic acid derivatives, and terpenoids, which has the effect of treating urinary stones. However, the active ingredients of OS for the treatment of kidney stones and their regulatory mechanisms remain unknown. As a powerful antioxidant, flavonoids from herbs can mitigate calcium oxalate stone formation by scavenging radical. Thus, this work focused on EtOAc extract of OS (EEOS, mainly flavonoids) and aimed to reveal the potential intrinsic mechanism of EEOS in the treatment of kidney stones disease. Methods Firstly, 75% ethanol extract of OS was further extracted with EtOAc to obtain EtOAc extract containing 88.82% flavonoids. Secondly, the extract was subjected to component analysis and used in animal experiments. Then, an untargeted lipidomics based on ultrahigh performance liquid chromatography coupled with TripleTOF 5600 mass spectrometer (UPLC-QTOF-MS) was performed to test the lipid changes of kidneys in the control group, model group and EEOS treatment groups. Finally, multivariate statistical analysis was used to identify differences between the lipid profiles of mice in the model group and the EEOS group. Results Fifty-one lipid metabolites were significantly different between the mice in the model group and the EEOS intervention group, including glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoinositols, and glycerophosphoglycerols. And the composition of glycerophospholipids-esterified ω-3 polyunsaturated fatty acids and glycerophospholipid subclasses in the kidneys of the EEOS group significantly changed compared to model group. Conclusions The EEOS can inhibit the stones formation by improving oxidative stress and inflammation mediated by glycerophospholipid metabolism. This study reveals the potential mechanism of EEOS for kidney stones treatment at the lipid molecule level, providing a new direction for further study of the efficacy of OS.
Collapse
Affiliation(s)
- Yufan Chao
- School of Medicine, Shanghai University, Shanghai, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Hongxia Zhao
- School of Medicine, Shanghai University, Shanghai, China
| | - Yong Qian
- Shanghai Standard Technology Co., Ltd, Shanghai, China
| | - Haihong Zha
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
Jin Y, Okamoto M, Chibana H, Liu G, Gao XD, Nakanishi H. Functional characteristics of Svl3 and Pam1 that are required for proper cell wall formation in yeast cells. Yeast 2020; 37:359-371. [PMID: 32491201 DOI: 10.1002/yea.3502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, Svl3 and Pam1 proteins work as functional homologues. Loss of their function causes increased levels of chitin deposition in the cell wall and temperature sensitivity, suggesting their involvement in cell wall formation. We found that the N- and C-termini of these proteins have distinctive and critical functions. They contain an N-terminal part that has a probable 2-dehydropantoate 2-reductase domain. In Svl3, this part can be replaced with the yeast 2-dehydropantoate 2-reductase, Pan5, suggesting that Svl3 and its homologues may be able to mediate 2-dehydropantoate 2-reductase function. On the other hand, Svl3 is recruited to the bud tip and bud neck via multiple localization signals in the C-terminal part. One of such signals is the lysine-rich region located in the C-terminal end. The function and localization of Svl3 are significantly disrupted by the loss of this lysine-rich region; however, its localization is not completely abolished by the mutation because another localization signal enables appropriate transport. Svl3 and Pam1 orthologues are found in cells across fungal species. The Svl3 orthologues of Candida glabrata can complement the loss of Svl3 and Pam1 in S. cerevisiae. C. glabrata cells lacking the SVL3 and PAM1 orthologue genes exhibit phenotypes similar to those observed in svl3∆pam1∆ S. cerevisiae cells. Thus, Svl3 homologues may be generally required for the assembly of the cell wall in fungal cells.
Collapse
Affiliation(s)
- Yifan Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Guoyu Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
36
|
Charge-based interactions of antimicrobial peptides and general drugs with lipid bilayers. J Mol Graph Model 2020; 95:107502. [DOI: 10.1016/j.jmgm.2019.107502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/19/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
|
37
|
Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J Chem Theory Comput 2019; 16:738-748. [PMID: 31762275 DOI: 10.1021/acs.jctc.9b00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylserine (PS) lipids are important signaling molecules and the most common negatively charged lipids in eukaryotic membranes. The signaling can be often regulated by calcium, but its interactions with PS headgroups are not fully understood. Classical molecular dynamics (MD) simulations can potentially give detailed description of lipid-ion interactions, but the results strongly depend on the used force field. Here, we apply the electronic continuum correction (ECC) to the Amber Lipid17 parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipid to improve its interactions with K+, Na+, and Ca2+ ions. The partial charges of the headgroup, glycerol backbone, and carbonyls of POPS, bearing a unit negative charge, were scaled with a factor of 0.75, derived for monovalent ions, and the Lennard-Jones σ parameters of the same segments were scaled with a factor of 0.89. The resulting ECC-POPS model gives more realistic interactions with Na+ and Ca2+ cations than the original Amber Lipid17 parameters when validated using headgroup order parameters and the "electrometer concept". In ECC-lipids simulations, populations of complexes of Ca2+ cations with more than two PS lipids are negligible, and interactions of Ca2+ cations with only carboxylate groups are twice more likely than with only phosphate groups, while interactions with carbonyls almost entirely involve other groups as well. Our results pave the way for more realistic MD simulations of biomolecular systems with anionic membranes, allowing signaling processes involving PS and Ca2+ to be elucidated.
Collapse
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Tiago M Ferreira
- NMR Group-Institut for Physics , Martin-Luther University Halle-Wittenberg , 06120 Halle , Germany
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic
| | - O H Samuli Ollila
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Institute of Biotechnology , University of Helsinki , Helsinki FI-00014 , Finland
| |
Collapse
|
38
|
Matsuoka D, Kamiya M, Sato T, Sugita Y. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3. J Comput Chem 2019; 41:561-572. [PMID: 31804721 DOI: 10.1002/jcc.26122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is a member of receptor tyrosine kinases, which is involved in skeletal cell growth, differentiation, and migration. FGFR3 transduces biochemical signals from the extracellular ligand-binding domain to the intracellular kinase domain through the conformational changes of the transmembrane (TM) helix dimer. Here, we apply generalized replica exchange with solute tempering method to wild type (WT) and G380R mutant (G380R) of FGFR3. The dimer interface in G380R is different from WT and the simulation results are in good agreement with the solid-state nuclear magnetic resonance (NMR) spectroscopy. TM helices in G380R are extended more than WT, and thereby, G375 in G380R contacts near the N-termini of the TM helix dimer. Considering that both G380R and G375C show the constitutive activation, the formation of the N-terminal contacts of the TM helices can be generally important for the activation mechanism. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daisuke Matsuoka
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
| | - Motoshi Kamiya
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan
| | - Takeshi Sato
- Division of Liberal Arts and Science, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystem Dynamics Research, Kobe, 650-0047, Japan
| |
Collapse
|
39
|
Li H, Yan C, Guo J, Xu C. Ionic protein-lipid interactions at the plasma membrane regulate the structure and function of immunoreceptors. Adv Immunol 2019; 144:65-85. [PMID: 31699220 DOI: 10.1016/bs.ai.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adaptive lymphocytes express a panel of immunoreceptors on the cell surface. Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids forming microdomains in the plasma membrane can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. We have shown that negatively charged acidic phospholipids can interact with positively charged juxtamembrane polybasic regions of immunoreceptors, such as TCR-CD3, CD28 and IgG-BCR, to regulate protein structure and function. Furthermore, we pay our attention to protein transmembrane domains. We show that a membrane-snorkeling Lys residue in integrin αLβ2 regulates transmembrane heterodimer formation and integrin adhesion through ionic interplay with acidic phospholipids and calcium ions (Ca2+) in T cells, thus providing a new mechanism of integrin activation. Here, we review our recent progress showcasing the importance of both juxtamembrane and intramembrane ionic protein-lipid interactions.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Chengsong Yan
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Guo
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| |
Collapse
|
40
|
Antila H, Buslaev P, Favela-Rosales F, Ferreira TM, Gushchin I, Javanainen M, Kav B, Madsen JJ, Melcr J, Miettinen MS, Määttä J, Nencini R, Ollila OHS, Piggot TJ. Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. J Phys Chem B 2019; 123:9066-9079. [DOI: 10.1021/acs.jpcb.9b06091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pavel Buslaev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Fernando Favela-Rosales
- Departamento de Investigación, Tecnológico Nacional de México, Campus Zacatecas Occidente, C. P. 99102 Zacatecas, México
| | - Tiago M. Ferreira
- NMR Group - Institute for Physics, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Batuhan Kav
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jesper J. Madsen
- Department of Chemistry, The University of Chicago, 60637 Chicago, Illinois, United States of America
- Department of Global Health, College of Public Health, University of South Florida, 33612 Tampa, Florida, United States of America
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jukka Määttä
- Department of Chemistry and Materials Science, Aalto University, 00076 Espoo, Finland
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas J. Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
41
|
The Regulatory Role of Rac1, a Small Molecular Weight GTPase, in the Development of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8070965. [PMID: 31277234 PMCID: PMC6678477 DOI: 10.3390/jcm8070965] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, remains the leading cause of vision loss in working age adults. Hyperglycemia is considered as the main instigator for its development, around which other molecular pathways orchestrate. Of these multiple pathways, oxidative stress induces many metabolic, functional and structural changes in the retinal cells, leading to the development of pathological features characteristic of this blinding disease. An increase in cytosolic reactive oxygen species (ROS), produced by cytosolic NADPH oxidase 2 (Nox2), is an early event in the pathogenesis of diabetic retinopathy, which leads to mitochondrial damage and retinal capillary cell apoptosis. Activation of Nox2 is mediated through an obligatory small molecular weight GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), and subcellular localization of Rac1 and its activation are regulated by several regulators, rendering it a complex biological process. In diabetes, Rac1 is functionally activated in the retina and its vasculature, and, via Nox2-ROS, contributes to mitochondrial damage and the development of retinopathy. In addition, Rac1 is also transcriptionally activated, and epigenetic modifications play a major role in this transcriptional activation. This review focusses on the role of Rac1 and its regulation in the development and progression of diabetic retinopathy, and discusses some possible avenues for therapeutic interventions.
Collapse
|
42
|
Yukselten Y, Aydos OSE, Sunguroglu A, Aydos K. Investigation of CD133 and CD24 as candidate azoospermia markers and their relationship with spermatogenesis defects. Gene 2019; 706:211-221. [PMID: 31054360 DOI: 10.1016/j.gene.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Yunus Yukselten
- Department of Medical Biology, School of Medicine, Ankara University, 06100 Ankara, Turkey; Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd., 06110 Ankara, Turkey
| | - O Sena E Aydos
- Department of Medical Biology, School of Medicine, Ankara University, 06100 Ankara, Turkey.
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, 06100 Ankara, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University 06100, Ankara, Turkey
| |
Collapse
|
43
|
Effect of Cholesterol on the Dipole Potential of Lipid Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:135-154. [DOI: 10.1007/978-3-030-04278-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Hallock MJ, Greenwood AI, Wang Y, Morrissey JH, Tajkhorshid E, Rienstra CM, Pogorelov TV. Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane. Biochemistry 2018; 57:6897-6905. [PMID: 30456950 DOI: 10.1021/acs.biochem.8b01069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasma membrane of the cell is a complex, tightly regulated, heterogeneous environment shaped by proteins, lipids, and small molecules. Ca2+ ions are important cellular messengers, spatially separated from anionic lipids. After cell injury, disease, or apoptotic events, anionic lipids are externalized to the outer leaflet of the plasma membrane and encounter Ca2+, resulting in dramatic changes in the plasma membrane structure and initiation of signaling cascades. Despite the high chemical and biological significance, the structures of lipid-Ca2+ nanoclusters are still not known. Previously, we demonstrated by solid-state nuclear magnetic resonance (NMR) spectroscopy that upon binding to Ca2+, individual phosphatidylserine lipids populate two distinct yet-to-be-characterized structural environments. Here, we concurrently employ extensive all-atom molecular dynamics (MD) simulations with our accelerated membrane mimetic and detailed NMR measurements to identify lipid-Ca2+ nanocluster conformations. We find that major structural characteristics of these nanoclusters, including interlipid pair distances and chemical shifts, agree with observable NMR parameters. Simulations reveal that lipid-ion nanoclusters are shaped by two characteristic, long-lived lipid structures induced by divalent Ca2+. Using ab initio quantum mechanical calculations of chemical shifts on MD-captured lipid-ion complexes, we show that computationally observed conformations are validated by experimental NMR data. Both NMR measurements of diluted specifically labeled lipids and MD simulations reveal that the basic structural unit that reshapes the membrane is a Ca2+-coordinated phosphatidylserine tetramer. Our combined computational and experimental approach presented here can be applied to other complex systems in which charged membrane-active molecular agents leave structural signatures on lipids.
Collapse
Affiliation(s)
- Michael J Hallock
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Alexander I Greenwood
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yan Wang
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - James H Morrissey
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48103 , United States
| | - Emad Tajkhorshid
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chad M Rienstra
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Taras V Pogorelov
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
45
|
Toxicity of lupane derivatives on anionic membrane models, isolated rat mitochondria and selected human cell lines: Role of terminal alkyl chains. Chem Biol Interact 2018; 296:198-210. [DOI: 10.1016/j.cbi.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/11/2023]
|
46
|
Intramembrane ionic protein-lipid interaction regulates integrin structure and function. PLoS Biol 2018; 16:e2006525. [PMID: 30427828 PMCID: PMC6261646 DOI: 10.1371/journal.pbio.2006525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/28/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
Protein transmembrane domains (TMDs) are generally hydrophobic, but our bioinformatics analysis shows that many TMDs contain basic residues at terminal regions. Physiological functions of these membrane-snorkeling basic residues are largely unclear. Here, we show that a membrane-snorkeling Lys residue in integrin αLβ2 (also known as lymphocyte function-associated antigen 1 [LFA-1]) regulates transmembrane heterodimer formation and integrin adhesion through ionic interplay with acidic phospholipids and calcium ions (Ca2+) in T cells. The amino group of the conserved Lys ionically interacts with the phosphate group of acidic phospholipids to stabilize αLβ2 transmembrane association, thus keeping the integrin at low-affinity conformation. Intracellular Ca2+ uses its charge to directly disrupt this ionic interaction, leading to the transmembrane separation and the subsequent extracellular domain extension to increase adhesion activity. This Ca2+-mediated regulation is independent on the canonical Ca2+ signaling or integrin inside-out signaling. Our work therefore showcases the importance of intramembrane ionic protein–lipid interaction and provides a new mechanism of integrin activation. Integrin αLβ2 is the major integrin in T cells and plays a vital role in regulating T-cell activation, adhesion, and migration. The transmembrane association of αL and β2 is crucial for maintaining the integrin at low-affinity conformation. Here, we find that the conserved basic residue (K702) in the transmembrane domain of β2 contributes to transmembrane association through ternary ionic interaction with acidic phospholipid and αL cytoplasmic residue. Upon T-cell activation, influxed calcium ions (Ca2+) can directly disrupt the ionic K702–lipid interaction through its positive charges, which leads to transmembrane separation and subsequent extracellular domain extension to switch αLβ2 to high-affinity conformation. This Ca2+-mediated regulation is through the modulation of the ionic Lys–lipid interaction but not through the canonical Ca2+ signaling or integrin inside-out signaling. Our study thus reports a new regulatory mechanism of integrin activation and showcases the importance of intramembrane ionic protein–lipid interaction. This finding might have general relevance, as bioinformatics analysis shows the presence of membrane-snorkeling basic residue is a common feature of transmembrane proteins.
Collapse
|
47
|
Wang J, Yan C, Xu C, Chua BT, Li P, Chen FJ. Polybasic RKKR motif in the linker region of lipid droplet (LD)-associated protein CIDEC inhibits LD fusion activity by interacting with acidic phospholipids. J Biol Chem 2018; 293:19330-19343. [PMID: 30361435 DOI: 10.1074/jbc.ra118.004892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles and a central site for lipid synthesis, storage, and mobilization. The size of LDs reflects the dynamic regulation of lipid metabolism in cells. Previously, we found that cell death-inducing DFFA-like effector C (CIDEC) mediates LD fusion and growth by lipid transfer through LD-LD contact sites in adipocytes and hepatocytes. The CIDE-N domains of CIDEC molecules form homodimers, whereas the CIDE-C domain plays an important role in LD targeting and enrichment. Here, using targeted protein deletions and GFP expression coupled with fluorescence microscopy, we identified a polybasic RKKR motif in the linker region that connects the CIDE-N and CIDE-C domains of CIDEC and functions as a regulatory motif for LD fusion. We found that deletion of the linker region or mutation of the RKKR motif increases the formation of supersized LDs compared with LD formation in cells with WT CIDEC. This enhanced LD fusion activity required the interaction between CIDE-N domains. Mechanistically, we found that the RKKR motif interacts with acidic phospholipids via electrostatic attraction. Loss of this motif disrupted the protein-lipid interaction, resulting in enhanced lipid droplet fusion activity and thus formation of larger LDs. In summary, we have uncovered a CIDEC domain that regulates LD fusion activity, a finding that provides insights into the inhibitory regulation of LD fusion through CIDEC-lipid interactions.
Collapse
Affiliation(s)
- Jia Wang
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Chengsong Yan
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Chenqi Xu
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Boon Tin Chua
- the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Peng Li
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| | - Feng-Jung Chen
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, .,the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
48
|
Payapilly A, Malliri A. Compartmentalisation of RAC1 signalling. Curr Opin Cell Biol 2018; 54:50-56. [PMID: 29723737 DOI: 10.1016/j.ceb.2018.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/22/2022]
Abstract
RAC1 signalling has been implicated in a variety of dynamic cell biological processes that are orchestrated through regulated localisation and activation of RAC1. As a small GTPase, RAC1 switches between active and inactive states at various subcellular locations that include the plasma membrane, nucleus and mitochondria. Once activated, RAC1 interacts with a range of effectors that then mediate various biological functions. RAC1 is regulated by a large number of proteins that can promote its recruitment, activation, deactivation, or stability. RAC1 and its regulators are subject to various post-translational modifications that further fine tune RAC1 localisation, levels and activity. Developments in technologies have enabled the accurate detection of activated RAC1 during processes such as cell migration, invasion and DNA damage. Here, we highlight recent advances in our understanding of RAC1 regulation and function at specific subcellular sites.
Collapse
Affiliation(s)
- Aishwarya Payapilly
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK.
| |
Collapse
|
49
|
Nguyen NT, Ma G, Lin E, D'Souza B, Jing J, He L, Huang Y, Zhou Y. CRAC channel-based optogenetics. Cell Calcium 2018; 75:79-88. [PMID: 30199756 DOI: 10.1016/j.ceca.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
Abstract
Store-operated Ca²+ entry (SOCE) constitutes a major Ca2+ influx pathway in mammals to regulate a myriad of physiological processes, including muscle contraction, synaptic transmission, gene expression, and metabolism. In non-excitable cells, the Ca²+ release-activated Ca²+ (CRAC) channel, composed of ORAI and stromal interaction molecules (STIM), constitutes a prototypical example of SOCE to mediate Ca2+ entry at specialized membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and the plasma membrane (PM). The key steps of SOCE activation include the oligomerization of the luminal domain of the ER-resident Ca2+ sensor STIM1 upon Ca²+ store depletion, subsequent signal propagation toward the cytoplasmic domain to trigger a conformational switch and overcome the intramolecular autoinhibition, and ultimate exposure of the minimal ORAI-activating domain to directly engage and gate ORAI channels in the plasma membrane. This exquisitely coordinated cellular event is also facilitated by the C-terminal polybasic domain of STIM1, which physically associates with negatively charged phosphoinositides embedded in the inner leaflet of the PM to enable efficient translocation of STIM1 into ER-PM MCSs. Here, we present recent progress in recapitulating STIM1-mediated SOCE activation by engineering CRAC channels with optogenetic approaches. These STIM1-based optogenetic tools make it possible to not only mechanistically recapture the key molecular steps of SOCE activation, but also remotely and reversibly control Ca²+-dependent cellular processes, inter-organellar tethering at MCSs, and transcriptional reprogramming when combined with CRISPR/Cas9-based genome-editing tools.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Eena Lin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Brendan D'Souza
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX 76504, USA.
| |
Collapse
|
50
|
Remorino A, De Beco S, Cayrac F, Di Federico F, Cornilleau G, Gautreau A, Parrini MC, Masson JB, Dahan M, Coppey M. Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling. Cell Rep 2018; 21:1922-1935. [PMID: 29141223 DOI: 10.1016/j.celrep.2017.10.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023] Open
Abstract
Rac1 is a small RhoGTPase switch that orchestrates actin branching in space and time and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single-molecule imaging and super-resolution microscopy, we show an additional supramolecular organization of Rac1. We find that Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble because of the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs and possibly GAPs, downstream effectors, and other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms.
Collapse
Affiliation(s)
- Amanda Remorino
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Simon De Beco
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Fanny Cayrac
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Fahima Di Federico
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Gaetan Cornilleau
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR7654, 91120 Palaiseau, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences Lettres, ART Group, Inserm U830, Paris 75005, France
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, Institut Pasteur, 25 Rue du Docteur Roux, Paris, 75015, France; Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| |
Collapse
|