1
|
Sato S, Iwaki J, Hirabayashi J. Decoding the multifaceted roles of galectins in self-defense. Semin Immunol 2024; 77:101926. [PMID: 39721561 DOI: 10.1016/j.smim.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes. Furthermore, due to the heterogeneity of galectin ligands, glycans, there is a risk of perceiving galectin-specific functions as ambiguous, potentially obscuring their core biological significance. To address this, we revisit foundational aspects, focusing on the significance of the recognition of galactose, a "late-comer" monosaccharide in evolutionary terms, provide an overview of galectin glycan binding specificity, with emphasis on the potential biological importance of each carbohydrate-recognition domain. We also discuss the biological implications of the galectin location paradox wherein these cytosolic lectins function in host defense despite their glycan ligands being synthesized in the secretory pathway. Additionally, we examine the role of galectins in liquid-liquid phase separation on membranes, which may facilitate their diverse functions in cellular responses. Through this approach, we aim to re-evaluate the complex and diverse biological roles of galectins in host defense.
Collapse
Affiliation(s)
- Sachiko Sato
- Axe of Infectious and Immune Diseases, CHU de Quebec-Université Laval Research Centre, Faculty of Medicine, and Research Centre for Infectious Diseases, Laval University, Quebec City, Canada.
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan.
| | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan.
| |
Collapse
|
2
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Zhang C, Shafaq-Zadah M, Pawling J, Hesketh GG, Dransart E, Pacholczyk K, Longo J, Gingras AC, Penn LZ, Johannes L, Dennis JW. SLC3A2 N-glycosylation and Golgi remodeling regulate SLC7A amino acid exchangers and stress mitigation. J Biol Chem 2023; 299:105416. [PMID: 37918808 PMCID: PMC10698284 DOI: 10.1016/j.jbc.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.
Collapse
Affiliation(s)
- Cunjie Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Fuchsberger FF, Kim D, Baranova N, Vrban H, Kagelmacher M, Wawrzinek R, Rademacher C. Information transfer in mammalian glycan-based communication. eLife 2023; 12:69415. [PMID: 36803584 PMCID: PMC10014076 DOI: 10.7554/elife.69415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single-cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used nuclear factor kappa-B-reporter cell lines expressing DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), macrophage C-type lectin (MCL), dectin-1, dectin-2, and macrophage-inducible C-type lectin (MINCLE), as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors transmit information with similar signaling capacity, except dectin-2. This lectin was identified to be less efficient in information transmission compared to the other CTLs, and even when the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation toward the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) is being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low-glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins, and therefore, the findings provide insight into how immune cells translate glycan information using multivalent interactions.
Collapse
Affiliation(s)
- Felix F Fuchsberger
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Dongyoon Kim
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Natalia Baranova
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Hanka Vrban
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Marten Kagelmacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Robert Wawrzinek
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of ViennaViennaAustria
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdamGermany
- Department of Microbiology, Immunology and Genetics University of Vienna, Max F. Perutz LabsViennaAustria
| |
Collapse
|
5
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
N-terminal tail prolines of Gal-3 mediate its oligomerization/phase separation. Proc Natl Acad Sci U S A 2021; 118:2107023118. [PMID: 34088794 DOI: 10.1073/pnas.2107023118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
7
|
Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE, Pappu RV, Jedd G. Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. Mol Cell 2020; 77:1237-1250.e4. [PMID: 32048997 PMCID: PMC10715173 DOI: 10.1016/j.molcel.2020.01.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine's guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing.
Collapse
Affiliation(s)
- Jamie A Greig
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Tu Anh Nguyen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Michelle Lee
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
8
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
9
|
Choi HK, Lee D, Singla A, Kwon JSI, Wu HJ. The influence of heteromultivalency on lectin-glycan binding behavior. Glycobiology 2019; 29:397-408. [PMID: 30824941 DOI: 10.1093/glycob/cwz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
We recently discovered that the nature of lectin multivalency and glycolipid diffusion on cell membranes could lead to the heteromultivalent binding (i.e., a single lectin simultaneously binding to different types of glycolipid ligands). This heteromultivalent binding may even govern the lectin-glycan recognition process. To investigate this, we developed a kinetic Monte Carlo simulation, which only considers the fundamental physics/chemistry principles, to model the process of lectin binding to glycans on cell surfaces. We found that the high-affinity glycan ligands could facilitate lectin binding to other low-affinity glycan ligands, even though these low-affinity ligands are barely detectable in microarrays with immobilized glycan ligands. Such heteromultivalent binding processes significantly change lectin binding behaviors. We hypothesize that living organisms probably utilize this mechanism to regulate the downstream lectin functions. Our finding not only offers a mechanism to describe the concept that lectins are pattern recognition molecules, but also suggests that the two overlooked parameters, surface diffusion of glycan ligand and lectin binding kinetics, can play important roles in glycobiology processes. In this paper, we identified the critical parameters that influence the heteromultivalent binding process. We also discussed how our discovery can impact the current lectin-glycan analysis.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX USA
| |
Collapse
|
10
|
Saleh A, Marhuenda E, Fabre C, Hassani Z, Weille JD, Boukhaddaoui H, Guelfi S, Maldonado IL, Hugnot JP, Duffau H, Bauchet L, Cornu D, Bakalara N. A novel 3D nanofibre scaffold conserves the plasticity of glioblastoma stem cell invasion by regulating galectin-3 and integrin-β1 expression. Sci Rep 2019; 9:14612. [PMID: 31601895 PMCID: PMC6787018 DOI: 10.1038/s41598-019-51108-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma Multiforme (GBM) invasiveness renders complete surgical resection impossible and highly invasive Glioblastoma Initiating Cells (GICs) are responsible for tumour recurrence. Their dissemination occurs along pre-existing fibrillary brain structures comprising the aligned myelinated fibres of the corpus callosum (CC) and the laminin (LN)-rich basal lamina of blood vessels. The extracellular matrix (ECM) of these environments regulates GIC migration, but the underlying mechanisms remain largely unknown. In order to recapitulate the composition and the topographic properties of the cerebral ECM in the migration of GICs, we have set up a new aligned polyacrylonitrile (PAN)-derived nanofiber (NF) scaffold. This system is suitable for drug screening as well as discrimination of the migration potential of different glioblastoma stem cells. Functionalisation with LN increases the spatial anisotropy of migration and modulates its mode from collective to single cell migration. Mechanistically, equally similar to what has been observed for mesenchymal migration of GBM in vivo, is the upregulation of galectin-3 and integrin-β1 in Gli4 cells migrating on our NF scaffold. Downregulation of Calpain-2 in GICs migrating in vivo along the CC and in vitro on LN-coated NF underlines a difference in the turnover of focal adhesion (FA) molecules between single-cell and collective types of migration.
Collapse
Affiliation(s)
- Ali Saleh
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Emilie Marhuenda
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Christine Fabre
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Zahra Hassani
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Jan de Weille
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Hassan Boukhaddaoui
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Sophie Guelfi
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Igor Lima Maldonado
- UMR 1253, iBrain, Univ. Tours, Inserm, Tours, CHRU de Tours, Le Studium Loire Valley Institute for Advanced Studies, Montpellier, France
| | - Jean- Philippe Hugnot
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Hugues Duffau
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Luc Bauchet
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Norbert Bakalara
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France.
| |
Collapse
|
11
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
12
|
Sammar M, Drobnjak T, Mandala M, Gizurarson S, Huppertz B, Meiri H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. Int J Mol Sci 2019; 20:ijms20133192. [PMID: 31261864 PMCID: PMC6651626 DOI: 10.3390/ijms20133192] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Galectins regulate cell growth, proliferation, differentiation, apoptosis, signal transduction, mRNA splicing, and interactions with the extracellular matrix. Here we focus on the galectins in the reproductive system, particularly on a group of six galectins that first appears in anthropoid primates in conjunction with the evolution of highly invasive placentation and long gestation. Of these six, placental protein 13 (PP13, galectin 13) interacts with glycoproteins and glycolipids to enable successful pregnancy. PP13 is related to the development of a major obstetric syndrome, preeclampsia, a life-threatening complication of pregnancy which affects ten million pregnant women globally. Preeclampsia is characterized by hypertension, proteinuria, and organ failure, and is often accompanied by fetal loss and major newborn disabilities. PP13 facilitates the expansion of uterine arteries and veins during pregnancy in an endothelial cell-dependent manner, via the eNOS and prostaglandin signaling pathways. PP13 acts through its carbohydrate recognition domain that binds to sugar residues of extracellular and connective tissue molecules, thus inducing structural stabilization of vessel expansion. Further, decidual PP13 aggregates may serve as a decoy that induces white blood cell apoptosis, contributing to the mother's immune tolerance to pregnancy. Lower first trimester PP13 level is one of the biomarkers to predict the subsequent risk to develop preeclampsia, while its molecular mutations/polymorphisms that are associated with reduced PP13 expression are accompanied by higher rates of preeclampsia We propose a targeted PP13 replenishing therapy to fight preeclampsia in carriers of these mutations.
Collapse
Affiliation(s)
- Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, 2161002 Karmiel, Israel.
| | - Tijana Drobnjak
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87030 Rende, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamutal Meiri
- Hylabs Ltd., Rehovot, 7670606 and TeleMarpe Ltd., 6908742 Tel Aviv, Israel
| |
Collapse
|
13
|
Sletmoen M, Gerken TA, Stokke BT, Burchell J, Brewer CF. Tn and STn are members of a family of carbohydrate tumor antigens that possess carbohydrate-carbohydrate interactions. Glycobiology 2018; 28:437-442. [PMID: 29618060 PMCID: PMC6001880 DOI: 10.1093/glycob/cwy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
The mucin-type O-glycome in cancer aberrantly expresses the truncated glycans Tn (GalNAcα1-Ser/Thr) and STn (Neu5Acα2,6GalNAcα1-Ser/Thr). However, the role of Tn and STn in cancer and other diseases is not well understood. Our recent discovery of the self-binding properties (carbohydrate-carbohydrate interactions, CCIs) of Tn (Tn-Tn) and STn (STn-STn) provides a model for their possible roles in cellular transformation. We also review evidence that Tn and STn are members of a larger family of glycan tumor antigens that possess CCIs, which may participate in oncogenesis.
Collapse
Affiliation(s)
- Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU The Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas A Gerken
- Departments of Pediatrics and Biochemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim, Norway
| | - Joy Burchell
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, UK
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Demetriou M, Nabi IR, Dennis JW. Galectins as Adaptors: Linking Glycosylation and Metabolism with Extracellular Cues. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1732.1se] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia
| | - James W. Dennis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital
- Department of Molecular Genetics, & Department of Laboratory Medicine and Pathology, Department of Medicine, University of Toronto
| |
Collapse
|
15
|
Iwaki J, Hirabayashi J. Carbohydrate-Binding Specificity of Human Galectins: An Overview by Frontal Affinity Chromatography. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1728.1se] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jun Iwaki
- National Institute of Advanced Industrial Science and Technology
| | - Jun Hirabayashi
- National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
16
|
Abstract
Galectins are carbohydrate-binding proteins that are involved in many physiological functions, such as inflammation, immune responses, cell migration, autophagy and signalling. They are also linked to diseases such as fibrosis, cancer and heart disease. How such a small family of only 15 members can have such widespread effects remains a conundrum. In this Cell Science at a Glance article, we summarise recent literature on the many cellular activities that have been ascribed to galectins. As shown on the accompanying poster, these include carbohydrate-independent interactions with cytosolic or nuclear targets and carbohydrate-dependent interactions with extracellular glycoconjugates. We discuss how these intra- and extracellular activities might be linked and point out the importance of unravelling molecular mechanisms of galectin function to gain a true understanding of their contributions to the physiology of the cell. We close with a short outlook on the organismal functions of galectins and a perspective on the major challenges in the field.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ralf Jacob
- Philipps-Universität Marburg, Institut für Zytobiologie, Robert-Koch-Str. 6, 35037 Marburg, Germany
| | - Hakon Leffler
- Sect. MIG (Microbiology, Immunology, Glycobiology), Dept Laboratory Medicine, Lund University, POB 117, 22100 Lund, Sweden
| |
Collapse
|
17
|
Genetic code asymmetry supports diversity through experimentation with posttranslational modifications. Curr Opin Chem Biol 2017; 41:1-11. [PMID: 28923586 DOI: 10.1016/j.cbpa.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/03/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022]
Abstract
Protein N-glycosylation has been identified in all three domains of life presumably conserved for its early role in glycoprotein folding. However, the N-glycans added to proteins in the secretory pathway of multicellular organisms are remodeling in the Golgi, increasing structural diversity exponentially and adding new layers of functionality in immunity, metabolism and other systems. The branching and elongation of N-glycan chains found on cell surface receptors generates a gradation of affinities for carbohydrate-binding proteins, the galectin, selectin and siglec families. These interactions adapt cellular responsiveness to environmental conditions, but their complexity presents a daunting challenge to drug design. To gain further insight, I review how N-glycans biosynthesis and biophysical properties provide a selective advantage in the form of tunable and ultrasensitive stimulus-response relationships. In addition, the N-glycosylation motif favors step-wise mutational experimentation with sites. Glycoproteins display accelerated evolution during vertebrate radiation, and the encoding asymmetry of NXS/T(X≠P) has left behind phylogenetic evidence suggesting that the genetic code may have been selected to optimize diversity in part through emerging posttranslational modifications.
Collapse
|
18
|
Xian H, Xie W, Yang S, Liu Q, Xia X, Jin S, Sun T, Cui J. Stratified ubiquitination of RIG-I creates robust immune response and induces selective gene expression. SCIENCE ADVANCES 2017; 3:e1701764. [PMID: 28948228 PMCID: PMC5609842 DOI: 10.1126/sciadv.1701764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/01/2017] [Indexed: 05/12/2023]
Abstract
The activation of retinoic acid-inducible gene I (RIG-I), an indispensable viral RNA sensor in mammals, is subtly regulated by ubiquitination. Although multiple ubiquitination sites at the amino terminus of RIG-I have been identified, their functional allocations in RIG-I activation remain elusive. We identified a stratified model for RIG-I amino-terminal ubiquitination, in which initiation at either Lys164 or Lys172 allows subsequent ubiquitination at other lysines, to trigger and amplify RIG-I activation. Experimental and mathematical modeling showed that multisite ubiquitination provides robustness in RIG-I-mediated type I interferon (IFN) signaling. Furthermore, the flexibly controlled ultrasensitivity and IFN activation intensity determine the specificity of the IFN-stimulated gene transcription and manipulate cell fate in antiviral immune response. Our work demonstrates that tunable type I IFN signaling can be regulated through multisite RIG-I ubiquitination and elucidates a new paradigm for dynamic regulation in RIG-I-mediated antiviral signaling.
Collapse
Affiliation(s)
- Huifang Xian
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuai Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingxiang Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shouheng Jin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing 246011, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
19
|
Hassani Z, Saleh A, Turpault S, Khiati S, Morelle W, Vignon J, Hugnot JP, Uro-Coste E, Legrand P, Delaforge M, Loiseau S, Clarion L, Lecouvey M, Volle JN, Virieux D, Pirat JL, Duffau H, Bakalara N. Phostine PST3.1a Targets MGAT5 and Inhibits Glioblastoma-Initiating Cell Invasiveness and Proliferation. Mol Cancer Res 2017. [DOI: 10.1158/1541-7786.mcr-17-0120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Li J, Vervoorts J, Carloni P, Rossetti G, Lüscher B. Structural prediction of the interaction of the tumor suppressor p27 KIP1 with cyclin A/CDK2 identifies a novel catalytically relevant determinant. BMC Bioinformatics 2017; 18:15. [PMID: 28056778 PMCID: PMC5217639 DOI: 10.1186/s12859-016-1411-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase 2 (CDK2) together with its cyclin E and A partners is a central regulator of cell growth and division. Deregulation of CDK2 activity is associated with diseases such as cancer. The analysis of substrates identified S/T-P-X-R/K/H as the CDK2 consensus sequence. The crystal structure of cyclin A/CDK2 with a short model peptide supports this sequence and identifies key interactions. However, CDKs use additional determinants to recognize substrates, including the RXL motif that is read by the cyclin subunits. We were interested to determine whether additional amino acids beyond the minimal consensus sequence of the well-studied substrate and tumor suppressor p27KIP1 were relevant for catalysis. RESULTS To address whether additional amino acids, close to the minimal consensus sequence, play a role in binding, we investigate the interaction of cyclin A/CDK2 with an in vivo cellular partner and CDK inhibitor p27KIP1. This protein is an intrinsically unfolded protein and, in particular, the C-terminal half of the protein has not been accessible to structural analysis. This part harbors the CDK2 phosphorylation site. We used bioinformatics tools, including MODELLER, iTASSER and HADDOCK, along with partial structural information to build a model of the C-terminal region of p27KIP1 with cyclin A/CDK2. This revealed novel interactions beyond the consensus sequence with a proline and a basic amino acid at the P + 1 and the P + 3 sites, respectively. We suggest that the lysine at P + 2 might regulate the reversible association of the second counter ion in the active site of CDK2. The arginine at P + 7 interacts with both cyclin A and CDK2 and is important for the catalytic turnover rate. CONCLUSION Our modeling identifies additional amino acids in p27KIP1 beyond the consensus sequence that contribute to the efficiency of substrate phosphorylation.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China.,Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.,Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany. .,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.
| |
Collapse
|