1
|
Capolupo I, Miranda MR, Musella S, Di Sarno V, Manfra M, Ostacolo C, Bertamino A, Campiglia P, Ciaglia T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants (Basel) 2024; 13:1284. [PMID: 39594426 PMCID: PMC11591047 DOI: 10.3390/antiox13111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is the organelle mainly involved in maintaining cellular homeostasis and driving correct protein folding. ER-dependent defects or dysfunctions are associated with the genesis/progression of several pathological conditions, including cancer, inflammation, and neurodegenerative disorders, that are directly or indirectly correlated to a wide set of events collectively named under the term "ER stress". Despite the recent increase in interest concerning ER activity, further research studies are needed to highlight all the mechanisms responsible for ER failure. In this field, recent discoveries paved the way for the comprehension of the strong interaction between ER stress development and the endocannabinoid system. The activity of the endocannabinoid system is mediated by the activation of cannabinoid receptors (CB), G protein-coupled receptors that induce a decrease in cAMP levels, with downstream anti-inflammatory effects. CB activation drives, in most cases, the recovery of ER homeostasis through the regulation of ER stress hallmarks PERK, ATF6, and IRE1. In this review, we focus on the CB role in modulating ER stress, with particular attention to the cellular processes leading to UPR activation and oxidative stress response extinguishment, and to the mechanisms underlying natural cannabinoids' modulation of this complex cellular machine.
Collapse
Affiliation(s)
- Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| |
Collapse
|
2
|
Carrillo R, Iwai K, Albertson A, Dang G, Christopher DA. Protein disulfide isomerase-9 interacts with the lumenal region of the transmembrane endoplasmic reticulum stress sensor kinase, IRE1, to modulate the unfolded protein response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1389658. [PMID: 38817940 PMCID: PMC11137178 DOI: 10.3389/fpls.2024.1389658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Environmental stressors disrupt secretory protein folding and proteostasis in the endoplasmic reticulum (ER), leading to ER stress. The unfolded protein response (UPR) senses ER stress and restores proteostasis by increasing the expression of ER-resident protein folding chaperones, such as protein disulfide isomerases (PDIs). In plants, the transmembrane ER stress sensor kinase, IRE1, activates the UPR by unconventionally splicing the mRNA encoding the bZIP60 transcription factor, triggering UPR gene transcription. The induced PDIs catalyze disulfide-based polypeptide folding to restore the folding capacity in the ER; however, the substrates with which PDIs interact are largely unknown. Here, we demonstrate that the Arabidopsis PDI-M subfamily member, PDI9, modulates the UPR through interaction with IRE1. This PDI9-IRE1 interaction was largely dependent on Cys63 in the first dithiol redox active domain of PDI9, and Cys233 and Cys107 in the ER lumenal domain of IRE1A and IRE1B, respectively. In vitro and in vivo, PDI9 coimmunoprecipitated with IRE1A and IRE1B. Moreover, the PDI9:RFP and Green Fluorescence Protein (GFP):IRE1 fusions exhibited strong interactions as measured by fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) when coexpressed in mesophyll protoplasts. The UPR-responsive PDI9 promoter:mCherry reporter and the UPR-dependent splicing of the bZIP60 intron from the mRNA of the 35S::bZIP60-intron:GFP reporter were both significantly induced in the pdi9 mutants, indicating a derepression and hyperactivation of UPR. The inductions of both reporters were substantially attenuated in the ire1a-ire1b mutant. We propose a model in which PDI9 modulates the UPR through two competing activities: secretory protein folding and via interaction with IRE1 to maintain proteostasis in plants.
Collapse
Affiliation(s)
| | | | | | | | - David A. Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
3
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
4
|
Kong KYE, Shankar S, Rühle F, Khmelinskii A. Orphan quality control by an SCF ubiquitin ligase directed to pervasive C-degrons. Nat Commun 2023; 14:8363. [PMID: 38102142 PMCID: PMC10724198 DOI: 10.1038/s41467-023-44096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective protein degradation typically involves substrate recognition via short linear motifs known as degrons. Various degrons can be found at protein termini from bacteria to mammals. While N-degrons have been extensively studied, our understanding of C-degrons is still limited. Towards a comprehensive understanding of eukaryotic C-degron pathways, here we perform an unbiased survey of C-degrons in budding yeast. We identify over 5000 potential C-degrons by stability profiling of random peptide libraries and of the yeast C‑terminome. Combining machine learning, high-throughput mutagenesis and genetic screens reveals that the SCF ubiquitin ligase targets ~40% of degrons using a single F-box substrate receptor Das1. Although sequence-specific, Das1 is highly promiscuous, recognizing a variety of C-degron motifs. By screening for full-length substrates, we implicate SCFDas1 in degradation of orphan protein complex subunits. Altogether, this work highlights the variety of C-degron pathways in eukaryotes and uncovers how an SCF/C-degron pathway of broad specificity contributes to proteostasis.
Collapse
Affiliation(s)
| | | | - Frank Rühle
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | |
Collapse
|
5
|
Yagita Y, Zavodszky E, Peak-Chew SY, Hegde RS. Mechanism of orphan subunit recognition during assembly quality control. Cell 2023; 186:3443-3459.e24. [PMID: 37480851 PMCID: PMC10501995 DOI: 10.1016/j.cell.2023.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Cells contain numerous abundant molecular machines assembled from multiple subunits. Imbalances in subunit production and failed assembly generate orphan subunits that are eliminated by poorly defined pathways. Here, we determined how orphan subunits of the cytosolic chaperonin CCT are recognized. Several unassembled CCT subunits recruited the E3 ubiquitin ligase HERC2 using ZNRD2 as an adaptor. Both factors were necessary for orphan CCT subunit degradation in cells, sufficient for CCT subunit ubiquitination with purified factors, and necessary for optimal cell fitness. Domain mapping and structure prediction defined the molecular features of a minimal HERC2-ZNRD2-CCT module. The structural model, whose key elements were validated in cells using point mutants, shows why ZNRD2 selectively recognizes multiple orphaned CCT subunits without engaging assembled CCT. Our findings reveal how failures during CCT assembly are monitored and provide a paradigm for the molecular recognition of orphan subunits, the largest source of quality control substrates in cells.
Collapse
Affiliation(s)
- Yuichi Yagita
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
6
|
Karamysheva ZN, Karamyshev AL. Aberrant protein targeting activates quality control on the ribosome. Front Cell Dev Biol 2023; 11:1198184. [PMID: 37346176 PMCID: PMC10279951 DOI: 10.3389/fcell.2023.1198184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
7
|
Li T, Ye Y, Wu P, Luo R, Zhang H, Zheng W. Proteasome β3 subunit (PSMB3) controls female reproduction by promoting ecdysteroidogenesis during sexual maturation in Bactrocera dorsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103959. [PMID: 37172766 DOI: 10.1016/j.ibmb.2023.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Steroid hormone 20-hydroxyecdysone (20E) plays critical roles in reproductive development in dipterans and several other insect species. Ecdysteroidogenesis in the glands of larval or nymphal insects and other arthropods has been extensively studied, but that in the adult gonads remains largely unknown. Here we identified a proteasome β3 subunit (PSMB3) from a highly invasive pest Bactrocera dorsalis, and found that this gene was crucial for ecdysone production during female reproduction. PSMB3 was enriched in the ovary, and it was upregulated during sexual maturation. RNAi-mediated depletion of PSMB3 resulted in retarded ovarian development and decreased fecundity. Additionally, knockdown of PSMB3 reduced 20E titer in hemolymph of B. dorsalis. Molecularly, RNA sequencing and qPCR validation revealed that PSMB3 depletion suppressed the expression of 20E biosynthetic genes in the ovary and 20E responsive genes in the ovary and fat body. Furthermore, exogenous 20E rescued the inhibition of the ovarian development caused by PSMB3 depletion. Taken together, this study provides new insights into the adult reproductive development-related biological processes controlled by PSMB3, and proposed a potential eco-friendly control strategy against this notorious agricultural pest.
Collapse
Affiliation(s)
- Tianran Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinhao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Wang X, Li Y, Yan X, Yang Q, Zhang B, Zhang Y, Yuan X, Jiang C, Chen D, Liu Q, Liu T, Mi W, Yu Y, Dong C. Recognition of an Ala-rich C-degron by the E3 ligase Pirh2. Nat Commun 2023; 14:2474. [PMID: 37120596 PMCID: PMC10148881 DOI: 10.1038/s41467-023-38173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The ribosome-associated quality-control (RQC) pathway degrades aberrant nascent polypeptides arising from ribosome stalling during translation. In mammals, the E3 ligase Pirh2 mediates the degradation of aberrant nascent polypeptides by targeting the C-terminal polyalanine degrons (polyAla/C-degrons). Here, we present the crystal structure of Pirh2 bound to the polyAla/C-degron, which shows that the N-terminal domain and the RING domain of Pirh2 form a narrow groove encapsulating the alanine residues of the polyAla/C-degron. Affinity measurements in vitro and global protein stability assays in cells further demonstrate that Pirh2 recognizes a C-terminal A/S-X-A-A motif for substrate degradation. Taken together, our study provides the molecular basis underlying polyAla/C-degron recognition by Pirh2 and expands the substrate recognition spectrum of Pirh2.
Collapse
Affiliation(s)
- Xiaolu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Yao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaojie Yan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Qing Yang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Xinxin Yuan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Chenhao Jiang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Dongxing Chen
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, 300070, Tianjin, China.
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China.
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
9
|
Sharma R, Mondal P, Srinivasula SM. CARPs regulate STUB1 and its pathogenic mutants aggregation kinetics by mono-ubiquitination. FEBS J 2023. [PMID: 36853170 DOI: 10.1111/febs.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The development of neurological pathologies is linked to the accumulation of protein aggregates like alpha-synuclein in Parkinson's disease and tau protein in Alzheimer's disease. Mono- or di-ubiquitination of these molecules has been reported to stabilize aggregates and contribute to the disorders. STIP1 Homologous and U-Box-containing protein 1 (STUB1) is a multifunctional protein that maintains proteostasis and insulin signalling. In spinocerebellar ataxia 16 (SCAR16), an autosomal recessive neurodegenerative disease, mutations in and aggregation of STUB1 are reported. Despite the well-accepted neuroprotective role of STUB1, very little is known of regulatory mechanisms that control the dynamics of STUB1 aggregate assembly. Here, we report that CARP2, a ubiquitin ligase, is a novel regulator of STUB1. CARP2 interacts and mono-ubiquitinates STUB1. Furthermore, we found that CARP2 regulates STUB1 through its TPR motif, a domain that is also associated with HSP70. Modification of STUB1 by CARP2 leads to detergent-insoluble aggregate formation. Importantly, pathogenic mutants of STUB1 are more prone than the wild-type to CARP2-mediated aggregate assembly. Hence our findings revealed CARPs (CARP1 & CARP2) as novel regulators of STUB1 and controlled its cytosolic versus aggregate dynamics.
Collapse
Affiliation(s)
- Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Prema Mondal
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| |
Collapse
|
10
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Xu S, Gierisch ME, Schellhaus AK, Poser I, Alberti S, Salomons FA, Dantuma NP. Cytosolic stress granules relieve the ubiquitin-proteasome system in the nuclear compartment. EMBO J 2023; 42:e111802. [PMID: 36574355 PMCID: PMC9890234 DOI: 10.15252/embj.2022111802] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin-proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule-deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO-targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule-deficient cells. Stress granule-deficient cells showed an increase in the formation of mutant ataxin-1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | | | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB)Technische Universität DresdenDresdenGermany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
12
|
Sarkar A, Kumar L, Hameed R, Nazir A. Multiple checkpoints of protein clearance machinery are modulated by a common microRNA, miR-4813-3p, through its putative target genes: Studies employing transgenic C. elegans model. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119342. [PMID: 35998789 DOI: 10.1016/j.bbamcr.2022.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In order to maintain cellular homeostasis and a healthy state, aberrant and aggregated proteins are to be recognized and rapidly cleared from cells. Parkinson's disease, known to be associated with multiple factors; presents with impaired clearance of aggregated alpha synuclein as a key factor. We endeavored to study microRNA molecules with potential role on regulating multiple checkpoints of protein quality control within cells. Carrying out global miRNA profiling in a transgenic C. elegans model that expresses human alpha synuclein, we identified novel miRNA, miR-4813-3p, as a significantly downregulated molecule. Further studying its putative downstream target genes, we were able to mechanistically characterize six genes gbf-1, vha-5, cup-5, cpd-2, acs-1 and C27A12.7, which relate to endpoints associated with alpha synuclein expression, oxidative stress, locomotory behavior, autophagy and apoptotic pathways. Our study reveals the novel role of miR-4813-3p and provides potential functional characterization of its putative target genes, in regulating the various pathways associated with PQC network. miR-4813-3p modulates ERUPR, MTUPR, autophagosome-lysosomal-pathway and the ubiquitin-proteasomal-system, making this molecule an interesting target for further studies towards therapeutically addressing multifactorial aspect of Parkinson's disease.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Lalit Kumar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Tikhonova EB, Gutierrez Guarnizo SA, Kellogg MK, Karamyshev A, Dozmorov IM, Karamysheva ZN, Karamyshev AL. Defective Human SRP Induces Protein Quality Control and Triggers Stress Response. J Mol Biol 2022; 434:167832. [PMID: 36210597 PMCID: PMC10024925 DOI: 10.1016/j.jmb.2022.167832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Regulation of Aberrant Protein Production (RAPP) is a protein quality control in mammalian cells. RAPP degrades mRNAs of nascent proteins not able to associate with their natural interacting partners during synthesis at the ribosome. However, little is known about the molecular mechanism of the pathway, its substrates, or its specificity. The Signal Recognition Particle (SRP) is the first interacting partner for secretory proteins. It recognizes signal sequences of the nascent polypeptides when they are exposed from the ribosomal exit tunnel. Here, we reveal the generality of the RAPP pathway on the whole transcriptome level through depletion of human SRP54, an SRP subunit. This depletion triggers RAPP and leads to decreased expression of the mRNAs encoding a number of secretory and membrane proteins. The loss of SRP54 also leads to the dramatic upregulation of a specific network of HSP70/40/90 chaperones (HSPA1A, DNAJB1, HSP90AA1, and others), increased ribosome associated ubiquitination, and change in expression of RPS27 and RPS27L suggesting ribosome rearrangement. These results demonstrate the complex nature of defects in protein trafficking, mRNA and protein quality control, and provide better understanding of their mechanisms at the ribosome.
Collapse
Affiliation(s)
- Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alexander Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor M Dozmorov
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
14
|
Wang G, Lei J, Wang Y, Yu J, He Y, Zhao W, Hu Z, Xu Z, Jin Y, Gu Y, Guo X, Yang B, Gao Z, Wang Z. The ZSWIM8 ubiquitin ligase regulates neurodevelopment by guarding the protein quality of intrinsically disordered Dab1. Cereb Cortex 2022; 33:3866-3881. [PMID: 35989311 DOI: 10.1093/cercor/bhac313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.
Collapse
Affiliation(s)
- Guan Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Yifeng Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Jiahui Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China
| | - Yinghui He
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Weiqi Zhao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Zhechun Hu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhenzhong Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xing Guo
- The Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bing Yang
- The Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| |
Collapse
|
15
|
Ru Y, Yan X, Zhang B, Song L, Feng Q, Ye C, Zhou Z, Yang Z, Li Y, Zhang Z, Li Q, Mi W, Dong C. C-terminal glutamine acts as a C-degron targeted by E3 ubiquitin ligase TRIM7. Proc Natl Acad Sci U S A 2022; 119:e2203218119. [PMID: 35867826 PMCID: PMC9335266 DOI: 10.1073/pnas.2203218119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023] Open
Abstract
The exposed N-terminal or C-terminal residues of proteins can act, in cognate sequence contexts, as degradation signals (degrons) that are targeted by specific E3 ubiquitin ligases for proteasome-dependent degradation by N-degron or C-degron pathways. Here, we discovered a distinct C-degron pathway, termed the Gln/C-degron pathway, in which the B30.2 domain of E3 ubiquitin ligase TRIM7 (TRIM7B30.2) mediates the recognition of proteins bearing a C-terminal glutamine. By determining crystal structures of TRIM7B30.2 in complexes with various peptides, we show that TRIM7B30.2 forms a positively charged binding pocket to engage the "U"-shaped Gln/C-degron. The four C-terminal residues of a substrate play an important role in C-degron recognition, with C-terminal glutamine as the principal determinant. In vitro biochemical and cellular experiments were used to further analyze the substrate specificity and selective degradation of the Gln/C-degron by TRIM7.
Collapse
Affiliation(s)
- Yawei Ru
- Haihe Laboratory of Cell Ecosystem, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaojie Yan
- Haihe Laboratory of Cell Ecosystem, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lili Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Qiqi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Ye
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhili Zhou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenjian Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Qianqian Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Cheng Dong
- Haihe Laboratory of Cell Ecosystem, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
16
|
Gariballa N, Kizhakkedath P, Akawi N, John A, Ali BR. Endoglin Wild Type and Variants Associated With Hereditary Hemorrhagic Telangiectasia Type 1 Undergo Distinct Cellular Degradation Pathways. Front Mol Biosci 2022; 9:828199. [PMID: 35281255 PMCID: PMC8916587 DOI: 10.3389/fmolb.2022.828199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoglin, also known as cluster of differentiation 105 (CD105), is an auxiliary receptor in the TGFβ signaling pathway. It is predominantly expressed in endothelial cells as a component of the heterotetrameric receptor dimers comprising type I, type II receptors and the binding ligands. Mutations in the gene encoding Endoglin (ENG) have been associated with hereditary hemorrhagic telangiectasia type 1 (HHT1), an autosomal dominant inherited disease that is generally characterized by vascular malformation. Secretory and many endomembrane proteins synthesized in the Endoplasmic reticulum (ER) are subjected to stringent quality control mechanisms to ensure that only properly folded and assembled proteins are trafficked forward through the secretory pathway to their sites of action. We have previously demonstrated that some Endoglin variants causing HHT1 are trapped in the ER and fail to traffic to their normal localization in plasma membrane, which suggested the possible involvement of ER associated protein degradation (ERAD) in their molecular pathology. In this study, we have investigated, for the first time, the degradation routes of Endoglin wild type and two mutant variants, P165L and V105D, and previously shown to be retained in the ER. Stably transfected HEK293 cells were treated with proteasomal and lysosomal inhibitors in order to elucidate the exact molecular mechanisms underlying the loss of function phenotype associated with these variants. Our results have shown that wild type Endoglin has a relatively short half-life of less than 2 hours and degrades through both the lysosomal and proteasomal pathways, whereas the two mutant disease-causing variants show high stability and predominantly degrades through the proteasomal pathway. Furthermore, we have demonstrated that Endoglin variants P165L and V105D are significantly accumulated in HEK293 cells deficient in HRD1 E3 ubiquitin ligase; a major ERAD component. These results implicate the ERAD mechanism in the pathology of HHT1 caused by the two variants. It is expected that these results will pave the way for more in-depth research studies that could provide new windows for future therapeutic interventions.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
17
|
Shen L, Gao J, Wang Y, Li X, Liu H, Zhong Y. Engineering the endoplasmic reticulum secretory pathway in Trichoderma reesei for improved cellulase production. Enzyme Microb Technol 2021; 152:109923. [PMID: 34688089 DOI: 10.1016/j.enzmictec.2021.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/18/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The filamentous fungus Trichoderma reesei is an extraordinarily efficient cell factory of industrial cellulase for production of biofuels and other bio-based products because of its excellent potential to secrete cellulolytic enzymes. Engineering the protein secretory pathway may be a powerful means for efficient protein production. However, it is uncertain whether this engineering approach could improve cellulase production in T. reesei. Herein, the endoplasmic reticulum (ER) secretory pathway was engineered for the production of cellulolytic enzymes by multiple strategies, including: (I) overexpression of the key components of protein folding (Pdi1, Ero1 and BiP); (II) overexpression of the glycosylation-related elements (Gpt1 and Gls2); (III) knockout of the ER mannosidase I (Mns1) encoding gene mns1. By utilizing these ER engineering strategies, the secretion of β-glucosidase was remarkably elevated in the engineered strains, ranging from 29.2 % to 112.5 %. Furthermore, it was found that engineering these components also regulated the ER stress resistance. More importantly, the total cellulase production was increased with varying degrees, which reached a maximum of 149.4 %, using the filter paper assay (FPA) as a characterization method. These results demonstrated that engineering the ER secretory pathway can enhance protein secretion, particularly for cellulase production, which shed light for the development of high-efficient cellulolytic enzymes for economically feasible bioethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Linjing Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jia Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yifan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xihai Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
18
|
Zavodszky E, Peak-Chew SY, Juszkiewicz S, Narvaez AJ, Hegde RS. Identification of a quality-control factor that monitors failures during proteasome assembly. Science 2021; 373:998-1004. [PMID: 34446601 PMCID: PMC7611656 DOI: 10.1126/science.abc6500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, half of all proteins function as subunits within multiprotein complexes. Imbalanced synthesis of subunits leads to unassembled intermediates that must be degraded to minimize cellular toxicity. Here, we found that excess PSMC5, a subunit of the proteasome base, was targeted for degradation by the HERC1 ubiquitin ligase in mammalian cells. HERC1 identified unassembled PSMC5 by its cognate assembly chaperone PAAF1. Because PAAF1 only dissociates after assembly, HERC1 could also engage later assembly intermediates such as the PSMC4-PSMC5-PAAF1 complex. A missense mutant of HERC1 that causes neurodegeneration in mice was impaired in the recognition and ubiquitination of the PSMC5-PAAF1 complex. Thus, proteasome assembly factors can serve as adaptors for ubiquitin ligases to facilitate elimination of unassembled intermediates and maintain protein homeostasis.
Collapse
|
19
|
Hall BS, Dos Santos SJ, Hsieh LTH, Manifava M, Ruf MT, Pluschke G, Ktistakis N, Simmonds RE. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity. Autophagy 2021; 18:841-859. [PMID: 34424124 PMCID: PMC9037441 DOI: 10.1080/15548627.2021.1961067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3−/-/perk−/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease. Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Scott J Dos Santos
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Marie-Thérèse Ruf
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | | | - Rachel E Simmonds
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
20
|
Culver JA, Mariappan M. Deubiquitinases USP20/33 promote the biogenesis of tail-anchored membrane proteins. J Cell Biol 2021; 220:211933. [PMID: 33792613 PMCID: PMC8020466 DOI: 10.1083/jcb.202004086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous proteins that have hydrophobic transmembrane domains (TMDs) traverse the cytosol and posttranslationally insert into cellular membranes. It is unclear how these hydrophobic membrane proteins evade recognition by the cytosolic protein quality control (PQC), which typically recognizes exposed hydrophobicity in misfolded proteins and marks them for proteasomal degradation by adding ubiquitin chains. Here, we find that tail-anchored (TA) proteins, a vital class of membrane proteins, are recognized by cytosolic PQC and are ubiquitinated as soon as they are synthesized in cells. Surprisingly, the ubiquitinated TA proteins are not routed for proteasomal degradation but instead are handed over to the targeting factor, TRC40, and delivered to the ER for insertion. The ER-associated deubiquitinases, USP20 and USP33, remove ubiquitin chains from TA proteins after their insertion into the ER. Thus, our data suggest that deubiquitinases rescue posttranslationally targeted membrane proteins that are inappropriately ubiquitinated by PQC in the cytosol.
Collapse
Affiliation(s)
- Jacob A Culver
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT
| |
Collapse
|
21
|
Brown AI, Koslover EF. Design principles for the glycoprotein quality control pathway. PLoS Comput Biol 2021; 17:e1008654. [PMID: 33524026 PMCID: PMC7877790 DOI: 10.1371/journal.pcbi.1008654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Newly-translated glycoproteins in the endoplasmic reticulum (ER) often undergo cycles of chaperone binding and release in order to assist in folding. Quality control is required to distinguish between proteins that have completed native folding, those that have yet to fold, and those that have misfolded. Using quantitative modeling, we explore how the design of the quality-control pathway modulates its efficiency. Our results show that an energy-consuming cyclic quality-control process, similar to the observed physiological system, outperforms alternative designs. The kinetic parameters that optimize the performance of this system drastically change with protein production levels, while remaining relatively insensitive to the protein folding rate. Adjusting only the degradation rate, while fixing other parameters, allows the pathway to adapt across a range of protein production levels, aligning with in vivo measurements that implicate the release of degradation-associated enzymes as a rapid-response system for perturbations in protein homeostasis. The quantitative models developed here elucidate design principles for effective glycoprotein quality control in the ER, improving our mechanistic understanding of a system crucial to maintaining cellular health. We explore the architecture and limitations of the quality-control pathway responsible for efficient folding of secretory proteins. Newly-synthesized proteins are tagged by the attachment of a ‘glycan’ sugar chain which facilitates their binding to a chaperone that assists protein folding. Removal of a specific sugar group on the glycan ends the interaction with the chaperone, and not-yet-folded proteins can be re-tagged for another round of chaperone binding. A degradation pathway acts in parallel with the folding cycle, to remove those proteins that have remained unfolded for a sufficiently long time. We develop and solve a mathematical model of this quality-control system, showing that the cyclical design found in living cells is uniquely able to maximize folded protein throughput while avoiding accumulation of unfolded proteins. Although this physiological model provides the best performance, its parameters must be adjusted to perform optimally under different protein production loads, and any single fixed set of parameters leads to poor performance when production rate is altered. We find that a single adjustable parameter, the protein degradation rate, is sufficient to allow optimal performance across a range of conditions. Interestingly, observations of living cells suggest that the degradation speed is indeed rapidly adjusted.
Collapse
Affiliation(s)
- Aidan I. Brown
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ma W, Zhen G, Xie W, Mayr C. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. eLife 2021; 10:64252. [PMID: 33650968 PMCID: PMC7968931 DOI: 10.7554/elife.64252] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
Liquid-like condensates have been thought to be sphere-like. Recently, various condensates with filamentous morphology have been observed in cells. One such condensate is the TIS granule network that shares a large surface area with the rough endoplasmic reticulum and is important for membrane protein trafficking. It has been unclear how condensates with mesh-like shapes but dynamic protein components are formed. In vitro and in vivo reconstitution experiments revealed that the minimal components are a multivalent RNA-binding protein that concentrates RNAs that are able to form extensive intermolecular mRNA-mRNA interactions. mRNAs with large unstructured regions have a high propensity to form a pervasive intermolecular interaction network that acts as condensate skeleton. The underlying RNA matrix prevents full fusion of spherical liquid-like condensates, thus driving the formation of irregularly shaped membraneless organelles. The resulting large surface area may promote interactions at the condensate surface and at the interface with other organelles.
Collapse
Affiliation(s)
- Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Gang Zhen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
23
|
Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. The ASC-1 Complex Disassembles Collided Ribosomes. Mol Cell 2020; 79:603-614.e8. [PMID: 32579943 PMCID: PMC7447978 DOI: 10.1016/j.molcel.2020.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023]
Abstract
Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Li Wan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
24
|
Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2020; 117:14158-14167. [PMID: 32513738 PMCID: PMC7322002 DOI: 10.1073/pnas.2007085117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Kelly Sun
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, People's Republic of China
| |
Collapse
|
25
|
Sugiyama T, Li S, Kato M, Ikeuchi K, Ichimura A, Matsuo Y, Inada T. Sequential Ubiquitination of Ribosomal Protein uS3 Triggers the Degradation of Non-functional 18S rRNA. Cell Rep 2020; 26:3400-3415.e7. [PMID: 30893611 DOI: 10.1016/j.celrep.2019.02.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/13/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023] Open
Abstract
18S non-functional rRNA decay (NRD) eliminates non-functional 18S rRNA with deleterious mutations in the decoding center. Dissociation of the non-functional 80S ribosome into 40S and 60S subunits is a prerequisite step for degradation of the non-functional 18S rRNA. However, the mechanisms by which the non-functional ribosome is recognized and dissociated into subunits remain elusive. Here, we report that the sequential ubiquitination of non-functional ribosomes is crucial for subunit dissociation. 18S NRD requires Mag2-mediated monoubiquitination followed by Hel2- and Rsp5-mediated K63-linked polyubiquitination of uS3 at the 212th lysine residue. Determination of the aberrant 18S rRNA levels in sucrose gradient fractions revealed that the subunit dissociation of stalled ribosomes requires sequential ubiquitination of uS3 by E3 ligases and ATPase activity of Slh1 (Rqt2), as well as Asc1 and Dom34. We propose that sequential uS3 ubiquitination of the non-functional 80S ribosome induces subunit dissociation by Slh1, leading to degradation of the non-functional 18S rRNA.
Collapse
Affiliation(s)
- Takato Sugiyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sihan Li
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Misaki Kato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ken Ikeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Ichimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshitaka Matsuo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
26
|
Ibrahim RB, Yeh SY, Lin KP, Ricardo F, Yu TY, Chan CC, Tsai JW, Liu YT. Cellular secretion and cytotoxicity of transthyretin mutant proteins underlie late-onset amyloidosis and neurodegeneration. Cell Mol Life Sci 2020; 77:1421-1434. [PMID: 31728576 PMCID: PMC11105042 DOI: 10.1007/s00018-019-03357-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Transthyretin amyloidosis (ATTR) is a progressive life-threatening disease characterized by the deposition of transthyretin (TTR) amyloid fibrils. Several pathogenic variants have been shown to destabilize TTR tetramers, leading to aggregation of misfolded TTR fibrils. However, factors that underlie the differential age of disease onset amongst amyloidogenic TTR variants remain elusive. Here, we examined the biological properties of various TTR mutations and found that the cellular secretory pattern of the wild-type (WT) TTR was similar to those of the late-onset mutant (Ala97Ser, p. Ala117Ser), stable mutant (Thr119Met, p. Thr139Met), early-onset mutant (Val30Met, p. Val50Met), but not in the unstable mutant (Asp18Gly, p. Asp38Gly). Cytotoxicity assays revealed their toxicities in the order of Val30Met > Ala97Ser > WT > Thr119Met in neuroblastoma cells. Surprisingly, while early-onset amyloidogenic TTR monomers (M-TTRs) are retained by the endoplasmic reticulum quality control (ERQC), late-onset amyloidogenic M-TTRs can be secreted extracellularly. Treatment of thapsigargin (Tg) to activate the unfolded protein response (UPR) alleviates Ala97Ser M-TTR secretion. Interestingly, Ala97Ser TTR overexpression in Drosophila causes late-onset fast neurodegeneration and a relatively short lifespan, recapitulating human disease progression. Our study demonstrates that the escape of TTR monomers from the ERQC may underlie late-onset amyloidogenesis in patients and suggests that targeting ERQC could mitigate late-onset ATTR.
Collapse
Affiliation(s)
- Ridwan Babatunde Ibrahim
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Yu Yeh
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kon-Ping Lin
- Division of Peripheral Neuropathy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Frans Ricardo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| | - Yo-Tsen Liu
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Division of Epilepsy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
27
|
Inada T. Quality controls induced by aberrant translation. Nucleic Acids Res 2020; 48:1084-1096. [PMID: 31950154 PMCID: PMC7026593 DOI: 10.1093/nar/gkz1201] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
During protein synthesis, translating ribosomes encounter many challenges imposed by various types of defective mRNAs that can lead to reduced cellular fitness and, in some cases, even threaten cell viability. Aberrant translation leads to activation of one of several quality control pathways depending on the nature of the problem. These pathways promote the degradation of the problematic mRNA as well as the incomplete translation product, the nascent polypeptide chain. Many of these quality control systems feature critical roles for specialized regulatory factors that work in concert with conventional factors. This review focuses on the mechanisms used by these quality control pathways to recognize aberrant ribosome stalling and discusses the conservation of these systems.
Collapse
Affiliation(s)
- Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
28
|
PAQR9 Modulates BAG6-mediated protein quality control of mislocalized membrane proteins. Biochem J 2020; 477:477-489. [PMID: 31904842 DOI: 10.1042/bcj20190620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
Protein quality control is crucial for maintaining cellular homeostasis and its dysfunction is closely linked to human diseases. The post-translational protein quality control machinery mainly composed of BCL-2-associated athanogene 6 (BAG6) is responsible for triage of mislocalized membrane proteins (MLPs). However, it is unknown how the BAG6-mediated degradation of MLPs is regulated. We report here that PAQR9, a member of the Progesterone and AdipoQ receptor (PAQR) family, is able to modulate BAG6-mediated triage of MLPs. Analysis with mass spectrometry identified that BAG6 is one of the major proteins interacting with PAQR9 and such interaction is confirmed by co-immunoprecipitation and co-localization assays. The protein degradation rate of representative MLPs is accelerated by PAQR9 knockdown. Consistently, the polyubiquitination of MLPs is enhanced by PAQR9 knockdown. PAQR9 binds to the DUF3538 domain within the proline-rich stretch of BAG6. PAQR9 reduces the binding of MLPs to BAG6 in a DUF3538 domain-dependent manner. Taken together, our results indicate that PAQR9 plays a role in the regulation of protein quality control of MLPs via affecting the interaction of BAG6 with membrane proteins.
Collapse
|
29
|
An H, Harper JW. Ribosome Abundance Control Via the Ubiquitin-Proteasome System and Autophagy. J Mol Biol 2020; 432:170-184. [PMID: 31195016 PMCID: PMC6904543 DOI: 10.1016/j.jmb.2019.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Ribosomes are central to the life of a cell, as they translate the genetic code into the amino acid language of proteins. Moreover, ribosomal abundance within the cell is coordinated with protein production required for cell function or processes such as cell division. As such, it is not surprising that these elegant machines are both highly regulated at the level of both their output of newly translated proteins but also at the level of ribosomal protein expression, ribosome assembly, and ribosome turnover. In this review, we focus on mechanisms that regulate ribosome abundance through both the ubiquitin-proteasome system and forms of autophagy referred to as "ribophagy." We discussed mechanisms employed in both yeast and mammalian cells, including the various machineries that are important for recognition and degradation of ribosomal components. In addition, we discussed controversies in the field and how the development of new approaches for examining flux through the proteasomal and autophagic systems in the context of a systematic inventory of ribosomal components is necessary to fully understand how ribosome abundance is controlled under various physiological conditions.
Collapse
Affiliation(s)
- Heeseon An
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Mechanism of ribosome stalling during translation of a poly(A) tail. Nat Struct Mol Biol 2019; 26:1132-1140. [PMID: 31768042 PMCID: PMC6900289 DOI: 10.1038/s41594-019-0331-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
Faulty or damaged mRNAs are detected by the cell when translating ribosomes stall during elongation and trigger pathways of mRNA decay, nascent protein degradation, and ribosome recycling. The most common mRNA defect in eukaryotes is probably inappropriate poly-adenylation at near-cognate sites within the coding region. How ribosomes stall selectively when they encounter poly(A) is unclear. Here, we use biochemical and structural approaches in mammalian systems to show that poly-lysine, encoded by poly(A), favors a peptidyl-tRNA conformation sub-optimal for peptide bond formation. This conformation partially slows elongation, permitting poly(A) mRNA in the ribosome’s decoding center to adopt an rRNA-stabilized single-stranded helix. The reconfigured decoding center clashes with incoming aminoacyl-tRNA, thereby precluding elongation. Thus, coincidence detection of poly-lysine in the exit tunnel and poly(A) in the decoding center allows ribosomes to detect aberrant mRNAs selectively, stall elongation, and trigger downstream quality control pathways essential for cellular homeostasis.
Collapse
|
31
|
Wang S, Jomaa A, Jaskolowski M, Yang CI, Ban N, Shan SO. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nat Struct Mol Biol 2019; 26:919-929. [PMID: 31570874 PMCID: PMC6858539 DOI: 10.1038/s41594-019-0297-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the amino-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membrane-embedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs.
Collapse
Affiliation(s)
- Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chien-I Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
33
|
Melnykov A, Chen SJ, Varshavsky A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2019; 116:15914-15923. [PMID: 31337681 PMCID: PMC6689949 DOI: 10.1073/pnas.1908304116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, N-degron pathways (formerly "N-end rule pathways") comprise a set of proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal degradation signals called N-degrons, thereby causing degradation of these proteins by the 26S proteasome or autophagy. Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharomyces cerevisiae, is the recognition component (N-recognin) of the GID-mediated Pro/N-degron pathway. Gid4 targets proteins by recognizing their N-terminal Pro residues or a Pro at position 2, in the presence of distinct adjoining sequence motifs. Under conditions of low or absent glucose, cells make it through gluconeogenesis. When S. cerevisiae grows on a nonfermentable carbon source, its gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed and long-lived. Transition to a medium containing glucose inhibits the synthesis of these enzymes and induces their degradation by the Gid4-dependent Pro/N-degron pathway. While studying yeast Gid4, we identified a similar but uncharacterized yeast protein (YGR066C), which we named Gid10. A screen for N-terminal peptide sequences that can bind to Gid10 showed that substrate specificities of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed under usual (unstressful) growth conditions, but is induced upon starvation or osmotic stresses. Using protein binding analyses and degradation assays with substrates of GID, we show that Gid10 can function as a specific N-recognin of the Pro/N-degron pathway.
Collapse
Affiliation(s)
- Artem Melnykov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
34
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
35
|
Ikeuchi K, Izawa T, Inada T. Recent Progress on the Molecular Mechanism of Quality Controls Induced by Ribosome Stalling. Front Genet 2019; 9:743. [PMID: 30705686 PMCID: PMC6344382 DOI: 10.3389/fgene.2018.00743] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/22/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate gene expression is a prerequisite for all cellular processes. Cells actively promote correct protein folding, which prevents the accumulation of abnormal and non-functional proteins. Translation elongation is the fundamental step in gene expression to ensure cellular functions, and abnormal translation arrest is recognized and removed by the quality controls. Recent studies demonstrated that ribosome plays crucial roles as a hub for gene regulation and quality controls. Ribosome-interacting factors are critical for the quality control mechanisms responding to abnormal translation arrest by targeting its products for degradation. Aberrant mRNAs are produced by errors in mRNA maturation steps and cause aberrant translation and are eliminated by the quality control system. In this review, we focus on recent progress on two quality controls, Ribosome-associated Quality Control (RQC) and No-Go Decay (NGD), for abnormal translational elongation. These quality controls recognize aberrant ribosome stalling and induce rapid degradation of aberrant polypeptides and mRNAs thereby maintaining protein homeostasis and preventing the protein aggregation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Benarroch R, Austin JM, Ahmed F, Isaacson RL. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 114:265-313. [PMID: 30635083 PMCID: PMC7102839 DOI: 10.1016/bs.apcsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SGTA is a co-chaperone that, in collaboration with the complex of BAG6/UBL4A/TRC35, facilitates the biogenesis and quality control of hydrophobic proteins, protecting them from the aqueous cytosolic environment. This work includes targeting tail-anchored proteins to their resident membranes, sorting of membrane and secretory proteins that mislocalize to the cytoplasm and endoplasmic reticulum-associated degradation of misfolded proteins. Since these functions are all vital for the cell's continued proteostasis, their disruption poses a threat to the cell, with a particular risk of protein aggregation, a phenomenon that underpins many diseases. Although the specific disease implications of machinery involved in quality control of hydrophobic substrates are poorly understood, here we summarize much of the available information on this topic.
Collapse
Affiliation(s)
- Rashi Benarroch
- Department of Chemistry, King's College London, London, United Kingdom
| | - Jennifer M Austin
- Department of Chemistry, King's College London, London, United Kingdom
| | - Fahmeda Ahmed
- Department of Chemistry, King's College London, London, United Kingdom
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|
37
|
Iruka Eliminates Dysfunctional Argonaute by Selective Ubiquitination of Its Empty State. Mol Cell 2018; 73:119-129.e5. [PMID: 30503771 DOI: 10.1016/j.molcel.2018.10.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are loaded into the Argonaute subfamily of proteins (AGO) to form an effector complex that silences target genes. Empty but not miRNA-loaded AGO is selectively degraded across species. However, the mechanism and biological significance of selective AGO degradation remain unclear. We discovered a RING-type E3 ubiquitin ligase we named Iruka (Iru), which selectively ubiquitinates the empty form of Drosophila Ago1 to trigger its degradation. Iru preferentially binds empty Ago1 and ubiquitinates Lys514 in the L2 linker, which is predicted to be inaccessible in the miRNA-loaded state. Depletion of Iru results in global impairment of miRNA-mediated silencing of target genes and in the accumulation of aberrant Ago1 that is dysfunctional for canonical protein-protein interactions and miRNA loading. Our findings reveal a sophisticated mechanism for the selective degradation of empty AGO that underlies a quality control process to ensure AGO function.
Collapse
|
38
|
The VCP-UBXN1 Complex Mediates Triage of Ubiquitylated Cytosolic Proteins Bound to the BAG6 Complex. Mol Cell Biol 2018; 38:MCB.00154-18. [PMID: 29685906 DOI: 10.1128/mcb.00154-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
A balance between protein synthesis and degradation is necessary to maintain cellular homeostasis. Failure to triage aberrant proteins may result in their accumulation and aggregation in the cytosol. The valosin-containing protein (VCP)-BCL2-associated athanogene 6 (BAG6) complex facilitates a wide variety of ubiquitin-mediated quality control events at the endoplasmic reticulum (ER), both prior to ER translocation and during ER-associated degradation (ERAD). However, how ubiquitylated clients associated with BAG6 are recognized by VCP for proteasomal degradation is presently unknown. We have identified UBXN1 as the VCP adaptor in BAG6-dependent processes occurring prior to ER insertion but not during ERAD. The loss of VCP-UBXN1 results in the inappropriate stabilization of ubiquitylated BAG6 clients and their accumulation in insoluble aggregates and sensitizes cells to proteotoxic stress. Our results identify how VCP is specifically targeted to ubiquitylated substrates in the BAG6 triage pathway and suggest that the degradation of ubiquitylated clients by the proteasome is reliant on the association of UBXN1 with ubiquitylated substrates and the catalytic activity of VCP.
Collapse
|
39
|
Szoradi T, Schaeff K, Garcia-Rivera EM, Itzhak DN, Schmidt RM, Bircham PW, Leiss K, Diaz-Miyar J, Chen VK, Muzzey D, Borner GHH, Schuck S. SHRED Is a Regulatory Cascade that Reprograms Ubr1 Substrate Specificity for Enhanced Protein Quality Control during Stress. Mol Cell 2018; 70:1025-1037.e5. [PMID: 29861160 DOI: 10.1016/j.molcel.2018.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/12/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
When faced with proteotoxic stress, cells mount adaptive responses to eliminate aberrant proteins. Adaptive responses increase the expression of protein folding and degradation factors to enhance the cellular quality control machinery. However, it is unclear whether and how this augmented machinery acquires new activities during stress. Here, we uncover a regulatory cascade in budding yeast that consists of the hydrophilin protein Roq1/Yjl144w, the HtrA-type protease Ynm3/Nma111, and the ubiquitin ligase Ubr1. Various stresses stimulate ROQ1 transcription. The Roq1 protein is cleaved by Ynm3. Cleaved Roq1 interacts with Ubr1, transforming its substrate specificity. Altered substrate recognition by Ubr1 accelerates proteasomal degradation of misfolded as well as native proteins at the endoplasmic reticulum membrane and in the cytosol. We term this pathway stress-induced homeostatically regulated protein degradation (SHRED) and propose that it promotes physiological adaptation by reprogramming a key component of the quality control machinery.
Collapse
Affiliation(s)
- Tamas Szoradi
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany
| | - Katharina Schaeff
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany
| | - Enrique M Garcia-Rivera
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Rolf M Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany
| | - Peter W Bircham
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany
| | - Juan Diaz-Miyar
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany
| | - Vivian K Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dale Muzzey
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
41
|
Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 2017; 20:135-143. [PMID: 29230017 PMCID: PMC5786475 DOI: 10.1038/s41556-017-0007-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Ribosomes are abundant cellular machines1,2
regulated by assembly, supernumerary subunit turnover, and nascent chain quality
control mechanisms1–5. Moreover, nitrogen starvation
in yeast has been reported to promote selective ribosome delivery to the vacuole
in an autophagy conjugation system-dependent manner, a process called
“ribophagy”6,7. However,
whether ribophagy in mammals is selective or regulated is unclear. Using
Ribo-Keima flux reporters, we find that starvation or mTOR inhibition promotes
VPS34-dependent ribophagic flux, which unlike yeast, is largely ATG8 conjugation
independent and occurs concomitantly with other cytosolic protein autophagic
flux reporters8,9. Ribophagic flux was not induced upon
inhibition of translational elongation or nascent chain uncoupling, but was
induced in a comparatively selective manner upon proteotoxic stress via
arsenite10 or
chromosome mis-segregation11
dependent upon VPS34 and ATG8 conjugation. Unexpectedly, agents typically used
to induce selective autophagy also promoted increased ribosome and cytosolic
protein reporter flux, suggesting significant bulk or
“by-stander” autophagy during what is often considered selective
autophagy12,13. These results emphasize the importance
of monitoring non-specific cargo flux when assessing selective autophagy
pathways.
Collapse
|
42
|
Elimination of a signal sequence-uncleaved form of defective HLA protein through BAG6. Sci Rep 2017; 7:14545. [PMID: 29109525 PMCID: PMC5674028 DOI: 10.1038/s41598-017-14975-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
A portion of newly synthesized transmembrane domain proteins tend to fail to assemble correctly in the lumen of the endoplasmic reticulum, thus resulting in the production of a signal sequence-uncleaved form of the defective species. Although the efficient degradation of these mistargeted polypeptides is crucial, the molecular mechanism of their elimination pathway has not been adequately characterized. In this study, we focused on one such cryptic portion of a defective transmembrane domain protein, HLA-A, and show that a part of HLA-A is produced as a signal sequence-uncleaved labile species that is immediately targeted to the degradation pathway. We found that both BAG6 and proteasomes are indispensable for elimination of mislocalized HLA-A species. Furthermore, defective HLA-A is subjected to BAG6-dependent solubilization in the cytoplasm. These observations suggest that BAG6 acts as a critical factor for proteasome-mediated degradation of mislocalized HLA-A with a non-cleaved signal sequence at its N-terminus.
Collapse
|
43
|
Affiliation(s)
- Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Catherine Dargemont
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, INSERM UMR944, CNRS UMR7212, 75475 Paris Cedex 10, France.
| |
Collapse
|
44
|
Shao S, Rodrigo-Brenni MC, Kivlen MH, Hegde RS. Mechanistic basis for a molecular triage reaction. Science 2017; 355:298-302. [PMID: 28104892 DOI: 10.1126/science.aah6130] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/22/2016] [Indexed: 01/24/2023]
Abstract
Newly synthesized proteins are triaged between biosynthesis and degradation to maintain cellular homeostasis, but the decision-making mechanisms are unclear. We reconstituted the core reactions for membrane targeting and ubiquitination of nascent tail-anchored membrane proteins to understand how their fate is determined. The central six-component triage system is divided into an uncommitted client-SGTA complex, a self-sufficient targeting module, and an embedded but self-sufficient quality control module. Client-SGTA engagement of the targeting module induces rapid, private, and committed client transfer to TRC40 for successful biosynthesis. Commitment to ubiquitination is dictated primarily by comparatively slower client dissociation from SGTA and nonprivate capture by the BAG6 subunit of the quality control module. Our results provide a paradigm for how priority and time are encoded within a multichaperone triage system.
Collapse
Affiliation(s)
- Sichen Shao
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Monica C Rodrigo-Brenni
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Maryann H Kivlen
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
45
|
Javidialesaadi A, Stan G. Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms. J Phys Chem B 2017; 121:7108-7121. [DOI: 10.1021/acs.jpcb.7b05963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
46
|
Joazeiro CAP. Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol 2017; 33:343-368. [PMID: 28715909 DOI: 10.1146/annurev-cellbio-111315-125249] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.
Collapse
Affiliation(s)
- Claudio A P Joazeiro
- ZMBH, University of Heidelberg, 69120 Heidelberg, Germany; .,The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
47
|
Ferrin MA, Subramaniam AR. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria. eLife 2017; 6. [PMID: 28498106 PMCID: PMC5446239 DOI: 10.7554/elife.23629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/10/2017] [Indexed: 02/01/2023] Open
Abstract
Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes.
Collapse
Affiliation(s)
- Michael A Ferrin
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
48
|
Sugiyama T, Nobuta R, Ando K, Matsuki Y, Inada T. Crucial role of ATP-bound Sse1 in Upf1-dependent degradation of the truncated product. Biochem Biophys Res Commun 2017; 488:122-128. [PMID: 28483531 DOI: 10.1016/j.bbrc.2017.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
Abstract
Up-frameshift (Upf) complex facilitates the degradation of aberrant mRNAs containing a premature termination codon (PTC) and its products in yeast. Here we report that Sse1, a member of the Hsp110 family, and Hsp70 play a crucial role in Upf-dependent degradation of the truncated FLAG-Pgk1-300 protein derived from PGK1 mRNA harboring a PTC at codon position 300. Sse1 was required for Upf-dependent rapid degradation of the FLAG-Pgk1-300. FLAG-Pgk1-300 was significantly destabilized in ATP hydrolysis defective sse1-1 mutant cells than in wild type cells. Consistently, Sse1 and Hsp70 reduced the level of an insoluble form of FLAG-Pgk1-300. We propose that the Sse1/Hsp70 complex maintains the solubility of FLAG-Pgk1-300, thereby stimulating its Upf-dependent degradation by the proteasomes.
Collapse
Affiliation(s)
- Takato Sugiyama
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Risa Nobuta
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Koji Ando
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuko Matsuki
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
49
|
Sitron CS, Park JH, Brandman O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA (NEW YORK, N.Y.) 2017; 23:798-810. [PMID: 28223409 PMCID: PMC5393187 DOI: 10.1261/rna.060897.117] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 05/17/2023]
Abstract
Premature arrest of protein synthesis within the open reading frame elicits a protective response that degrades the incomplete nascent chain. In this response, arrested 80S ribosomes are split into their large and small subunits, allowing assembly of the ribosome quality control complex (RQC), which targets nascent chains for degradation. How the cell recognizes arrested nascent chains among the vast pool of actively translating polypeptides is poorly understood. We systematically examined translation arrest and modification of nascent chains in Saccharomyces cerevisiae to characterize the steps that couple arrest to RQC targeting. We focused our analysis on two poorly understood 80S ribosome-binding proteins previously implicated in the response to failed translation, Asc1 and Hel2, as well as a new component of the pathway, Slh1, that we identified here. We found that premature arrest at ribosome stalling sequences still occurred robustly in the absence of Asc1, Hel2, and Slh1. However, these three factors were required for the RQC to modify the nascent chain. We propose that Asc1, Hel2, and Slh1 target arresting ribosomes and that this targeting event is a precondition for the RQC to engage the incomplete nascent chain and facilitate its degradation.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Joseph H Park
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
50
|
Mao J, Xia Q, Liu C, Ying Z, Wang H, Wang G. A critical role of Hrd1 in the regulation of optineurin degradation and aggresome formation. Hum Mol Genet 2017; 26:1877-1889. [DOI: 10.1093/hmg/ddx096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/08/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jiahui Mao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Pathophysiology, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chunfeng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|