1
|
Koivunen E, Madhavan S, Bermudez-Garrido L, Grönholm M, Kaprio T, Haglund C, Andersson LC, Gahmberg CG. Hypoxia favors tumor growth in colorectal cancer in an integrin αDβ1/hemoglobin δ-dependent manner. Life Sci Alliance 2025; 8:e202402925. [PMID: 39626964 PMCID: PMC11629678 DOI: 10.26508/lsa.202402925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Low oxygen tension (PO2), characterizes the tissue environment of tumors. The colorectal tumor line Colo205, grown under reduced oxygen tension expresses a novel αDβ1 integrin, which forms a cell surface complex with hemoglobin δ. This resulted in high local affinity for oxygen, which increased cell adhesion as compared with cells grown under normal oxygen tension. Staining with antibodies to the integrin αD polypeptide and hemoglobin δ, and transfection with cDNAs for GFP-hemoglobin δ and mCherry-αD, showed co-localization of αD and hemoglobin δ. Antibodies to αD and β1 integrins, an RGD peptide, and an αDβ1 binding peptide from hemoglobin δ, blocked the αDβ1-hemoglobin interaction and lowered oxygen consumption. Downregulation of integrin αD or hemoglobin δ expression inhibited cell proliferation in hypoxia. The very frequent expression of complexes between αDβ1 and hemoglobin δ on the cell surface offers potential diagnostic and therapeutic targets in colorectal cancer.
Collapse
Affiliation(s)
- Erkki Koivunen
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sudarrshan Madhavan
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Bermudez-Garrido
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuomas Kaprio
- Programme in Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Programme in Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology. Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carl G Gahmberg
- Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Wang JF, Wang JS, Liu Y, Ji B, Ding BC, Wang YX, Ren MH. Knockdown of integrin β1 inhibits proliferation and promotes apoptosis in bladder cancer cells. Biofactors 2025; 51:e2150. [PMID: 39644117 DOI: 10.1002/biof.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Bladder cancer (BC) is the most common urinary tract malignancy. Identifying biomarkers that predict prognosis and immune function in patients with BC can enhance our understanding of its pathogenesis and provide valuable guidance for diagnosis and treatment. Our findings indicate that increased ITGB1 expression is associated with higher clinical grade and stage, establishing ITGB1 as an independent prognostic risk factor for BC. Enrichment analysis revealed that the function of ITGB1 in BC was linked to the extracellular matrix. The experimental results showed that ITGB1 knockdown in the BC cell lines 5637 and RT112 reduced their proliferation, migration, and invasion. Furthermore, ITGB1 suppression promotes apoptosis in BC cells by inhibiting the PI3K-AKT pathway. A prognostic risk model incorporating CES1, NTNG1, SETBP1, and AIFM3 was developed based on ITGB1, this model can accurately predict patient prognosis based on immunological status. In conclusion, this study shows that knockdown of ITGB1 can restrain the migratory and invasive capabilities of BC cells and accelerate apoptosis, and this role might be associated with PI3K-AKT, highlighting its potential as a diagnostic marker and therapeutic target for BC.
Collapse
Affiliation(s)
- Jin-Feng Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian-She Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Ji
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei-Chen Ding
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ya-Xuan Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming-Hua Ren
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Tan W, Chen G, Ci Q, Deng Z, Gu R, Yang D, Dai F, Liu H, Cheng Y. Elevated ITGA3 expression serves as a novel prognostic biomarker and regulates tumor progression in cervical cancer. Sci Rep 2024; 14:27063. [PMID: 39511266 PMCID: PMC11543847 DOI: 10.1038/s41598-024-75770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with advanced and recurrent cervical cancer often lack satisfactory treatment outcomes. Thus, it is necessary to seek reliable biomarkers that provide the ability to identify the disease at an early stage and predict the patient prognosis, providing new strategies for the treatment of cervical cancer. The sequencing data of ITGA3 were retrieved from public datasets. Immune infiltration and sensitivity of potential immunotherapy and chemotherapy have been analyzed between two subgroups. Functional analysis was applied to excavate the related pathways of ITGA3 in cervical cancer. Furthermore, the impact of ITGA3 in tumor progression has been verified in vitro. The results revealed that the level of ITGA3 was upregulated in cervical cancer, and was positively correlated with worse prognosis. The tumor microenvironment of patients in the high-risk group was immunosuppressed. Patients in high-risk group may not benefit from immunotherapy, but be may be sensitive to several chemotherapy drugs. Notably, the angiogenesis, epithelial mesenchymal transition, and PI3K pathway were increased in high-risk group. Collectively, ITGA3 is a marker of poor prognosis and promotes tumor progression by regulating PI3K/AKT pathway in cervical cancer. Our results provide new insights for potential molecular targeted therapy and prognostic prediction of cervical cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
4
|
Johan MZ, Pyne NT, Kolesnikoff N, Poltavets V, Esmaeili Z, Woodcock JM, Lopez AF, Cowin AJ, Pitson SM, Samuel MS. Accelerated Closure of Diabetic Wounds by Efficient Recruitment of Fibroblasts upon Inhibiting a 14-3-3/ROCK Regulatory Axis. J Invest Dermatol 2024; 144:2562-2573.e4. [PMID: 38582367 DOI: 10.1016/j.jid.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Chronic non-healing wounds negatively impact quality of life and are a significant financial drain on health systems. The risk of infection that exacerbates comorbidities in patients necessitates regular application of wound care. Understanding the mechanisms underlying impaired wound healing are therefore a key priority to inform effective new-generation treatments. In this study, we demonstrate that 14-3-3-mediated suppression of signaling through ROCK is a critical mechanism that inhibits the healing of diabetic wounds. Accordingly, pharmacological inhibition of 14-3-3 by topical application of the sphingo-mimetic drug RB-11 to diabetic wounds on a mouse model of type II diabetes accelerated wound closure more than 2-fold than vehicle control, phenocopying our previous observations in 14-3-3ζ-knockout mice. We also demonstrate that accelerated closure of the wounded epidermis by 14-3-3 inhibition causes enhanced signaling through the Rho-ROCK pathway and that the underlying cellular mechanism involves the efficient recruitment of dermal fibroblasts into the wound and the rapid production of extracellular matrix proteins to re-establish the injured dermis. Our observations that the 14-3-3/ROCK inhibitory axis characterizes impaired wound healing and that its suppression facilitates fibroblast recruitment and accelerated re-epithelialization suggest new possibilities for treating diabetic wounds by pharmacologically targeting this axis.
Collapse
Affiliation(s)
- M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Natasha T Pyne
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Natasha Kolesnikoff
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Valentina Poltavets
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Zahra Esmaeili
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Joanna M Woodcock
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
5
|
Liu W, Lv H, Zhou Y, Zuo X, Wang X. Comprehensive Analysis of the Gene Expression Profiles of Rat Brain Tissues under Environmental Exposure to Nicotine. Pak J Biol Sci 2024; 27:547-566. [PMID: 39551957 DOI: 10.3923/pjbs.2024.547.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
<b>Background and Objective:</b> Nicotine-relevant smoking causes many serious issues of environmental pollution and complicated harm to human health. The present study aimed to evaluate the experimental effects of exposure to nicotine on the gene expression profiles of rat brain tissues with differentially expressed genes (DEGs). <b>Materials and Methods:</b> The rat gene expression profiles of environmental exposure to nicotine were initially screened and retrieved from the microarray dataset GSE59895 in the GEO database. Next, it was analyzed with an integrated bioinformatics pipeline. The DEGs were analyzed in Limma and functional enrichment analyses of GO terms and KEGG pathways were performed with clusterProfiler. The STRING online tools and Cytoscape StringApp were subsequently employed to construct the protein-protein interaction (PPI) network, whereas key modules and hub genes were finally explored and visualized. <b>Results:</b> There was total of 382 shared DEGs between different case groups in the experiment, whereas 9 common shared DEGs were found among all three groups. The significant enrichments of 28 GO terms and 3 KEGG pathways were comprehensively analyzed with corresponding functionally enriched genes. Then, 3 key modules and 10 hub genes were further identified and explored in the resulted PPI network. In the disease-related signaling pathways, eleven potential neuropathic disease-related genes may complement the treatment of neurodegenerative diseases. <b>Conclusion:</b> The study found that chronic exposure to nicotine would result in the differential expression of the disease-related genes, whereas these DEGs might increase the environmental risks of Huntington's disease, Alzheimer's disease and other multiple neurodegenerative diseases.
Collapse
|
6
|
Wang M, Liu Z, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Zhu D, Jia R, Chen S, Liu M, Zhao XX, Huang J. Host miRNA and mRNA profiles during in DEF and duck after DHAV-1 infection. Sci Rep 2024; 14:22575. [PMID: 39343789 PMCID: PMC11439951 DOI: 10.1038/s41598-024-72992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
DHAV-1 is a highly infectious pathogen that can cause acute hepatitis in ducklings. MicroRNA (miRNA) plays an essential regulatory role in virus response. We characterized and compared miRNA and mRNA expression profiles in duck embryonic fibroblasts (DEF) and the liver of ducklings infected with DHAV-1. DHAV-1 infected DEF was divided into infection group (D group) and blank group (M group), and DHAV-1 infected duckling group was divided into infection group (H group) and blank group (N group). D vs. M have 130 differentially expressed (DE) miRNA (DEM) and 2204 differentially expressed (DE) mRNA (DEG), H vs. N have 72 DEM and 1976 DEG. By the intersection of D vs. M and H vs. N comparisons, 15 upregulated DEM, 5 downregulated DEM, 340 upregulated DEG and 50 downregulated DEG were found with both in vivo and in vitro DHAV-1 infection. In particular, we identified the same DE miRNA target genes and functional annotations of DE mRNA. We enriched with multiple gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may have important roles in viral virulence, host immunity, and metabolism. We selected miR-155, which is co-upregulated, and found that miR-155 targets SOCS1 to inhibit DHVA-1 replication.
Collapse
Affiliation(s)
- Meng Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Zezheng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China.
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China.
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xuming Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xin Xin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Huang C, Liu S, Li W, Zhao S, Ren X, Zhuo F, Zhang K, Li X, Wu J, Zhu Z, Chen C, Zhang W, Yu B. Paxbp1 Is Indispensable for the Maintenance of Epidermal Homeostasis. J Invest Dermatol 2024:S0022-202X(24)02077-3. [PMID: 39236903 DOI: 10.1016/j.jid.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The mammalian epidermis is a structurally complex tissue that serves critical barrier functions, safeguarding the organism from the external milieu. The development of the epidermis is governed by sophisticated regulatory processes. However, the precise mechanism maintaining epidermal homeostasis remains incompletely elucidated. Recent studies have identified Paxbp1, an evolutionarily conserved protein, as being involved in the developmental regulation of various cells, tissues, and organs. Nonetheless, its role in skin development has not been explored. In this study, we report that the targeted deletion of Paxbp1 in epidermal keratinocytes mediated by keratin 14-Cre leads to severe disruption in skin architecture. Mice deficient in Paxbp1 exhibited a substantially reduced epidermal thickness and pronounced separation at the dermal-epidermal junction upon birth. Mechanistically, we demonstrate that the absence of Paxbp1 hinders cellular proliferation, marked by a halt in cell cycle transition, suppressed gene expression of proliferation, and a compromised DNA replication pathway in basal keratinocytes, resulting in the thinning of the skin epidermis. Moreover, molecules and pathways associated with hemidesmosome assembly were impaired in Paxbp1-deficient keratinocytes, culminating in the detachment of the skin epidermal layer. Therefore, our study highlights an indispensable role of Paxbp1 in the maintenance of epidermal homeostasis.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shenglin Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan Province, China
| | - Wenting Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shizheng Zhao
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Xuanyao Ren
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fan Zhuo
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiahong Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jingwen Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zimo Zhu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chao Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
8
|
Gong S, Qiao H, Wang JY, Huang SY, He SW, Zhao Y, Tan XR, Ye ML, Li JY, Liang YL, Huang SW, Chen J, Zhu XH, Liu N, Li YQ. Ac4C modification of lncRNA SIMALR promotes nasopharyngeal carcinoma progression through activating eEF1A2 to facilitate ITGB4/ITGA6 translation. Oncogene 2024; 43:2868-2884. [PMID: 39154122 DOI: 10.1038/s41388-024-03133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.
Collapse
Affiliation(s)
- Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jing-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
9
|
Leng Y, Luan Z, Li Z, Ma Y, Zhou Y, Liu J, Liu S, Tian T, Feng W, Liu Y, Shi Q, Huang C, Zhao X, Wang W, Liu A, Wang T, Ren Q, Liu J, Huang Q, Zhang Y, Yin B, Chen J, Yang L, Zhao S, Bao R, Ji X, Xu Y, Liu L, Zhou J, Chen M, Ma W, Shen L, Zhang T, Zhao H. PPM1F regulates ovarian cancer progression by affecting the dephosphorylation of ITGB1. Clin Transl Oncol 2024:10.1007/s12094-024-03614-1. [PMID: 39133386 DOI: 10.1007/s12094-024-03614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
PPM1F has been shown to play diverse biological functions in the progression of multiple tumors. PPM1F controls the T788/T789 phosphorylation switch of ITGB1 and regulates integrin activity. However, the impacts of PPM1F and ITGB1 on ovarian cancer (OV) progression remain unclear. Whether there is such a regulatory relationship between PPM1F and ITGB1 in ovarian cancer has not been studied. Therefore, the purpose of this study is to elucidate the function and the mechanism of PPM1F in ovarian cancer. The expression level and the survival curve of PPM1F were analyzed by databases. Gain of function and loss of function were applied to explore the function of PPM1F in ovarian cancer. A tumor formation assay in nude mice showed that knockdown of PPM1F inhibited tumor formation. We tested the effect of PPM1F on ITGB1 dephosphorylation in ovarian cancer cells by co-immunoprecipitation and western blotting. Loss of function was applied to investigate the function of ITGB1 in ovarian cancer. ITGB1-mut overexpression promotes the progression of ovarian cancer. Rescue assays showed the promoting effect of ITGB1-wt on ovarian cancer is attenuated due to the dephosphorylation of ITGB1-wt by PPM1F. PPM1F and ITGB1 play an oncogene function in ovarian cancer. PPM1F regulates the phosphorylation of ITGB1, which affects the occurrence and development of ovarian cancer.
Collapse
Affiliation(s)
- Yahui Leng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Zhenzi Luan
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Zihang Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yongqing Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yang Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jiaqi Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Song Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Tian Tian
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Wenxiao Feng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yanni Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Qin Shi
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Chengyang Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Xuan Zhao
- The Second Clinical College, Xi'an Medical University, Xi'an, China
| | - Wenlong Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Ao Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Tianhang Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Qiulei Ren
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jiakun Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Qian Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yaling Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Bin Yin
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jialin Chen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Liangliang Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Shiyun Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Ruoyi Bao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Xingyu Ji
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yuewen Xu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Liaoyuan Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Junsuo Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Miao Chen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Wenhui Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Li Shen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| | - Te Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| | - Hongyan Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
10
|
Endo F. Deciphering the spectrum of astrocyte diversity: Insights into molecular, morphological, and functional dimensions in health and neurodegenerative diseases. Neurosci Res 2024:S0168-0102(24)00098-1. [PMID: 39098767 DOI: 10.1016/j.neures.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Astrocytes are the most abundant and morphologically complex glial cells that play active roles in the central nervous system (CNS). Recent research has identified shared and region-specific astrocytic genes and functions, elucidated the cellular origins of their regional diversity, and uncovered the molecular networks for astrocyte morphology, which are essential for their functional complexity. Reactive astrocytes exhibit a wide range of functional diversity in a context-specific manner in CNS disorders. This review discusses recent advances in understanding the molecular and morphological diversity of astrocytes in healthy individuals and those with neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
11
|
Wijerathne SVT, Pandit R, Ipinmoroti AO, Crenshaw BJ, Matthews QL. Feline coronavirus influences the biogenesis and composition of extracellular vesicles derived from CRFK cells. Front Vet Sci 2024; 11:1388438. [PMID: 39091390 PMCID: PMC11292801 DOI: 10.3389/fvets.2024.1388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | | | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
12
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of the cell adhesion protein Fasciclin 3 is required for the maintenance of adult olfactory interneurons. J Cell Sci 2024; 137:jcs261759. [PMID: 38934299 DOI: 10.1242/jcs.261759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The proper functioning of the nervous system is dependent on the establishment and maintenance of intricate networks of neurons that form functional neural circuits. Once neural circuits are assembled during development, a distinct set of molecular programs is likely required to maintain their connectivity throughout the lifetime of the organism. Here, we demonstrate that Fasciclin 3 (Fas3), an axon guidance cell adhesion protein, is necessary for the maintenance of the olfactory circuit in adult Drosophila. We utilized the TARGET system to spatiotemporally knockdown Fas3 in selected populations of adult neurons. Our findings show that Fas3 knockdown results in the death of olfactory circuit neurons and reduced survival of adults. We also demonstrated that Fas3 knockdown activates caspase-3-mediated cell death in olfactory local interneurons, which can be rescued by overexpressing baculovirus p35, an anti-apoptotic protein. This work adds to the growing set of evidence indicating a crucial role for axon guidance proteins in the maintenance of neuronal circuits in adults.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, 3402-2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Alhamdan F, Bayarsaikhan G, Yuki K. Toll-like receptors and integrins crosstalk. Front Immunol 2024; 15:1403764. [PMID: 38915411 PMCID: PMC11194410 DOI: 10.3389/fimmu.2024.1403764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Immune system recognizes invading microbes at both pathogen and antigen levels. Toll-like receptors (TLRs) play a key role in the first-line defense against pathogens. Major functions of TLRs include cytokine and chemokine production. TLRs share common downstream signaling pathways with other receptors. The crosstalk revolving around TLRs is rather significant and complex, underscoring the intricate nature of immune system. The profiles of produced cytokines and chemokines via TLRs can be affected by other receptors. Integrins are critical heterodimeric adhesion molecules expressed on many different cells. There are studies describing synergetic or inhibitory interplay between TLRs and integrins. Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the nature of the crosstalk could allow us to modulate TLR functions via integrins.
Collapse
Affiliation(s)
- Fahd Alhamdan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ganchimeg Bayarsaikhan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
14
|
Ouyang M, Zhang Q, Zhu Y, Luo M, Bu B, Deng L. α-Catenin and Piezo1 Mediate Cell Mechanical Communication via Cell Adhesions. BIOLOGY 2024; 13:357. [PMID: 38785839 PMCID: PMC11118126 DOI: 10.3390/biology13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Cell-to-cell distant mechanical communication has been demonstrated using in vitro and in vivo models. However, the molecular mechanisms underlying long-range cell mechanoresponsive interactions remain to be fully elucidated. This study further examined the roles of α-Catenin and Piezo1 in traction force-induced rapid branch assembly of airway smooth muscle (ASM) cells on a Matrigel hydrogel containing type I collagen. Our findings demonstrated that siRNA-mediated downregulation of α-Catenin or Piezo1 expression or chemical inhibition of Piezo1 activity significantly reduced both directional cell movement and branch assembly. Regarding the role of N-cadherin in regulating branch assembly but not directional migration, our results further confirmed that siRNA-mediated downregulation of α-Catenin expression caused a marked reduction in focal adhesion formation, as assessed by focal Paxillin and Integrin α5 localization. These observations imply that mechanosensitive α-Catenin is involved in both cell-cell and cell-matrix adhesions. Additionally, Piezo1 partially localized in focal adhesions, which was inhibited by siRNA-mediated downregulation of α-Catenin expression. This result provides insights into the Piezo1-mediated mechanosensing of traction force on a hydrogel. Collectively, our findings highlight the significance of α-Catenin in the regulation of cell-matrix interactions and provide a possible interpretation of Piezo1-mediated mechanosensing activity at focal adhesions during cell-cell mechanical communication.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Qingyu Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yiming Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| |
Collapse
|
15
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584557. [PMID: 38559252 PMCID: PMC10980042 DOI: 10.1101/2024.03.12.584557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Adison G Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| |
Collapse
|
16
|
Wang X, Luo Y, He S, Lu Y, Gong Y, Gao L, Mao S, Liu X, Jiang N, Pu Q, Du D, Shu Y, Hai S, Li S, Chen HN, Zhao Y, Xie D, Qi S, Lei P, Hu H, Xu H, Zhou ZG, Dong B, Zhang H, Zhang Y, Dai L. Age-, sex- and proximal-distal-resolved multi-omics identifies regulators of intestinal aging in non-human primates. NATURE AGING 2024; 4:414-433. [PMID: 38321225 PMCID: PMC10950786 DOI: 10.1038/s43587-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
The incidence of intestinal diseases increases with age, yet the mechanisms governing gut aging and its link to diseases, such as colorectal cancer (CRC), remain elusive. In this study, while considering age, sex and proximal-distal variations, we used a multi-omics approach in non-human primates (Macaca fascicularis) to shed light on the heterogeneity of intestinal aging and identify potential regulators of gut aging. We explored the roles of several regulators, including those from tryptophan metabolism, in intestinal function and lifespan in Caenorhabditis elegans. Suggesting conservation of region specificity, tryptophan metabolism via the kynurenine and serotonin (5-HT) pathways varied between the proximal and distal colon, and, using a mouse colitis model, we observed that distal colitis was more sensitive to 5-HT treatment. Additionally, using proteomics analysis of human CRC samples, we identified links between gut aging and CRC, with high HPX levels predicting poor prognosis in older patients with CRC. Together, this work provides potential targets for preventing gut aging and associated diseases.
Collapse
Grants
- P40 OD010440 NIH HHS
- National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China,2022YFA1303200, 2018YFC2000305; The 135 Project of West China Hospital, ZYJC21005, ZYGD20010 and ZYYC23013.
- Natural Science Foundation of Sichuan Province,2023NSFSC1196
- Natural Science Foundation of Sichuan Province,2021YFS0134
- National Clinical Research Center for Geriatrics of West China Hospital, Z2021JC005
- The 135 Project of West China Hospital, ZYYC23025.
- National Key R&D Program of China, 2019YFA0110203;
- National Clinical Research Center for Geriatrics of West China Hospital, Z2021JC006;
Collapse
Affiliation(s)
- Xinyuan Wang
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaru Luo
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Gao
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengqiang Mao
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review highlights how the perception of platelet function is evolving based on recent insights into platelet mechanobiology. RECENT FINDINGS The mechanosensitive ion channel Piezo1 mediates activation of free-flowing platelets under conditions of flow acceleration through mechanisms independent of adhesion receptors and classical activation pathways. Interference with the initiation of platelet migration or with the phenotypic switch of migrating platelets to a procoagulant state aggravates inflammatory bleeding. Mechanosensing of biochemical and biophysical microenvironmental cues during thrombus formation feed into platelet contractile force generation. Measurements of single platelet contraction and bulk clot retraction show promise to identify individuals at risk for hemorrhage. SUMMARY New findings unravel novel mechanotransduction pathways and effector functions in platelets, establishing mechanobiology as a pivotal component of platelet function. These insights highlight limitations of existing treatments and offer new potential therapeutic approaches and diagnostic avenues based on mechanobiological principles. Further extensive research is required to distinguish between core hemostatic and pathological mechanisms influenced by platelet mechanosensing.
Collapse
Affiliation(s)
- Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| | - Martin Kenny
- UCD Conway SPHERE Research Group
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| |
Collapse
|
18
|
Endo K, Sato T, Umetsu A, Watanabe M, Hikage F, Ida Y, Ohguro H, Furuhashi M. 3D culture induction of adipogenic differentiation in 3T3-L1 preadipocytes exhibits adipocyte-specific molecular expression patterns and metabolic functions. Heliyon 2023; 9:e20713. [PMID: 37867843 PMCID: PMC10585234 DOI: 10.1016/j.heliyon.2023.e20713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Adipose tissues are closely related to physiological functions and pathological conditions in most organs. Although differentiated 3T3-L1 preadipocytes have been used for in vitro adipose studies, the difference in cellular characteristics of adipogenic differentiation in two-dimensional (2D) culture and three-dimensional (3D) culture remain unclear. In this study, we evaluated gene expression patterns using RNA sequencing and metabolic functions using an extracellular flux analyzer in 3T3-L1 preadipocytes with and without adipogenic induction in 2D culture and 3D culture. In 2D culture, 565 up-regulated genes and 391 down-regulated genes were identified as differentially expressed genes (DEGs) by adipogenic induction of 3T3-L1 preadipocytes, whereas only 69 up-regulated genes and 59 down-regulated genes were identified as DEGs in 3D culture. Ingenuity Pathway Analysis (IPA) revealed that genes associated with lipid metabolism were identified as 2 out of the top 3 causal networks related to diseases and function in 3D spheroids, whereas only one network related to lipid metabolism was identified within the top 9 of these causal networks in the 2D planar cells, suggesting that adipogenic induction in the 3D culture condition exhibits a more adipocyte-specific gene expression pattern in 3T3-L1 preadipocytes. Real-time metabolic analysis revealed that the metabolic capacity shifted from glycolysis to mitochondrial respiration in differentiated 3T3-L1 cells in the 3D culture condition but not in those in the 2D cultured condition, suggesting that adipogenic differentiation in 3D culture induces a metabolic phenotype of well-differentiated adipocytes. Consistently, expression levels of mitochondria-encoded genes including mt-Nd6, mt-Cytb, and mt-Co1 were significantly increased by adipogenic induction of 3T3-L1 preadipocytes in 3D culture compared with those in 2D culture. Taken together, the findings suggest that induction of adipogenesis in 3D culture provides a more adipocyte-specific gene expression pattern and enhances mitochondrial respiration, resulting in more adipocyte-like cellular properties.
Collapse
Affiliation(s)
- Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yosuke Ida
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Yang D, Han F, Cai J, Sun H, Wang F, Jiang M, Zhang M, Yuan M, Zhou W, Li H, Yang L, Bai Y, Xiao L, Dong H, Cheng Q, Mao H, Zhou L, Wang R, Li Y, Nie H. N-glycosylation by N-acetylglucosaminyltransferase IVa enhances the interaction of integrin β1 with vimentin and promotes hepatocellular carcinoma cell motility. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119513. [PMID: 37295747 DOI: 10.1016/j.bbamcr.2023.119513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
N-glycosylation has been revealed to be tightly associated with cancer metastasis. As a key transferase that catalyzes the formation of β1,4 N-acetylglucosamine (β1,4GlcNAc) branches on the mannose core of N-glycans, N-acetylglucosaminyltransferase IVa (GnT-IVa) has been reported to be involved in hepatocellular carcinoma (HCC) metastasis by forming N-glycans; however, the underlying mechanisms are largely unknown. In the current study, we found that GnT-IVa was upregulated in HCC tissues and positively correlated with worse outcomes in HCC patients. We found that GnT-IVa could promote tumor growth in mice; notably, this effect was attenuated after mutating the enzymatic site (D445A) of GnT-IVa, suggesting that GnT-IVa regulated HCC progression by forming β1,4GlcNAc branches. To mechanistically investigate the role of GnT-IVa in HCC, we conducted GSEA and GO functional analysis as well as in vitro experiments. The results showed that GnT-IVa could enhance HCC cell migration, invasion and adhesion ability and increase β1,4GlcNAc branch glycans on integrin β1 (ITGB1), a tumor-associated glycoprotein that is closely involved in cell motility by interacting with vimentin. Interruption of β1,4GlcNAc branch glycan modification on ITGB1 could suppress the interaction of ITGB1 with vimentin and inhibit cell motility. These results revealed that GnT-IVa could promote HCC cell motility by affecting the biological functions of ITGB1 through N-glycosylation. In summary, our results revealed that GnT-IVa is highly expressed in HCC and can form β1,4GlcNAc branches on ITGB1, which are essential for interactions with vimentin to promote HCC cell motility. These findings not only proposed a novel mechanism for GnT-IVa in HCC progression but also revealed the significance of N-glycosylation on ITGB1 during the process, which may provide a novel target for future HCC therapy.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Handi Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fengyou Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Meiyi Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengmeng Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengfan Yuan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qixiang Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haoyu Mao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lu Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ruonan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
20
|
He Y, Goyette MA, Chapelle J, Boufaied N, Al Rahbani J, Schonewolff M, Danek EI, Muller WJ, Labbé DP, Côté JF, Lamarche-Vane N. CdGAP is a talin-binding protein and a target of TGF-β signaling that promotes HER2-positive breast cancer growth and metastasis. Cell Rep 2023; 42:112936. [PMID: 37552602 DOI: 10.1016/j.celrep.2023.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor β (TGF-β)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-β signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-β-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-β and integrin/talin signaling pathways.
Collapse
Affiliation(s)
- Yi He
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Marie-Anne Goyette
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Jennifer Chapelle
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jalal Al Rahbani
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Maribel Schonewolff
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Eric I Danek
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
| | - Jean-François Côté
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
21
|
Yang B, Rong X, Jiang C, Long M, Liu A, Chen Q. Comprehensive analyses reveal the prognosis and biological function roles of chromatin regulators in lung adenocarcinoma. Aging (Albany NY) 2023; 15:3598-3620. [PMID: 37155150 PMCID: PMC10449281 DOI: 10.18632/aging.204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The present study explored the prognosis and biological function roles of chromatin regulators (CRs) in patients with lung adenocarcinoma (LUAD). Using transcriptome profile and clinical follow-up data of LUAD dataset, we explored the molecular classification, developed, and validated a CR prognostic model, built an individual risk scoring system in LUAD, and compared the clinical and molecular characteristics between different subtypes and risk stratifications. We investigated the chemotherapy sensitivity and predicted potential immunotherapy response. Lastly, we collected the clinical samples and validated the prognosis and potential function role of NAPS2. Our study indicated that LUAD patients could be classified into two subtypes that had obviously different clinical background and molecular features. We constructed a prognostic model with eight CR genes, which was well validated in several other population cohort. We built high- and low-risk stratifications for LUAD patients. Patients from high-risk group were totally different from low-risk groups in clinical, biological function, gene mutation, microenvironment, and immune infiltration levels. We idented several potential molecular compounds for high-risk group treatment. We predicted that high-risk group may have poor immunotherapy response. We finally found that Neuronal PAS Domain Protein 2 (NPAS2) involved in the progression of LUAD via regulating cell adhesion. Our study indicated that CR involved in the progression of LUAD and affect their prognosis. Different therapeutic strategies should be developed for different molecular subtypes and risk stratifications. Our comprehensive analyses uncover specific determinants of CRs in LUAD and provides implications for investigating disease-associated CRs.
Collapse
Affiliation(s)
- Baishuang Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xueyao Rong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Meihua Long
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Aibin Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
22
|
Shi H, Shao B. LFA-1 Activation in T-Cell Migration and Immunological Synapse Formation. Cells 2023; 12:cells12081136. [PMID: 37190045 DOI: 10.3390/cells12081136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Integrin LFA-1 plays a critical role in T-cell migration and in the formation of immunological synapses. LFA-1 functions through interacting with its ligands with differing affinities: low, intermediate, and high. Most prior research has studied how LFA-1 in the high-affinity state regulates the trafficking and functions of T cells. LFA-1 is also presented in the intermediate-affinity state on T cells, however, the signaling to activate LFA-1 to the intermediate-affinity state and the role of LFA-1 in this affinity state both remain largely elusive. This review briefly summarizes the activation and roles of LFA-1 with varied ligand-binding affinities in the regulation of T-cell migration and immunological synapse formation.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Zhang R, Hu M, Chen HN, Wang X, Xia Z, Liu Y, Wang R, Xia X, Shu Y, Du D, Meng W, Qi S, Li Y, Xu H, Zhou ZG, Dai L. Phenotypic heterogeneity analysis of APC-mutant colon cancer by proteomics and phosphoproteomics identifies RAI14 as a key prognostic determinant in East Asians and Westerners. Mol Cell Proteomics 2023; 22:100532. [PMID: 36934880 PMCID: PMC10148045 DOI: 10.1016/j.mcpro.2023.100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Adenomatous polyposis coli (APC) is an important tumor suppressor and is mostly linked to the regulation of the WNT/β-catenin signaling pathway. APC mutation has been identified as an early event in more than 80% of sporadic colorectal cancers (CRCs). Moreover, prognostic differences are observed in CRC patients with APC mutations. Although previous genomics studies have investigated the roles of concomitant gene mutations in determining the phenotypic heterogeneity of APC-mutant tumors, valuable prognostic determinants for APC-mutant CRC patients are still lacking. Based on the proteome and phosphoproteome data, we classified APC-mutant colon cancer patients and revealed genomic, proteomic and phosphoproteomic heterogeneity in APC-mutant tumors. More importantly, we identified RAI14 as a key prognostic determinant for APC-mutant but not APC-wildtype colon cancer patients. The heterogeneity and the significance of prognostic biomarkers in APC-mutant tumors were further validated in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) colon cancer cohort. In addition, we found that colon cancer patients with high expression of RAI14 were less responsive to chemotherapy. Knockdown of RAI14 in cell lines led to reduced cell migration and changes in epithelial-mesenchymal transition (EMT)-related markers. Mechanistically, knockdown of RAI14 remodeled the phosphoproteome associated with cell adhesion, which might affect EMT marker expression and promote F-actin degradation. Collectively, this work describes the phenotypic heterogeneity of APC-mutant tumors and identifies RAI14 as an important prognostic determinant for APC-mutant colon cancer patients. The prognostic utility of RAI14 in APC-mutant colon cancer will provide early warning and increase the chance of successful treatment.
Collapse
Affiliation(s)
- Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhili Xia
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Wang
- West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuyang Xia
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Shu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
S100A8/S100A9 Integrates F-Actin and Microtubule Dynamics to Prevent Uncontrolled Extravasation of Leukocytes. Biomedicines 2023; 11:biomedicines11030835. [PMID: 36979814 PMCID: PMC10045313 DOI: 10.3390/biomedicines11030835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Immune reactions are characterized by the rapid immigration of phagocytes into sites of inflammation. Meticulous regulation of these migratory processes is crucial for preventing uncontrolled and harmful phagocyte extravasation. S100A8/S100A9 is the major calcium-binding protein complex expressed in phagocytes. After release, this complex acts as a proinflammatory alarmin in the extracellular space, but the intracellular functions of these highly abundant proteins are less clear. Results of this study reveal an important role of S100A8/S100A9 in coordinated cytoskeleton rearrangement during migration. We found that S100A8/S100A9 was able to cross-link F-actin and microtubules in a calcium- and phosphorylation-dependent manner. Cells deficient in S100A8/S100A9 showed abnormalities in cell adhesion and motility. Missing cytoskeletal interactions of S100A8/S100A9 caused differences in the surface expression and activation of β1-integrins as well as in the regulation of Src/Syk kinase family members. Loss of S100A8/S100A9 led to dysregulated integrin-mediated adhesion and migration, resulting in an overall higher dynamic activity of non-activated S100A8/S100A9-deficient phagocytes. Our data suggest that intracellular S100A8/S100A9 is part of a novel regulatory mechanism that ensures the precise control necessary to facilitate the change between the quiescent and activated state of phagocytes.
Collapse
|
25
|
Xiang L, Liang J, Wang Z, Lin F, Zhuang Y, Saiding Q, Wang F, Deng L, Cui W. Motion lubrication suppressed mechanical activation via hydrated fibrous gene patch for tendon healing. SCIENCE ADVANCES 2023; 9:eadc9375. [PMID: 36763658 PMCID: PMC9917012 DOI: 10.1126/sciadv.adc9375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Mechanical activation of fibroblasts, caused by friction and transforming growth factor-β1 recognition, is one of the main causes of tissue adhesions. In this study, we developed a lubricated gene-hydrogel patch, which provides both a motion lubrication microenvironment and gene therapy. The patch's outer layer is composed of polyethylene glycol polyester hydrogel. The hydrogel forms hydrogen bonds with water molecules to create the motion lubrication layer, and it also serves as a gene delivery library for long-term gene silencing. Under the motion lubricated microenvironment, extracellular signal-regulated kinase-small interfering RNA can silence fibroblasts and enhance the blocking effect against fibroblast activation. In vitro, the proposed patch effectively inhibits fibroblast activation and reduces the coefficient of friction. In vivo, this patch reduces the expression of vimentin and α-smooth muscle actin in fibroblasts. Therefore, the lubricated gene-hydrogel patch can inhibit the mechanical activation of fibroblasts to promote tendon healing.
Collapse
Affiliation(s)
| | | | - Zhen Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Feng Lin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Yaping Zhuang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Qimanguli Saiding
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Wenguo Cui
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
26
|
Wang Z, Xie X, Wang M, Ding M, Gu S, Xing X, Sun X. Analysis of common and characteristic actions of Panax ginseng and Panax notoginseng in wound healing based on network pharmacology and meta-analysis. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
27
|
Florczyk SJ, Hotaling NA, Simon M, Chalfoun J, Horenberg AL, Schaub NJ, Wang D, Szczypiński PM, DeFelice VL, Bajcsy P, Simon CG. Measuring dimensionality of cell-scaffold contacts of primary human bone marrow stromal cells cultured on electrospun fiber scaffolds. J Biomed Mater Res A 2023; 111:106-117. [PMID: 36194510 DOI: 10.1002/jbm.a.37449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by. In order to probe how scaffolds affect cell shape and behavior, cell-fiber contacts were imaged to assess their shape and dimensionality through a novel approach. Fluorescent polymeric fiber scaffolds were made so that they could be imaged by confocal fluorescence microscopy. Fluorescent polymer films were made as a planar control. hBSMCs were cultured on the fluorescent substrates and the cells and substrates were imaged. Two different image analysis approaches, one having geometrical assumptions and the other having statistical assumptions, were used to analyze the 3D structure of cell-scaffold contacts. The cells cultured in scaffolds contacted the fibers in multiple planes over the surface of the cell, while the cells cultured on films had contacts confined to the bottom surface of the cell. Shape metric analysis indicated that cell-fiber contacts had greater dimensionality and greater 3D character than the cell-film contacts. These results suggest that cell adhesion site-initiated signaling could emanate from multiple planes over the cell surface during culture in fibers, as opposed to emanating only from the cell's basal surface during culture on planar surfaces.
Collapse
Affiliation(s)
- Stephanie J Florczyk
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nathan A Hotaling
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.,Axle Informatics, Rockville, Maryland, USA
| | - Mylene Simon
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Joe Chalfoun
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Allison L Horenberg
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nicholas J Schaub
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.,Axle Informatics, Rockville, Maryland, USA
| | - Dongbo Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | | | - Veronica L DeFelice
- Biochemistry and Molecular Biology Program, Georgetown University, Washington, District of Columbia, USA
| | - Peter Bajcsy
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
28
|
Qiu P, Feng L, Fu Q, Dai T, Liu M, Wang P, Lan Y. Dual-Functional Polyetheretherketone Surface with an Enhanced Osteogenic Capability and an Antibacterial Adhesion Property In Vitro by Chitosan Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14712-14724. [PMID: 36420594 DOI: 10.1021/acs.langmuir.2c02267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A chitosan layer was covalently bonded to a polyetheretherketone (PEEK) surface using a simple facile self-assembly method to address inadequate biological activity and infection around the implant. The surface characterization, layer degradation, biological activity, and antibacterial adhesion properties of chitosan-modified PEEK (PEEK-CS) were studied. Through chitosan grafting, the surface morphology changed, the surface roughness increased, and the contact angle decreased significantly. PEEK-CS boosted cell adhesion, proliferation, increased alkaline phosphate activity, extracellular matrix mineralization, and expression of osteogenic genes. PEEK-CS demonstrated less adhesion to Porphyromonas gingivalis as well as less bacterial adhesion to P. gingivalis and Streptococcus mutans. According to our findings, chitosan modification significantly improved the osteogenic ability and antibacterial adhesion of PEEK in vitro.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Le Feng
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Qilin Fu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Tao Dai
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Min Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Pin Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Yuyan Lan
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| |
Collapse
|
29
|
Free fatty acids stabilize integrin β 1via S-nitrosylation to promote monocyte-endothelial adhesion. J Biol Chem 2022; 299:102765. [PMID: 36470423 PMCID: PMC9808002 DOI: 10.1016/j.jbc.2022.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/09/2022] Open
Abstract
Hyperlipidemia characterized by high blood levels of free fatty acids (FFAs) is important for the progression of inflammatory cardiovascular diseases. Integrin β1 is a transmembrane receptor that drives various cellular functions, including differentiation, migration, and phagocytosis. However, the underlying mechanisms modifying integrin β1 protein and activity in mediating monocyte/macrophage adhesion to endothelium remain poorly understood. In this study, we demonstrated that integrin β1 protein underwent S-nitrosylation in response to nitrosative stress in macrophages. To examine the effect of elevated levels of FFA on the modulation of integrin β1 expression, we treated the macrophages with a combination of oleic acid and palmitic acid (2:1) and found that FFA activated inducible nitric oxide synthase/nitric oxide and increased the integrin β1 protein level without altering the mRNA level. FFA promoted integrin β1 S-nitrosylation via inducible nitric oxide synthase/nitric oxide and prevented its degradation by decreasing binding to E3 ubiquitin ligase c-Cbl. Furthermore, we found that increased integrin α4β1 heterodimerization resulted in monocyte/macrophage adhesion to endothelium. In conclusion, these results provided novel evidence that FFA-stimulated N--O stabilizes integrin β1via S-nitrosylation, favoring integrin α4β1 ligation to promote vascular inflammation.
Collapse
|
30
|
Matino L, Mariano A, Ausilio C, Garg R, Cohen-Karni T, Santoro F. Modulation of Early Stage Neuronal Outgrowth through Out-of-Plane Graphene. NANO LETTERS 2022; 22:8633-8640. [PMID: 36301701 DOI: 10.1021/acs.nanolett.2c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The correct wiring of a neural network requires neuron to integrate an incredible repertoire of cues found in their extracellular environment. The astonishing efficiency of this process plays a pivotal role in the correct wiring of the brain during development and axon regeneration. Biologically inspired micro- and nanostructured substrates have been shown to regulate axonal outgrowth. In parallel, several studies investigated graphene's potential as a conductive neural interface, able to enhance cell adhesion, neurite sprouting and outgrowth. Here, we engineered a 3D single- to few-layer fuzzy graphene morphology (3DFG), 3DFG on a collapsed Si nanowire (SiNW) mesh template (NT-3DFGc), and 3DFG on a noncollapsed SiNW mesh template (NT-3DFGnc) as neural-instructive materials. The micrometric protruding features of the NWs templates dictated neuronal growth cone establishment, as well as influencing axon elongation and branching. Furthermore, neurons-to-graphene coupling was investigated with comprehensive view of integrin-mediated contact adhesion points and plasma membrane curvature processes.
Collapse
Affiliation(s)
- Laura Matino
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e delle Produzioni Industriali, DICMAPI, Università "Federico II", Naples 80125, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen 52074, Germany
- Institute for Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Juelich 52428, Germany
| |
Collapse
|
31
|
Bhattacharjya S. The structural basis of β2 integrin intra-cellular multi-protein complexes. Biophys Rev 2022; 14:1183-1195. [PMID: 36345283 PMCID: PMC9636337 DOI: 10.1007/s12551-022-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell adhesion is a pivotal physiological process which is essential for cell-cell communications, cell migration, and interactions with extracellular matrix. Integrins, a family of large hetero-dimeric type I membrane proteins, are known for driving cell adhesion functions. Among 24 different integrins, four β2 integrins, αL β2, αM β2, αX β2 and αD β2, are specific for cell adhesion and migration of leukocytes. Many cytosolic proteins interact with short cytosolic tails (CTs) of β2 and other integrins which are essential in bi-directional signaling processes. Further, phosphorylation of CTs of integrins regulates binding of intra-cellular proteins and signaling systems. In this review, recent advances in structures and interactions of multi-protein complexes of integrin tails, with a focus on β2 integrin, and cytosolic proteins are discussed along with a proposed future direction.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
32
|
Wen L, Lyu Q, Ley K, Goult BT. Structural Basis of β2 Integrin Inside—Out Activation. Cells 2022; 11:cells11193039. [PMID: 36231001 PMCID: PMC9564206 DOI: 10.3390/cells11193039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
β2 integrins are expressed on all leukocytes. Precise regulation of the β2 integrin is critical for leukocyte adhesion and trafficking. In neutrophils, β2 integrins participate in slow rolling. When activated by inside–out signaling, fully activated β2 integrins mediate rapid leukocyte arrest and adhesion. The two activation pathways, starting with selectin ligand engagement and chemokine receptor ligation, respectively, converge on phosphoinositide 3-kinase, talin-1, kindlin-3 and Rap1. Here, we focus on recent structural insights into autoinhibited talin-1 and autoinhibited trimeric kindlin-3. When activated, both talin-1 and kindlin-3 can bind the β2 cytoplasmic tail at separate but adjacent sites. We discuss possible pathways for talin-1 and kindlin-3 activation, recruitment to the plasma membrane, and their role in integrin activation. We propose new models of the final steps of integrin activation involving the complex of talin-1, kindlin-3, integrin and the plasma membrane.
Collapse
Affiliation(s)
- Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89577, USA
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Qingkang Lyu
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: ; Tel.: +44-(0)1227-816-142
| |
Collapse
|
33
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
34
|
Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Int J Mol Sci 2022; 23:ijms23105779. [PMID: 35628588 PMCID: PMC9147902 DOI: 10.3390/ijms23105779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.
Collapse
|
35
|
Gahmberg CG, Grönholm M, Madhavan S. Regulation of Dynamic Cell Adhesion by Integrin-Integrin Crosstalk. Cells 2022; 11:cells11101685. [PMID: 35626722 PMCID: PMC9140058 DOI: 10.3390/cells11101685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Most cells express several integrins. The integrins are able to respond to various cellular functions and needs by modifying their own activation state, but in addition by their ability to regulate each other by activation or inhibition. This crosstalk or transdominant regulation is strictly controlled. The mechanisms resulting in integrin crosstalk are incompletely understood, but they often involve intracellular signalling routes also used by other cell surface receptors. Several studies show that the integrin cytoplasmic tails bind to a number of cytoskeletal and adaptor molecules in a regulated manner. Recent work has shown that phosphorylations of integrins and key intracellular molecules are of pivotal importance in integrin-cytoplasmic interactions, and these in turn affect integrin activity and crosstalk. The integrin β-chains play a central role in regulating crosstalk. In addition to Integrin-integrin crosstalk, crosstalk may also occur between integrins and related receptors, including other adhesion receptors, growth factor and SARS-CoV-2 receptors.
Collapse
Affiliation(s)
- Carl G. Gahmberg
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Correspondence: ; Tel.: +358-50-539-9439
| | - Mikaela Grönholm
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland
| | - Sudarrshan Madhavan
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
| |
Collapse
|
36
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|