1
|
Ghazi NF, Burley JC, Dryden IL, Roberts CJ. High-Throughput Microarray Approaches for Predicting the Stability of Drug-Polymer Solid Dispersions. Mol Pharm 2025; 22:343-362. [PMID: 39707995 PMCID: PMC11707727 DOI: 10.1021/acs.molpharmaceut.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms). They were subjected to a six-month stability study under accelerated conditions (40 °C and 75% relative humidity). Physical stability outcomes varied significantly among the different drug-polymer combinations, with stability ranging from immediate drug crystallization to several days of stability. The comprehensive data set obtained from this high-throughput screening was used to construct multiple linear regression models to correlate the stability of ASDs with the physicochemical properties of the used Active Pharmaceutical Ingredients (APIs). Our findings reveal that increased stability of ASDs is associated with a lower number of hydrogen bond acceptors alongside a higher overall count of heteroatoms and oxygen atoms in the drug molecules. This suggests that, while heteroatoms and oxygen are abundant, their role as hydrogen bond acceptors is limited due to their specific chemical environments, contributing to overall stability. Additionally, drugs with lower melting points formed more stable ASDs within the polymer matrix. This study, hence, highlights the importance of minimizing repulsive drug-polymer interactions to yield a physically stable ASD. The developed models, validated through Leave-One-Out Cross-Validation, demonstrated good predictability of stability trends. Hence, the high-throughput 2D inkjet printing technique that was used to manufacture the microarrays proved valuable for assessing drug-polymer crystallization onset risks and predicting stability outcomes. In conclusion, this study demonstrates a novel approach to solid dispersion formulation physical stability screening, enhancing efficiency, minimizing material requirements, and expanding the range of samples evaluated. Our findings provide insights into the critical physicochemical properties influencing ASD stability, offering a significant advancement in developing stable ASDs.
Collapse
Affiliation(s)
- Noha F. Ghazi
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Department
of Pharmaceutics, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - Jonathan C. Burley
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ian L. Dryden
- Department
of Statistics, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Clive J. Roberts
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School
of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
2
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
3
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
4
|
Kong X, Guo Y, Ling Y, Chen B. Establishment of a Multivariate Analysis Based on Photonic Crystal Hydrogel Bead Arrays and Its Application for Detecting Platelet-specific Antibodies. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1371728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xin Kong
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Hematology, the First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Yanting Guo
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School, South University, Nanjing, China
| |
Collapse
|
5
|
Lee JY, Won BY, Park HG. Label-Free Multiplex DNA Detection Utilizing Projected Capacitive Touchscreen. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/08/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Joon Young Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program); Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Byoung Yeon Won
- Department of Chemical and Biomolecular Engineering (BK21+ Program); Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program); Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
6
|
Ratajczak T, Uszczyńska B, Frydrych-Tomczak E, Chmielewski MK. The "Clickable" Method for Oligonucleotide Immobilization Onto Azide-Functionalized Microarrays. Methods Mol Biol 2016; 1368:25-36. [PMID: 26614066 DOI: 10.1007/978-1-4939-3136-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The DNA microarray technique was supposed to help identifying and analyzing the expression level of tens of thousands of genes in the whole genome. But there is a serious problem concerning fabrication of the microarrays by chemical synthesis, such as specific and efficient linking of probes to a solid support. Therefore, we reckon that applying "click" chemistry to covalently anchor oligonucleotides on chemically modified supports may help construct microarrays in applications such as gene identification. Silanization of the glass support with organofunctional silane makes it possible to link azide groups on glass surface and the nucleic acid probe that is equipped with a pentynyl group. This is followed by direct spotting of the nucleic acid on the azide-modified glass support in the presence of copper ions, and this is a frequently applied method of "click" chemistry.
Collapse
Affiliation(s)
- Tomasz Ratajczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Barbara Uszczyńska
- Centre for Genomic Regulation (CGR), Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emilia Frydrych-Tomczak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, 61-612, Poznan, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
7
|
Abstract
There is a rapid proliferation of new technologies to identify an ever increasing spectrum of autoantibodies in diverse medical conditions that range from organ-specific autoimmune diseases to systemic rheumatic diseases. Although many laboratories have adopted diagnostic platforms, such as enzyme linked immunoassays (ELISAs), to improve turn around times and meet budget constraints, the prevailing evidence is that the rapid adoption of new technologies is not attended by an appropriate balance of assay sensitivity and specificity. Emerging diagnostic technologies include addressable laser bead immunoassays, microarrays in microfluidics platforms and nanobarcode particles. Although these technologies provide advantages of high-throughput, multiplexed autoantibody assays that can be coupled to other disease specific biomarkers (ie, cytokines, single nucleotide polymorphisms) there is a clear need for standardization and internal validation before they are adopted into the clinical diagnostic laboratory.
Collapse
Affiliation(s)
- M J Fritzler
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Choi JS, Bae S, Kim KH, Seo TS. A large-area hemispherical perforated bead microarray for monitoring bead based aptamer and target protein interaction. BIOMICROFLUIDICS 2014; 8:064119. [PMID: 25587373 PMCID: PMC4290684 DOI: 10.1063/1.4903939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Herein, we present a large-area 3D hemispherical perforated microwell structure for a bead based bioassay. Such a unique microstructure enables us to perform the rapid and stable localization of the beads at the single bead level and the facile manipulation of the bead capture and retrieval with high speed and efficiency. The fabrication process mainly consisted of three steps: the convex micropatterned nickel (Ni) mold production from the concave micropatterned silicon (Si) wafer, hot embossing on the polymer matrix to generate the concave micropattened acrylate sheet, and reactive ion etching to make the bottom holes. The large-area hemispherical perforated micropatterned acrylate sheet was sandwiched between two polydimethylsiloxane (PDMS) microchannel layers. The bead solution was injected and recovered in the top PDMS microchannel, while the bottom PDMS microchannel was connected with control lines to exert the hydrodynamic force in order to alter the flow direction of the bead solution for the bead capture and release operation. The streptavidin-coated microbead capture was achieved with almost 100% yield within 1 min, and all the beads were retrieved in 10 s. Lysozyme or thrombin binding aptamer labelled microbeads were trapped on the proposed bead microarray, and the in situ fluorescence signal of the bead array was monitored after aptamer-target protein interaction. The protein-aptamer conjugated microbeads were recovered, and the aptamer was isolated for matrix assisted laser desorption/ionization time-of-flight mass spectrometry analysis to confirm the identity of the aptamer.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Sunwoong Bae
- Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Kyung Hoon Kim
- Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| |
Collapse
|
9
|
Genomics and Proteomics of Foodborne Microorganisms. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Rao AN, Grainger DW. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE. Biomater Sci 2014; 2:436-471. [PMID: 24765522 PMCID: PMC3992954 DOI: 10.1039/c3bm60181a] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.
Collapse
Affiliation(s)
- Archana N. Rao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| | - David W. Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
11
|
Simultaneous and combined detection of multiple tumor biomarkers for prostate cancer in human serum by suspension array technology. Biosens Bioelectron 2013; 47:92-8. [DOI: 10.1016/j.bios.2013.02.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/13/2022]
|
12
|
Uszczyńska B, Zyprych-Walczak J, Handschuh L, Szabelska A, Kaźmierczak M, Woronowicz W, Kozłowski P, Sikorski MM, Komarnicki M, Siatkowski I, Figlerowicz M. Analysis of boutique arrays: a universal method for the selection of the optimal data normalization procedure. Int J Mol Med 2013; 32:668-84. [PMID: 23857190 DOI: 10.3892/ijmm.2013.1443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/28/2013] [Indexed: 11/06/2022] Open
Abstract
DNA microarrays, which are among the most popular genomic tools, are widely applied in biology and medicine. Boutique arrays, which are small, spotted, dedicated microarrays, constitute an inexpensive alternative to whole-genome screening methods. The data extracted from each microarray-based experiment must be transformed and processed prior to further analysis to eliminate any technical bias. The normalization of the data is the most crucial step of microarray data pre-processing and this process must be carefully considered as it has a profound effect on the results of the analysis. Several normalization algorithms have been developed and implemented in data analysis software packages. However, most of these methods were designed for whole-genome analysis. In this study, we tested 13 normalization strategies (ten for double-channel data and three for single-channel data) available on R Bioconductor and compared their effectiveness in the normalization of four boutique array datasets. The results revealed that boutique arrays can be successfully normalized using standard methods, but not every method is suitable for each dataset. We also suggest a universal seven-step workflow that can be applied for the selection of the optimal normalization procedure for any boutique array dataset. The described workflow enables the evaluation of the investigated normalization methods based on the bias and variance values for the control probes, a differential expression analysis and a receiver operating characteristic curve analysis. The analysis of each component results in a separate ranking of the normalization methods. A combination of the ranks obtained from all the normalization procedures facilitates the selection of the most appropriate normalization method for the studied dataset and determines which methods can be used interchangeably.
Collapse
Affiliation(s)
- Barbara Uszczyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND Primary biliary cirrhosis (PBC) is an autoimmune liver disease of unknown etiology characterized by the presence of antimitochondrial antibodies (AMA) in 90 - 95% of patients. AMA are directed against members of 2-oxo-acid dehydrogenase complex, including mainly the E2 subunit of pyruvate dehydrogenase, the E2 subunit of branched chain 2-oxo-acid dehydrogenase complex and the E2 subunit of the oxoglutarate dehydrogenase complex. Apart from AMA, PBC is characterized by the presence of PBC-specific antinuclear antibodies (ANA). The molecular targets of these PBC-specific ANA have been characterized as gp210, lamin B receptor, nucleoporin 62, sp100 and promyelocytic leukemia proteins. OBJECTIVE To discuss the molecular diagnostics of PBC in the context of AMA and PBC-specific ANA detection by the use of conventional and 'new' novel technologies. METHODS Critical analysis of all published data regarding PBC serology between 1985 and 2007 was performed in order to suggest a diagnostic algorithm for the serological diagnosis of PBC. RESULTS/CONCLUSIONS AMA are first detected by indirect immunofluorescence (IIF) on frozen sections of rat liver, kidney and stomach substrates. However, because IIF is time-consuming, labor-intensive and observer-dependent, molecular-based assays such as immunoblot and enzyme-linked immunosorbent assays have been developed with high sensitivity and specificity. Similarly, molecular-based assays have also been developed for the detection of PBC-specific ANA. The latter investigation seems to be of outmost importance because these autoantibodies can be used as a positive tool in the diagnosis of AMA-negative PBC while at the same time identifying a subgroup of PBC patients with more advanced disease. New test systems for the detection of PBC-specific antibodies based on the xMultiple Analyte Profiling Luminex methodology seems to be the future in molecular diagnostics of PBC as it was expected first to decrease the cost and second to speed up an accurate serological profile, although they may decrease further the proportion of AMA-negative PBC cases.
Collapse
Affiliation(s)
- Eirini I Rigopoulou
- University of Thessaly, Department of Medicine, Academic Liver Unit and Research Lab of Internal Medicine, Medical School, Papakiriazi 22 Street, 41222 Larissa, Greece +30 2410 565251 ; +30 2410 565250 ;
| | | |
Collapse
|
14
|
Fritzler MJ, Fritzler ML. Microbead-based technologies in diagnostic autoantibody detection. ACTA ACUST UNITED AC 2013; 3:81-9. [PMID: 23495965 DOI: 10.1517/17530050802651561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is a rapid proliferation of new technologies to identify a spectrum of autoantibodies in medical conditions that range from organ-specific autoimmune diseases to systemic rheumatic diseases. Although many laboratories have adopted high-throughput diagnostic platforms such as enzyme linked immunoassays (ELISA), other technologies such as microbead-based assays are emerging as an alternative diagnostic platform. OBJECTIVE To understand the performance and importance of bead based immunoassays in clinical diagnostics and therapeutics. METHOD Current literature was reviewed using the PubMed search engine combining keywords of immunoassay and Luminex, as well as a personal literature database. Included in the evaluation and commentary are bead-based assays such as addressable laser bead immunoassays and related magnetic bead assays. CONCLUSIONS Comparison with other conventional technologies has indicated that laser microbead immunoassays are reliable, accurate, cost-effective, highly sensitive and have rapid turn around time for results. While there are advantages to this diagnostic platform, there are challenges that must be addressed before wider acceptance or long-term use of this technology platform in the routine clinical diagnostic laboratory.
Collapse
Affiliation(s)
- Marvin J Fritzler
- University of Calgary, Faculty of Medicine, 3330 Hospital Dr NW, T2N 4N1, Calgary, AB, Canada +01 403 220 3533 ; +01 403 283 5666 ;
| | | |
Collapse
|
15
|
Chou J, Wong J, Christodoulides N, Floriano PN, Sanchez X, McDevitt J. Porous bead-based diagnostic platforms: bridging the gaps in healthcare. SENSORS (BASEL, SWITZERLAND) 2012; 12:15467-99. [PMID: 23202219 PMCID: PMC3522972 DOI: 10.3390/s121115467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/25/2012] [Accepted: 11/01/2012] [Indexed: 01/11/2023]
Abstract
Advances in lab-on-a-chip systems have strong potential for multiplexed detection of a wide range of analytes with reduced sample and reagent volume; lower costs and shorter analysis times. The completion of high-fidelity multiplexed and multiclass assays remains a challenge for the medical microdevice field; as it struggles to achieve and expand upon at the point-of-care the quality of results that are achieved now routinely in remote laboratory settings. This review article serves to explore for the first time the key intersection of multiplexed bead-based detection systems with integrated microfluidic structures alongside porous capture elements together with biomarker validation studies. These strategically important elements are evaluated here in the context of platform generation as suitable for near-patient testing. Essential issues related to the scalability of these modular sensor ensembles are explored as are attempts to move such multiplexed and multiclass platforms into large-scale clinical trials. Recent efforts in these bead sensors have shown advantages over planar microarrays in terms of their capacity to generate multiplexed test results with shorter analysis times. Through high surface-to-volume ratios and encoding capabilities; porous bead-based ensembles; when combined with microfluidic elements; allow for high-throughput testing for enzymatic assays; general chemistries; protein; antibody and oligonucleotide applications.
Collapse
Affiliation(s)
- Jie Chou
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
| | - Jorge Wong
- Department of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA; E-Mail:
| | - Nicolaos Christodoulides
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - Pierre N. Floriano
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - Ximena Sanchez
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - John McDevitt
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| |
Collapse
|
16
|
Rungrassamee W, Tosukhowong A, Klanchui A, Maibunkaew S, Plengvidhya V, Karoonuthaisiri N. Development of bacteria identification array to detect lactobacilli in Thai fermented sausage. J Microbiol Methods 2012; 91:341-53. [PMID: 23022427 DOI: 10.1016/j.mimet.2012.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 01/11/2023]
Abstract
To improve the quality and safety of food products, there is a need in the food industry for a reliable method for simultaneously monitoring multiple bacterial strains. Microarray technology is a high-throughput screening approach that can provide an alternative for bacteria detection. A total of 164 bacteria-specific probes were designed from 16S rRNA gene sequences to target 12 bacteria species, including lactic acid bacteria and selected food pathogens. After fabrication onto aminosilane-coated slides, hybridization conditions of the array were optimized for high specificity and signal intensities. The array was applied to detect 12 bacteria individually and was specific to all (Lactobacillus plantarum group, L. fermentum, L. brevis, L. delbrueckii, L. casei, L. sakei, Escherichia coli, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes) except L. animalis. Multiplex detection using mixed bacteria populations was evaluated and accurate detection was obtained. The feasibility of using the array to detect the target bacteria in food was evaluated with Thai fermented sausages (Nham). Meat samples were collected on days 2, 3 and 7 after natural fermentation, L. plantarum-inoculated fermentation and L. brevis-inoculated fermentation before applying to the array. The naturally-fermented Nham contained L. sakei, L. delbrueckii, L. plantarum and L. fermentum. The L. plantarum-inoculated Nham showed a similar lactic acid bacteria population but the positive signal level for L. plantarum was higher than with natural fermentation. The L. brevis-inoculated Nham contained L. brevis, L. plantarum, L. delbrueckii and L. fermentum. The array was used to monitor bacteria population dynamics during the fermentation process. The naturally-fermented and L. brevis-inoculated samples showed lower positive signal levels of L. plantarum on day 2, but signals gradually increased on days 3 and 7 of the fermentation. In contrast, the L. plantarum-started fermentation showed a higher positive signal level on day 2 than the natural and L. brevis-inoculated samples, and the positive signal level remained high on days 3 and 7. The bacteria identification array was proven to be useful as an alternative method to detect and monitor target bacteria populations during food fermentation.
Collapse
Affiliation(s)
- Wanilada Rungrassamee
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand.
| | | | | | | | | | | |
Collapse
|
17
|
Dueñas-Sánchez R, Gutiérrez G, Rincón AM, Codón AC, Benítez T. Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers' strains. FEMS Yeast Res 2012; 12:625-36. [PMID: 22591337 DOI: 10.1111/j.1567-1364.2012.00813.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
Bakers' yeast-producing companies grow cells under respiratory conditions, at a very high growth rate. Some desirable properties of bakers' yeast may be altered if fermentation rather than respiration occurs during biomass production. That is why differences in gene expression patterns that take place when industrial bakers' yeasts are grown under fermentative, rather than respiratory conditions, were examined. Macroarray analysis of V1 strain indicated changes in gene expression similar to those already described in laboratory Saccharomyces cerevisiae strains: repression of most genes related to respiration and oxidative metabolism and derepression of genes related to ribosome biogenesis and stress resistance in fermentation. Under respiratory conditions, genes related to the glyoxylate and Krebs cycles, respiration, gluconeogenesis, and energy production are activated. DOG21 strain, a partly catabolite-derepressed mutant derived from V1, displayed gene expression patterns quite similar to those of V1, although lower levels of gene expression and changes in fewer number of genes as compared to V1 were both detected in all cases. However, under fermentative conditions, DOG21 mutant significantly increased the expression of SNF1 -controlled genes and other genes involved in stress resistance, whereas the expression of the HXK2 gene, involved in catabolite repression, was considerably reduced, according to the pleiotropic stress-resistant phenotype of this mutant. These results also seemed to suggest that stress-resistant genes control desirable bakers' yeast qualities.
Collapse
|
18
|
Uszczyńska B, Ratajczak T, Frydrych E, Maciejewski H, Figlerowicz M, Markiewicz WT, Chmielewski MK. Application of click chemistry to the production of DNA microarrays. LAB ON A CHIP 2012; 12:1151-1156. [PMID: 22318451 DOI: 10.1039/c2lc21096g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction was applied as the novel method of DNA immobilization on a modified solid support. The CuAAC click reaction enables the covalent binding of DNA modified with pentynyl groups at its 5'-end to azide-loaded slides. Click microarrays were produced using this approach and successfully employed in biological/model experiments.
Collapse
Affiliation(s)
- Barbara Uszczyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | | | | | |
Collapse
|
19
|
Desmarais SM, Leitner T, Barron AE. Quantitative experimental determination of primer-dimer formation risk by free-solution conjugate electrophoresis. Electrophoresis 2012; 33:483-91. [PMID: 22331820 DOI: 10.1002/elps.201100452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/09/2022]
Abstract
DNA barcodes are short, unique ssDNA primers that "mark" individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 base-pairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive base-pairs formed, yet non-consecutive base-pairs did not create stable dimers even when 20 out of 30 possible base-pairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation.
Collapse
Affiliation(s)
- Samantha M Desmarais
- Department of Bioengineering, Stanford University, Stanford, CA 94305-5444, USA.
| | | | | |
Collapse
|
20
|
Cliff JB, Kreuzer HW, Ehrhardt CJ, Wunschel DS. The Microbe: The Basics of Structure, Morphology, and Physiology as They Relate to Microbial Characterization and Attribution. CHEMICAL AND PHYSICAL SIGNATURES FOR MICROBIAL FORENSICS 2012. [PMCID: PMC7123343 DOI: 10.1007/978-1-60327-219-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter is meant to (1) review classical methods used to characterize and classify microbes and (2) introduce new molecular methods used in microbial characterization. The fundamental composition of microbes is discussed as well as their importance in classification of microbes into genus and species. Classical microbiological methods in general seek to define the common features of specific bacterial groups as a means of classification and identification of microbes. Thus, the focus was to describe the common features which discriminated closely related groups of organisms. In contrast, the newer molecular methods often seek to expand the classification of microbes not only as a means to organize microbial phylogeny but also to differentiate signatures between microbes identified within a species in greater detail. Molecular biology tools are used both as an adjunct to established methods and as replacement for classical methods for detection, discrimination, or identification of bacterial and viral species.
Collapse
Affiliation(s)
- John B. Cliff
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, 6009 West Australia Australia
| | - Helen W. Kreuzer
- Chemical and Biological Signature Scienc, Pacific Northwest National Laboratory, PO Box 999, MS P7-50, Richland, 99352 Washington USA
| | - Christopher J. Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, 1020 W. Main Street, Richmond, 23284 Virginia USA
| | - David S. Wunschel
- Chemical and Biological Signature Scienc, Pacific Northwest National Laboratory, PO Box 999, MS P7-50, Richland, 99352 Washington USA
| |
Collapse
|
21
|
Konry T, Bale SS, Bhushan A, Shen K, Seker E, Polyak B, Yarmush M. Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection. Mikrochim Acta 2011; 176:251-269. [PMID: 25378716 DOI: 10.1007/s00604-011-0705-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. Recent advances in micro- and nanoscience and engineering, in particular in the areas of particles and microfluidic technologies, have advanced the "lab-on-a-chip" concept towards the development of a new generation of point-of-care diagnostic devices that could significantly enhance test sensitivity and speed. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics. Although the potential diagnostic applications are virtually unlimited, the most important applications are foreseen in the areas of biomarker research, cancer diagnosis, and detection of infectious microorganisms.
Collapse
Affiliation(s)
- Tania Konry
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, 51 Blossom St., Boston 02114 MA, USA
| | - Shyam Sundhar Bale
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, 51 Blossom St., Boston 02114 MA, USA
| | - Abhinav Bhushan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, 51 Blossom St., Boston 02114 MA, USA
| | - Keyue Shen
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, 51 Blossom St., Boston 02114 MA, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California, Davis, 3177 Kemper Hall, Davis, CA 95616, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Martin Yarmush
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, 51 Blossom St., Boston 02114 MA, USA
| |
Collapse
|
22
|
Shaughnessy RG, Meade KG, McGivney BA, Allan B, O'Farrelly C. Global gene expression analysis of chicken caecal response to Campylobacter jejuni. Vet Immunol Immunopathol 2011; 142:64-71. [PMID: 21605915 DOI: 10.1016/j.vetimm.2011.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 03/31/2011] [Accepted: 04/09/2011] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni colonises the caecum of more than 90% of commercial chickens. Even though colonisation is asymptomatic, we hypothesised that it is mediated by activation of several biological pathways. We therefore used chicken-specific 20K oligonucleotide microarrays to examine global gene expression in C. jejuni-challenged birds. Microarray results demonstrate small but significant fold-changes in expression of 270 genes 20 h post-challenge, corresponding to a wide range of biological processes including cell growth, nutrient metabolism and immunological activity. Expression of NOX1 (2.3-fold) and VCAM1 (1.5-fold) were significantly increased in colonised birds (P<0.05), indicating oxidative burst and endothelial cell activation, respectively. Microarray results, supplemented by qRT-PCR analyses demonstrated increased TOPK (1.9-fold), IL17 (3.6-fold), IL21 (2.1-fold), IL7R (4-fold) and CTLA4 (2.5-fold) gene expression (P<0.05), which was suggestive of T cell mediated activity. Combined these results suggest that C. jejuni has nominal effects on global caecal gene expression in the chicken but significant changes detected are suggestive of a protective intestinal T cell response.
Collapse
Affiliation(s)
- Ronan G Shaughnessy
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Ben-Yoav H, Melamed S, Freeman A, Shacham-Diamand Y, Belkin S. Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Crit Rev Biotechnol 2010; 31:337-53. [PMID: 21190513 DOI: 10.3109/07388551.2010.532767] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in the convergence of the biological, chemical, physical, and engineering sciences have opened new avenues of research into the interfacing of diverse biological moieties with inanimate platforms. A main aspect of this field, the integration of live cells with micro-machined platforms for high throughput and bio-sensing applications, is the subject of the present review. These unique hybrid systems are configured in a manner that ensures positioning of the cells in designated patterns, and enables cellular viability maintenance, and monitoring of cellular functionality. Here we review both animate and inanimate surface properties and how they affect cellular attachment, describe relevant modifications of both types of surfaces, list technologies for platform engineering and for cell deposition in the desired configurations, and discuss the influence of various deposition and immobilization methods on the viability and performance of the immobilized cells.
Collapse
Affiliation(s)
- Hadar Ben-Yoav
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
25
|
Pippig F, Holländer A. Hydrogel Nanofilms for Biomedical Applications: Synthesis via Polycondensation Reactions. Macromol Biosci 2010; 10:1093-105. [DOI: 10.1002/mabi.201000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Abstract
The development of rapid, accurate, and sensitive diagnostic methods for detecting pathogens is the basis for treating, controlling, and eradicating infectious diseases of veterinary importance. Scientific and technological advancements have revolutionized the field of veterinary diagnostics. Genome sequencing has allowed efficient, sensitive, and specific diagnostic assays to be developed based on the detection of nucleic acids. The integration of advances in biochemistry, proteomics, engineering, and medicine offers enormous potential for the rapid and accurate diagnosis of viral, microbial, genetic, and metabolic disease. In the future, polymerase chain reaction assays, microarray testing, genomic analysis, and metabolic profiling will be accomplished in a rapid, portable, sensitive, and cost-efficient manner.
Collapse
|
27
|
Bally M, Vörös J, Takeuchi S. Multilayers of hydrogels loaded with microparticles: a fast and simple approach for microarray manufacturing. LAB ON A CHIP 2010; 10:372-378. [PMID: 20091010 DOI: 10.1039/b916071j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a novel and simple approach towards the creation of arrays of biomolecules for the multiplexed detection of biological interactions. Microarrays were obtained by cutting stacked layers of biofunctionalized polystyrene particle layers embedded in a permeable agarose matrix. Microparticles were therefore the vehicles for biorecognition. The three-dimensional constructs were obtained by consecutive dipping steps in a pre-gel solution. Our strategy enables the rapid manufacturing of a large number of array copies in a flexible manner and without any specialized instrumentation. Model binding assays for the detection of rabbit and mouse IgG were performed as a proof of concept using a fluorescence microscope for read-out. The limits of detection were in the low picomolar range for the sandwich assay while 1 IgG out of 50,000 background proteins could be detected in a reverse phase assay. Thus, without any assay optimization, sensitivities comparable to the ones usually observed for standard fluorescence-based assays were achieved with the particle/hydrogel array.
Collapse
Affiliation(s)
- Marta Bally
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH and University Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
28
|
Lamberti I, Tanzarella C, Solinas I, Padula C, Mosiello L. An antibody-based microarray assay for the simultaneous detection of aflatoxin B1 and fumonisin B1. Mycotoxin Res 2009; 25:193-200. [DOI: 10.1007/s12550-009-0028-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
|
29
|
Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR. High throughput methods applied in biomaterial development and discovery. Biomaterials 2009; 31:187-98. [PMID: 19815273 DOI: 10.1016/j.biomaterials.2009.09.037] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 09/10/2009] [Indexed: 01/18/2023]
Abstract
The high throughput discovery of new bio materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal composition that fulfils a particular biomedical application. Here we review the literature in this area and conclude that for polymers this process is best achieved in a microarray format, which enable thousands of cell-material interactions to be monitored on a single chip. Polymer microarrays can be formed by printing pre-synthesised polymers or by printing monomers onto the chip where on-slide polymerisation is initiated. The surface properties of the material can be analysed and correlated to the biological performance using high throughput surface analysis, including time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements. This approach enables the surface properties responsible for the success of a material to be understood, which in turn provides the foundations of future material design. The high throughput discovery of materials using polymer microarrays has been explored for many cell-based applications including the isolation of specific cells from heterogeneous populations, the attachment and differentiation of stem cells and the controlled transfection of cells. Further development of polymerisation techniques and high throughput biological assays amenable to the polymer microarray format will broaden the combinatorial space and biological phenomenon that polymer microarrays can explore, and increase their efficacy. This will, in turn, facilitate the discovery of optimised polymeric materials for many biomaterial applications.
Collapse
Affiliation(s)
- Andrew L Hook
- Laboratory of Biophysics and Surface Analysis, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
30
|
Bayiati P, Malainou A, Matrozos E, Tserepi A, Petrou PS, Kakabakos SE, Gogolides E. High-density protein patterning through selective plasma-induced fluorocarbon deposition on Si substrates. Biosens Bioelectron 2009; 24:2979-84. [DOI: 10.1016/j.bios.2009.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
31
|
Péter M, Schüler T, Furthner F, Rensing PA, van Heck GT, Schoo HFM, Möller R, Fritzsche W, van Breemen AJJM, Meinders ER. Flexible biochips for detection of biomolecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5384-5390. [PMID: 19326940 DOI: 10.1021/la8037457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Miniaturization of biosensors is envisaged by the development of biochips consisting of parallel microarray patterns of binding sites on rigid substrates, such as glass or silicon. Thin plastic substrates are promising flexible alternatives because of the possibility for large-area roll-to-roll manufacturing of disposable chips at lower costs. Mature optical lithography technology faces many challenges when used to pattern flexible foils as a result of the substrate instabilities, especially at higher temperatures. In this work, flexible biochips with gold electrode patterns were fabricated on thin polyethylene naphthalate (PEN) foils using photolithography. The gold electrode structures of the chips were manufactured by direct metal patterning and by lift-off processing. Both methodologies resulted in well-defined electrode patterns as concluded from optical microscopy and scanning electron microscopy (SEM) characterization and resistance measurements. The biochips were successfully employed for the electrical and optical detection of DNA molecules. The DNA detection was based on the immobilization of capture DNA between electrode gaps, hybridization with biotin-labeled target DNA, and enzymatic silver enhancement.
Collapse
Affiliation(s)
- Mária Péter
- Holst Centre/Netherlands Institute for Applied Scientific Research (TNO), High Tech Campus 31, Postbus 8550, 5605 KN Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wong EY, Diamond SL. Advancing microarray assembly with acoustic dispensing technology. Anal Chem 2009; 81:509-14. [PMID: 19035650 DOI: 10.1021/ac801959a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the assembly of microarrays and microarray-based chemical assays and enzymatic bioassays, most approaches use pins for contact spotting. Acoustic dispensing is a technology capable of nanoliter transfers by using acoustic energy to eject liquid sample from an open source well. Although typically used for well plate transfers, when applied to microarraying, it avoids the drawbacks of undesired physical contact with the sample; difficulty in assembling multicomponent reactions on a chip by readdressing, a rigid mode of printing that lacks patterning capabilities; and time-consuming wash steps. We demonstrated the utility of acoustic dispensing by delivering human cathepsin L in a drop-on-drop fashion into individual 50-nanoliter, prespotted reaction volumes to activate enzyme reactions at targeted positions on a microarray. We generated variable-sized spots ranging from 200 to 750 microm (and higher) and handled the transfer of fluorescent bead suspensions with increasing source well concentrations of 0.1 to 10 x 10(8) beads/mL in a linear fashion. There are no tips that can clog, and liquid dispensing CVs are generally below 5%. This platform expands the toolbox for generating analytical arrays and meets needs associated with spatially addressed assembly of multicomponent microarrays on the nanoliter scale.
Collapse
Affiliation(s)
- E Y Wong
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
33
|
Uttamchandani M, Neo JL, Ong BNZ, Moochhala S. Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol 2008; 27:53-61. [PMID: 19008003 PMCID: PMC7114317 DOI: 10.1016/j.tibtech.2008.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/03/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
The microarray is a platform with wide-ranging potential in biodefence. Owing to the high level of throughput attainable through miniaturization, microarrays have accelerated the ability to respond in an epidemic or crisis. Extending beyond diagnostics, recent studies have applied microarrays as a research tool towards understanding the etiology and pathogenicity of dangerous pathogens, as well as in vaccine development. The original emphasis was on DNA microarrays, but the range now includes protein, antibody and carbohydrate microarrays, and research groups have exploited this diversity to further extend microarray applications in the area of biodefence. Here, we discuss the impact and contributions of the growing range of microarrays and emphasize the concepts that might shape the future of biodefence research.
Collapse
Affiliation(s)
- Mahesh Uttamchandani
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore.
| | | | | | | |
Collapse
|
34
|
Tencer M, Berini P. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12097-12101. [PMID: 18823135 DOI: 10.1021/la801443y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.
Collapse
Affiliation(s)
- Michal Tencer
- University of Ottawa, School of Information Technology and Engineering, 161 Louis Pasteur Street, Ottawa, Ontario K1N 6N5, Canada.
| | | |
Collapse
|
35
|
|
36
|
Derveaux S, Stubbe BG, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedt SC. Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient. Anal Bioanal Chem 2008; 391:2453-67. [PMID: 18458889 PMCID: PMC2516543 DOI: 10.1007/s00216-008-2062-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/04/2008] [Accepted: 03/06/2008] [Indexed: 12/18/2022]
Abstract
In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the “added value” we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms.
Collapse
Affiliation(s)
- S Derveaux
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Hanley BP. Variance in multiplex suspension array assays: a distribution generation machine for multiplex counts. Theor Biol Med Model 2008; 5:3. [PMID: 18226252 PMCID: PMC2267777 DOI: 10.1186/1742-4682-5-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/28/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study attempted to replicate Luminex experimental results for large numbers of beads per classifier using multiplexed assays and routine instrument use conditions. CONCLUSION Using larger numbers of microspheres per classifier highlights a fundamental stochastic distribution of bead counts issue complicated by other factors. The more classifiers and the higher the count required per classifier there are, the more apparent the distribution of counts per classifier will be, and the more microspheres are required. Additional problems have been identified. Alternate methods of improving precision and reliability are recommended such as intraplexing and multi-well sample replicates to improve precision and confidence.
Collapse
Affiliation(s)
- Brian P Hanley
- Microbiology Graduate Group, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Holländer A, Kröpke S, Pippig F. Chemical analysis of functionalized polymer surfaces. SURF INTERFACE ANAL 2008. [DOI: 10.1002/sia.2615] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Ng JK, Ajikumar PK, Tang YC, Lee JY, Stephanopoulos G, Too HP. Spatially addressable protein array: ssDNA-directed assembly for antibody microarray. Electrophoresis 2007; 28:4638-44. [DOI: 10.1002/elps.200700183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Watts AS, Urbas AA, Moschou E, Gavalas VG, Zoval JV, Madou M, Bachas LG. Centrifugal Microfluidics with Integrated Sensing Microdome Optodes for Multiion Detection. Anal Chem 2007; 79:8046-54. [PMID: 17914753 DOI: 10.1021/ac0709100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An array of four sensing microdome optodes (potassium, sodium, calcium, and chloride) was incorporated into a centrifugal microfluidics platform to obtain a multiion analysis system. The behavior of each sensing microdome was in good agreement with a theoretical model describing the response. The selectivity of each optode over common interfering ions was established and was used to identify calibrant solutions that can be employed for the simultaneous calibration of all four optodes without significant cross-interference. The microfluidic platform was designed to facilitate both three-point calibration of the optodes and triplicate analysis of a sample within a single run, which increases the accuracy of the determination. The optimized microfluidic system was used to determine simultaneously the concentration of potassium, sodium, calcium, and chloride in aquarium water (with the composition of Lake Tanganyika water) with less than 6% error. The simple process of fabrication of these microdomes and their incorporation into a centrifugal microfluidic platform should facilitate the development of portable ion-sensing analysis systems.
Collapse
Affiliation(s)
- Amanda S Watts
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Derveaux S, De Geest BG, Roelant C, Braeckmans K, Demeester J, De Smedt SC. Multifunctional layer-by-layer coating of digitally encoded microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10272-9. [PMID: 17760466 DOI: 10.1021/la701059z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick "multiplexing" assays. By making use of encoded microparticles, such assays allow simultaneous determination of the presence of several analytes in a biological sample. The microparticles under investigation in this study are encoded by writing a digital dot or bar code in their central plane. This study evaluates to what extent a "multifunctional" coating can be applied around the digitally encoded microparticles by the layer-by-layer (LbL) technology. We show that a LbL coating containing CrO2 nanoparticles allows (a) an optimal (optical) readout of the dot and bar codes, (b) a perfect orientation of the microparticles, necessary to be able to read the code, and (c) an optimal coupling of capture probes to the surface of the microparticles.
Collapse
Affiliation(s)
- Stefaan Derveaux
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Bagnasco M, Grassia L, Pesce G. The management of the patient with unexpected autoantibody positivity. Autoimmun Rev 2007; 6:347-53. [PMID: 17537379 DOI: 10.1016/j.autrev.2007.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/01/2007] [Indexed: 12/20/2022]
Abstract
Different autoantibodies are often measured simultaneously; this typically occurs when using indirect immunofluorescence on tissue sections or multiplex detection systems and may generate clinically "unexpected" positivities (i.e., without any relation to the disease under investigation). Their number is expected to increase with the development of microarray systems in autoantibody assays. In general, when examining patients with such unexpected findings, it is necessary to take into account that: a) autoantibody positivities are much more frequent than autoimmune diseases; b) the positive predictive value of an autoantibody positivity depends upon the diagnostic accuracy of the test and disease prevalence; c) autoantibodies may be risk factors for autoimmune disease or may also have a pathogenetic role by themselves. In this article we will highlight the possible problems raised by some relatively common situations, related to anti-nuclear, anti-thyroid, anti-phospholipid and anti-tissue transglutaminase autoantibodies. The need for specific strategies is outlined.
Collapse
Affiliation(s)
- Marcello Bagnasco
- Dipartimento di Patologie Immunoendocrinologiche, Laboratorio di Autoimmunità, Azienda Ospedale-Università San Martino, Genova, Italy.
| | | | | |
Collapse
|
43
|
Bizzaro N, Tozzoli R, Shoenfeld Y. Are we at a stage to predict autoimmune rheumatic diseases? ARTHRITIS AND RHEUMATISM 2007; 56:1736-44. [PMID: 17530702 DOI: 10.1002/art.22708] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Tencer M, Charbonneau R, Berini P. Confinement and deposition of solution droplets on solvophilic surfaces using a flat high surface energy guide. LAB ON A CHIP 2007; 7:483-9. [PMID: 17389965 DOI: 10.1039/b617487f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A method of depositing small amounts of solution on flat micron scale surface areas on a hydrophilic substrate or die was developed. This method utilizes the capillarity of a flat, high surface free energy guide. Interfacial forces confine the solution between the guide and the substrate surface. The liquid follows the movement of the guide along the surface and can be moved to the desired area. The thermodynamic background of the method is given and its application to coat one arm of a gold plasmonic Mach-Zehnder interferometer with bovine serum albumin is described. This method, which is related to but different from microcontact printing and dip-pen microlithography, can be utilized in the manufacturing of biosensors and other lab-on-a-chip structures, and is particularly suitable to development stage devices.
Collapse
Affiliation(s)
- Michal Tencer
- Spectalis Corp., Suite 205, 610 Bronson Avenue, Ottawa, Ontario K1S 4E6, Canada
| | | | | |
Collapse
|
45
|
Tinelli A, Vergara D, Leo G, Malvasi A, Casciaro S, Leo E, Montinari MR, Maffia M, Marsigliante S, Lorusso V. Human papillomavirus genital infection in modern gynecology: genetic and genomic aspects. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11296-007-0064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Corgier BP, Marquette CA, Blum LJ. Direct electrochemical addressing of immunoglobulins: Immuno-chip on screen-printed microarray. Biosens Bioelectron 2007; 22:1522-6. [PMID: 16784841 DOI: 10.1016/j.bios.2006.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/24/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
An original immobilisation technology is presented for the development of chemiluminescent protein biochips, suitable for measurement in complex matrices. The immobilisation strategy involved is based on diazotated aniline derivatives, which could be electro-addressed, thus creating a covalent linkage with a conducting material surface. The present electrochemical system is a cost effective and mass-produced carbon paste screen-printed (SP) microarray composed of eight 0.2 mm2 working electrodes, one carbon pseudo-reference electrode and one auxiliary electrode. Rabbit immunoglobulins (IgG) were chemically modified with an aniline derivative (4-carboxymethylaniline) in order to be easily electro-grafted to the SP microarray surface. The possibility of successively electro-address the eight sensing layers of a particular array, with a good reproducibility (more than 80%) and without loss of reactivity was demonstrated. Moreover, these immobilised proteins were subsequently used as a capture agent for the determination of rheumatoid factor (RF) in human sera. The absence of non-specific signal or interference problem enabled the detection of RF values in complex samples in the 5.3-485 IU/ml range with a good correlation with the standard Auraflex ELISA test method.
Collapse
Affiliation(s)
- Benjamin P Corgier
- Laboratoire de Génie Enzymatique et Biomoléculaire, UMR 5013 EMB2, CNRS -Université Claude Bernard Lyon 1, Bât CPE, 43, bd du 11 Novembre 1918, 69622 Villeurbanne, Cedex, France
| | | | | |
Collapse
|
47
|
Liu ZC, Shin DS, Shokouhimehr M, Lee KN, Yoo BW, Kim YK, Lee YS. Light-directed synthesis of peptide nucleic acids (PNAs) chips. Biosens Bioelectron 2007; 22:2891-7. [PMID: 17236754 DOI: 10.1016/j.bios.2006.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/23/2006] [Accepted: 12/01/2006] [Indexed: 11/30/2022]
Abstract
We report herein the light-directed synthesis of peptide nucleic acids (PNAs) microarray using PNA monomers protected by photolabile protecting groups and a maskless technique that uses a digital micromirror array system to form virtual masks. An ultraviolet image from the virtual mask was cast onto the active surface of a glass substrate, which was mounted in a flow cell reaction chamber connected to a peptide synthesizer. Light exposure was followed by automatic chemical coupling cycles and these steps were repeated with different virtual masks to grow the desired PNA probes in a selected pattern. In a preliminary experiment, an array of PNA probes with dimensions of 4.11 mm x 4.11 mm was generated on each slide. Each synthesis region in the final array measured 210 microm x 210 microm for a total of 256 sites. The center-to-center space was 260 microm. It was observed from the hybridization pattern of the fluorescently labeled oligonucleotide targets that the fluorescence intensities of the matched, and mismatched sequences showed substantial difference, demonstrating specificity in the identification of complementary sequences. This opens the way to exploit processes from the microelectronics industry for the fabrication of PNA microarrays with high densities.
Collapse
Affiliation(s)
- Zheng-Chun Liu
- School of Chemical and Biological Engineering, Seoul National University, Kwanak-Gu, Seoul 151-742, South Korea.
| | | | | | | | | | | | | |
Collapse
|
48
|
Boonham N, Tomlinson J, Mumford R. Microarrays for rapid identification of plant viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:307-28. [PMID: 17691887 DOI: 10.1146/annurev.phyto.45.062806.094349] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many factors affect the development and application of diagnostic techniques. Plant viruses are an inherently diverse group that, unlike cellular pathogens, possess no nucleotide sequence type (e.g., ribosomal RNA sequences) in common. Detection of plant viruses is becoming more challenging as globalization of trade, particularly in ornamentals, and the potential effects of climate change enhance the movement of viruses and their vectors, transforming the diagnostic landscape. Techniques for assessing seed, other propagation materials and field samples for the presence of specific viruses include biological indexing, electron microscopy, antibody-based detection, including enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and microarray detection. Of these, microarray detection provides the greatest capability for parallel yet specific testing, and can be used to detect individual, or combinations of viruses and, using current approaches, to do so with a sensitivity comparable to ELISA. Methods based on PCR provide the greatest sensitivity among the listed techniques but are limited in parallel detection capability even in "multiplexed" applications. Various aspects of microarray technology, including probe development, array fabrication, assay target preparation, hybridization, washing, scanning, and interpretation are presented and discussed, for both current and developing technology.
Collapse
Affiliation(s)
- Neil Boonham
- Central Science Laboratory, Sand Hutton, York, YO41 1LZ, United Kingdom.
| | | | | |
Collapse
|
49
|
Abstract
Chemical principles dictate that the specific binding of a target to its complementary probes on a DNA microarray surface, and the nonspecific binding between other nucleotide segments and the same probes, are mutually competitive. We demonstrate that this mechanism can be understood by considering the competitive chemical reaction taking place on the microarray surface. Inspired by the pioneering work of Zhang and Hekstra, we have developed a physical model for microarray signal analysis, based on possible reaction mechanisms, and implemented it with a parallel, generic, simulated-annealing algorithm. Using data supplied by the Affymetrix Latin-square spike-in experiments, our model showed excellent fitting of the data. This correlation between the predicted expression levels and the spike-in concentrations of test transcripts demonstrated good predictive abilities of our model.
Collapse
Affiliation(s)
- Yongqing Zhang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | |
Collapse
|
50
|
Lu W, Fernández Band BS, Yu Y, Geng Li Q, Chuan Shang J, Wang C, Fang Y, Tian R, Ping Zhou L, Li Sun L, Tang Y, Hua Jing S, Huang W, Ping Zhang J. Resonance light scattering and derived techniques in analytical chemistry: past, present, and future. Mikrochim Acta 2006. [DOI: 10.1007/s00604-006-0670-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|