1
|
Kaňovská I, Biová J, Škrabišová M. New perspectives of post-GWAS analyses: From markers to causal genes for more precise crop breeding. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102658. [PMID: 39549685 DOI: 10.1016/j.pbi.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024]
Abstract
Crop breeding advancement is hindered by the imperfection of methods to reveal genes underlying key traits. Genome-wide Association Study (GWAS) is one such method, identifying genomic regions linked to phenotypes. Post-GWAS analyses predict candidate genes and assist in causative mutation (CM) recognition. Here, we assess post-GWAS approaches, address limitations in omics data integration and stress the importance of evaluating associated variants within a broader context of publicly available datasets. Recent advances in bioinformatics tools and genomic strategies for CM identification and allelic variation exploration are reviewed. We discuss the role of markers and marker panel development for more precise breeding. Finally, we highlight the perspectives and challenges of GWAS-based CM prediction for complex quantitative traits.
Collapse
Affiliation(s)
- Ivana Kaňovská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 77900, Czech Republic
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 77900, Czech Republic
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 77900, Czech Republic.
| |
Collapse
|
2
|
Ravelombola W, Manley A, Pham H, Brown M, Ruhl C, Ghosh P. Genome-Wide Association Study for Seed Yield of Tepary Bean Using Whole-Genome Resequencing. Int J Mol Sci 2024; 25:11302. [PMID: 39457083 PMCID: PMC11508933 DOI: 10.3390/ijms252011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tepary bean (Phaseolus acutifolius A. Gray) is a diploid legume species (2n = 2x = 22). It is the most drought- and heat-tolerant crop of the genus Phaseolus. Tepary bean is native to the northern part of Mexico and the south-western part of the U.S. The lack of molecular markers associated with agronomic traits such as 100-seed weight and seed yield limit the development of elite tepary bean cultivars. Therefore, the objectives of this study were to evaluate tepary bean for 100-seed weight and yield, and identify single-nucleotide polymorphism (SNP) markers associated with these traits. A total of 230,000 high-quality SNPs obtained from the whole-genome resequencing of 153 tepary bean accessions were used for this study. For 100-seed weight, a total of 5 and 20 SNPs were found using a mixed linear model (MLM) and compressed mixed linear model (cMLM), respectively. A candidate gene, Phacu.CVR.002G320800.13, encoding the squamosa promoter-binding protein-like (SBP domain) transcription factor family protein was found to be associated with 100-seed weight. For seed yield, a total of one and eight SNPs were identified using an MLM and cMLM, respectively. Phacu.CVR.009G294200.1, encoding for peroxidase family protein, was identified as a candidate gene for seed yield. Both Phacu.CVR.002G320800.13 and Phacu.CVR.009G294200.1 are likely to be involved in seed development of tepary bean. This is one of the few studies investigating the genetics of 100-seed weight and seed yield in tepary bean.
Collapse
Affiliation(s)
- Waltram Ravelombola
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
- Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| | - Aurora Manley
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Hanh Pham
- Texas A&M AgriLife Research, 1102 East Drew Street, Lubbock, TX 79403, USA
| | - Madeline Brown
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Caroline Ruhl
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Protik Ghosh
- Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
3
|
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, Hearne S, Prasanna B, Li X, Li H. Artificial intelligence in plant breeding. Trends Genet 2024; 40:891-908. [PMID: 39117482 DOI: 10.1016/j.tig.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype-phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.
Collapse
Affiliation(s)
- Muhammad Amjad Farooq
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Muhammad Adeel Hassan
- Adaptive Cropping Systems Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sarah Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico
| | - Boddupalli Prasanna
- CIMMYT, International Centre for Research in Agroforestry (ICRAF) House, Nairobi 00100, Kenya
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China.
| |
Collapse
|
4
|
Geng L, Zou T, Zhang W, Wang S, Yao Y, Zheng Z, Du Q, Han L. Integration Linkage Mapping and Comparative Transcriptome Analysis to Dissect the Genetic Basis of Rice Salt Tolerance Associated with the Germination Stage. Int J Mol Sci 2024; 25:10376. [PMID: 39408706 PMCID: PMC11476921 DOI: 10.3390/ijms251910376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Soil salinity poses a serious threat to rice production. The salt tolerance of rice at the germination stage is one of the major determinants of stable stand establishment, which is very important for direct seeding in saline soil. The complexity and polygenic nature of salt tolerance have limited the efficiency of discovering and cloning key genes in rice. In this study, an RIL population with an ultra-high-density genetic map was employed to investigate the salt-tolerant genetic basis in rice, and a total of 20 QTLs were detected, including a major and stable QTL (qRCL3-1). Subsequently, salt-specific DEGs from a comparative transcriptome analysis were overlaid onto annotated genes located on a stable QTL interval, and eight putative candidate genes were further identified. Finally, from the sequence alignment and variant analysis, OsCam1-1 was confirmed to be the most promising candidate gene for regulating salinity tolerance in rice. This study provides important information for elucidating the genetic and molecular basis of rice salt tolerance at the germination stage, and the genes detected here will be useful for improvements in rice salt tolerance.
Collapse
Affiliation(s)
- Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Tuo Zou
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Shuo Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Yutao Yao
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Zhenyu Zheng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Qi Du
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (L.G.); (T.Z.); (W.Z.); (S.W.); (Y.Y.); (Z.Z.)
- Tangshan Key Laboratory of Rice Breeding, Tangshan 063299, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Soleimani B, Lehnert H, Schikora A, Stahl A, Matros A, Wehner G. Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency. Microorganisms 2024; 12:1936. [PMID: 39458245 PMCID: PMC11509450 DOI: 10.3390/microorganisms12101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Leaf rust (Puccinia triticina) is a common disease that causes significant yield losses in wheat. The most frequently used methods to control leaf rust are the application of fungicides and the cultivation of resistant genotypes. However, high genetic diversity and associated adaptability of pathogen populations hamper achieving durable resistance in wheat. Emerging alternatives, such as microbial priming, may represent an effective measure to stimulate plant defense mechanisms and could serve as a means of controlling a broad range of pathogens. In this study, 175 wheat genotypes were inoculated with two bacterial strains: Ensifer meliloti strain expR+ch (producing N-acyl homoserine lactone (AHL)) or transformed E. meliloti carrying the lactonase gene attM (control). In total, 21 genotypes indicated higher resistance upon bacterial AHL priming. Subsequently, the phenotypic data of 175 genotypes combined with 9917 single-nucleotide polymorphisms (SNPs) in a genome-wide association study to identify quantitative trait loci (QTLs) and associated markers for relative infection under attM and expR+ch conditions and priming efficiency using the Genome Association and Prediction Integrated Tool (GAPIT). In total, 15 QTLs for relative infection under both conditions and priming efficiency were identified on chromosomes 1A, 1B, 2A, 3A, 3B, 3D, 6A, and 6B, which may represent targets for wheat breeding for priming and leaf-rust resistance.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany;
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Andrea Matros
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| |
Collapse
|
6
|
Lu S, Wang Q, Yin J, Zheng S, Gao T, Zhou X, Zhang J, Xing Y, Ma Y, Wang M, Zhou D, Lu M, Liu W, Wang P, Zhang Z. Screening and Validation of Leaf Width-Related Genes in Inbred Maize Lines. Life (Basel) 2024; 14:1057. [PMID: 39337842 PMCID: PMC11432761 DOI: 10.3390/life14091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Leaf width is a key determinant of planting density and photosynthetic efficiency. In an effort to determine which genes regulate maize plant leaf width, we performed a genome-wide association study (GWAS) of 1.49 × 106 single nucleotide polymorphisms (SNPs) in 80 sequenced backbone inbred maize lines in Jilin Province, China, based upon phenotypic leaf width data from two years. In total, 14 SNPs were identified as being significantly related to leaf width (p < 0.000001), with these SNPs being located on chromosomes 1, 2, 3, 5, 6, 7, 8, and 9. A total of five candidate genes were identified within a mean linkage disequilibrium (LD) distance of 9.7 kb, with a significant SNP being identified within the Zm00001d044327 candidate gene. RNA was then isolated from 12 different inbred maize lines from this GWAS study cohort and was used to conduct qPCR analyses which revealed significant differences in Zm00001d044327 expression among strains exhibiting significant differences in leaf width. Based on an assessment of EMS mutant lines harboring a conserved amino acid stop mutation and two non-synonymous mutations in Zm00001d044327 that exhibited a narrow leaf width, these data suggested that Zm00001d044327 is a key regulator of maize leaf width.
Collapse
Affiliation(s)
- Shi Lu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Qi Wang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Junqi Yin
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Shubo Zheng
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Tingting Gao
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Xudong Zhou
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Jianxin Zhang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Yuexian Xing
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Yingjie Ma
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Min Wang
- Jilin Jinong Hi-tech Inc., Ltd., Kemao Street, No.303, Gongzhuling 136100, China
| | - Delong Zhou
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Ming Lu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Wenguo Liu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Piwu Wang
- College of Agronomy, Jilin Agricultural University, Xincheng Street, No.1288, Changchun 130118, China
| | - Zhijun Zhang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| |
Collapse
|
7
|
Huang Z, Huang P, Chen S, Hu M, Yu H, Guo H, Shahid MQ, Liu X, Wu J. Comparative Cytological and Gene Expression Analysis Reveals That a Common Wild Rice Inbred Line Showed Stronger Drought Tolerance Compared with the Cultivar Rice. Int J Mol Sci 2024; 25:7134. [PMID: 39000241 PMCID: PMC11241580 DOI: 10.3390/ijms25137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Common wild rice (Oryza rufipogon Griff.) is an important germplasm resource containing valuable genes. Our previous analysis reported a stable wild rice inbred line, Huaye3, which derives from the common wild rice of Guangdong Province. However, there was no information about its drought tolerance ability. Here, we assessed the germination characteristics and seedling growth between the Dawennuo and Huaye3 under five concentrations of PEG6000 treatment (0, 5%, 10%, 15%, and 20%). Huaye3 showed a stronger drought tolerance ability, and its seed germination rate still reached more than 52.50% compared with Dawennuo, which was only 25.83% under the 20% PEG6000 treatment. Cytological observations between the Dawennuo and Huaye3 indicated the root tip elongation zone and buds of Huaye3 were less affected by the PEG6000 treatment, resulting in a lower percentage of abnormalities of cortical cells, stele, and shrinkage of epidermal cells. Using the re-sequencing analysis, we detected 13,909 genes that existed in the genetic variation compared with Dawennuo. Of these genes, 39 were annotated as drought stress-related genes and their variance existed in the CDS region. Our study proved the strong drought stress tolerance ability of Huaye3, which provides the theoretical basis for the drought resistance germplasm selection in rice.
Collapse
Affiliation(s)
- Zijuan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Peishan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mengzhu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haibin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Lee SY, Lee G, Han J, Ha SK, Lee CM, Kang K, Jin M, Suh JP, Jeung JU, Mo Y, Lee HS. GWAS analysis reveals the genetic basis of blast resistance associated with heading date in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1412614. [PMID: 38835858 PMCID: PMC11148375 DOI: 10.3389/fpls.2024.1412614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Rice blast is a destructive fungal disease affecting rice plants at various growth stages, significantly threatening global yield stability. Development of resistant rice cultivars stands as a practical means of disease control. Generally, association mapping with a diversity panel powerfully identifies new alleles controlling trait of interest. On the other hand, utilization of a breeding panel has its advantage that can be directly applied in a breeding program. In this study, we conducted a genome-wide association study (GWAS) for blast resistance using 296 commercial rice cultivars with low population structure but large phenotypic diversity. We attempt to answer the genetic basis behind rice blast resistance among early maturing cultivars by subdividing the population based on its Heading date 1 (Hd1) functionality. Subpopulation-specific GWAS using the mixed linear model (MLM) based on blast nursery screening conducted in three years revealed a total of 26 significant signals, including three nucleotide-binding site leucine-rich repeat (NBS-LRR) genes (Os06g0286500, Os06g0286700, and Os06g0287500) located at Piz locus on chromosome 6, and one at the Pi-ta locus (Os12g0281300) on chromosome 12. Haplotype analysis revealed blast resistance associated with Piz locus was exclusively specific to Type 14 hd1 among japonica rice. Our findings provide valuable insights for breeding blast resistant rice and highlight the applicability of our elite cultivar panel to detect superior alleles associated with important agronomic traits.
Collapse
Affiliation(s)
- Seung Young Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Gileung Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jiheon Han
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Su-Kyung Ha
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Kyeongmin Kang
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mina Jin
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jung-Pil Suh
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Ji-Ung Jeung
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
- Institute of Agricultural Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
9
|
Ro N, Lee GA, Ko HC, Oh H, Lee S, Haile M, Lee J. Exploring Disease Resistance in Pepper ( Capsicum spp.) Germplasm Collection Using Fluidigm SNP Genotyping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1344. [PMID: 38794415 PMCID: PMC11125113 DOI: 10.3390/plants13101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
This study utilized a diverse Capsicum accessions (5658) sourced from various species and geographical regions, deposited at the National Agrobiodiversity Center, Genebank. We employed 19 SNP markers through a Fluidigm genotyping system and screened these accessions against eight prevalent diseases of pepper. This study revealed accessions resistant to individual diseases as well as those exhibiting resistance to multiple diseases, including bacterial spot, anthracnose, powdery mildew, phytophthora root rot, and potyvirus. The C. chacoense accessions were identified as resistant materials against bacterial spot, anthracnose, powdery mildew, and phytophthora root rot, underscoring the robust natural defense mechanisms inherent in the wild Capsicum species and its potential uses as sources of resistance for breeding. C. baccatum species also demonstrated to be a promising source of resistance to major pepper diseases. Generally, disease-resistant germplasm has been identified from various Capsicum species. Originating from diverse locations such as Argentina, Bolivia, and the United Kingdom, these accessions consistently demonstrated resistance, indicating the widespread prevalence of disease-resistant traits across varied environments. Additionally, we selected ten pepper accessions based on their resistance to multiple diseases, including CMV, Phytophthora root rot, potyviruses, and TSWV, sourced from diverse geographical regions like Hungary, Peru, the United States, and the Netherlands. This comprehensive analysis provides valuable insights into disease resistance in Capsicum, crucial for fostering sustainable agricultural practices and advancing crop improvement through breeding strategies.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Hyeonseok Oh
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Sukyeung Lee
- International Technology Cooperation Center, Rural Development Administration, Jeonju 54875, Republic of Korea;
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
10
|
Roopendra K, Priyanka, Chandra A, Akhter Y, Saxena S. Transcriptome scale analysis to decode the differential sucrose accumulation mechanisms in sugarcane under the effect of gibberellin. PHYSIOLOGIA PLANTARUM 2024; 176:e14290. [PMID: 38634341 DOI: 10.1111/ppl.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
In the present study, we analyzed GA3 (gibberellin)-treated sugarcane samples at the transcriptomic level to elucidate the differential expression of genes that influence sucrose accumulation. Previous research has suggested that GA3 application can potentially delay sink saturation by enhancing sink strength and demand, enabling the accommodation of more sucrose. To investigate the potential role of GA-induced modification of sink capacity in promoting higher sucrose accumulation, we sought to unravel the differential expression of transcripts and analyze their functional annotation. Several genes homologous to the sugar-phosphate/phosphate translocator, UTP-glucose-1-phosphate uridylyltransferase, and V-ATPases (vacuolar-type H+ ATPase) were identified as potentially associated with the increased sucrose content observed. A differentially expressed transcript was found to be identical to the mRNA of an unknown protein. Homology-based bioinformatics analysis suggested it to be a hydrolase enzyme, which could potentially act as a stimulator of sucrose buildup. The database of differentially expressed transcripts obtained in this study under the influence of GA3 represents a valuable addition to the sugarcane transcriptomics and functional genomics knowledge base.
Collapse
Affiliation(s)
- Kriti Roopendra
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Priyanka
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Amaresh Chandra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sangeeta Saxena
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
11
|
Luo D, Shi L, Sun Z, Qi F, Liu H, Xue L, Li X, Liu H, Qu P, Zhao H, Dai X, Dong W, Zheng Z, Huang B, Fu L, Zhang X. Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut ( Arachis hypogaea L.). Genes (Basel) 2024; 15:160. [PMID: 38397150 PMCID: PMC10887910 DOI: 10.3390/genes15020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.
Collapse
Affiliation(s)
- Dandan Luo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Shi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziqi Sun
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Hongfei Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lulu Xue
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaona Li
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyu Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Huanhuan Zhao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaodong Dai
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Liuyang Fu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- National Innovation Center for Bio-Breeding Industry, Xinxiang 453500, China
| |
Collapse
|
12
|
Chemayek B, Wagoire W, Bansal U, Bariana H. A Combination of Three Genomic Regions Conditions High Level of Adult Plant Stripe Rust Resistance in Australian Wheat Cultivar Sentinel. PLANTS (BASEL, SWITZERLAND) 2024; 13:129. [PMID: 38202436 PMCID: PMC10780541 DOI: 10.3390/plants13010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
A seedling susceptible Australian common wheat cultivar Sentinel showed resistance to stripe rust under field conditions. A Sentinel/Nyabing3 (Nyb3)-derived recombinant inbred line (RIL) population was phenotyped. A DArTseq marker-based linkage map of the Sentinel/Nyb3 RIL population was used to determine the chromosomal location of the adult plant stripe rust resistance possessed by Sentinel. Three consistent quantitative trait loci (QTL); QYr.sun-1BL, QYr.sun-2AS and QYr.sun-3BS were detected, and they on an average explained 18%, 15.6% and 10.6% of the variation in stripe rust response, respectively. All three QTL were contributed by Sentinel. QYr.sun-1B corresponded to the previously characterized gene Yr29. Sentinel expressed resistance at the four-leaf stage at 21 ± 2 °C in the greenhouse. Monogenic segregation among the RIL population was observed when screened at the four-leaf stage at 21 ± 2 °C in the greenhouse, and the underlying resistance locus was temporarily named YrSen. QYr.sun-3BS peaked on YrSen. QYr.sun-2AS was mendelized by generating and phenotyping a mongenically sgregating F6 RIL population, and it was temporarily designated YrSen2. RILs carrying Yr29, YrSen and YrSen2 in combination exhibited responses like the parent Sentinel. Based on a comparison of the genomic locations and resistance expression with stripe rust resistance genes previously located in their respective chromosomes, QYr.sun-2AS (YrSen2) and QYr.sun-3BS (YrSen) were concluded to represent new loci.
Collapse
Affiliation(s)
- Bosco Chemayek
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia; (B.C.); (U.B.)
- Buginyanya Zonal Agricultural Research Institute, National Agricultural Research Organisation, Mbale P.O. Box 1356, Uganda;
| | - William Wagoire
- Buginyanya Zonal Agricultural Research Institute, National Agricultural Research Organisation, Mbale P.O. Box 1356, Uganda;
| | - Urmil Bansal
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia; (B.C.); (U.B.)
| | - Harbans Bariana
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia; (B.C.); (U.B.)
- School of Science, Hawkesbury Campus, Western Sydney University, Bourke Street, Richmond, NSW 2753, Australia
| |
Collapse
|
13
|
Samantray D, Tanwar AS, Murali TS, Brand A, Satyamoorthy K, Paul B. A Comprehensive Bioinformatics Resource Guide for Genome-Based Antimicrobial Resistance Studies. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:445-460. [PMID: 37861712 DOI: 10.1089/omi.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The use of high-throughput sequencing technologies and bioinformatic tools has greatly transformed microbial genome research. With the help of sophisticated computational tools, it has become easier to perform whole genome assembly, identify and compare different species based on their genomes, and predict the presence of genes responsible for proteins, antimicrobial resistance, and toxins. These bioinformatics resources are likely to continuously improve in quality, become more user-friendly to analyze the multiple genomic data, efficient in generating information and translating it into meaningful knowledge, and enhance our understanding of the genetic mechanism of AMR. In this manuscript, we provide an essential guide for selecting the popular resources for microbial research, such as genome assembly and annotation, antibiotic resistance gene profiling, identification of virulence factors, and drug interaction studies. In addition, we discuss the best practices in computer-oriented microbial genome research, emerging trends in microbial genomic data analysis, integration of multi-omics data, the appropriate use of machine-learning algorithms, and open-source bioinformatics resources for genome data analytics.
Collapse
Affiliation(s)
- Debyani Samantray
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ankit Singh Tanwar
- United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Angela Brand
- United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
- Department of Health Information, Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Dharwad, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
14
|
Krishna TPA, Veeramuthu D, Maharajan T, Soosaimanickam M. The Era of Plant Breeding: Conventional Breeding to Genomics-assisted Breeding for Crop Improvement. Curr Genomics 2023; 24:24-35. [PMID: 37920729 PMCID: PMC10334699 DOI: 10.2174/1389202924666230517115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 11/04/2023] Open
Abstract
Plant breeding has made a significant contribution to increasing agricultural production. Conventional breeding based on phenotypic selection is not effective for crop improvement. Because phenotype is considerably influenced by environmental factors, which will affect the selection of breeding materials for crop improvement. The past two decades have seen tremendous progress in plant breeding research. Especially the availability of high-throughput molecular markers followed by genomic-assisted approaches significantly contributed to advancing plant breeding. Integration of speed breeding with genomic and phenomic facilities allowed rapid quantitative trait loci (QTL)/gene identifications and ultimately accelerated crop improvement programs. The advances in sequencing technology helps to understand the genome organization of many crops and helped with genomic selection in crop breeding. Plant breeding has gradually changed from phenotype-to-genotype-based to genotype-to-phenotype-based selection. High-throughput phenomic platforms have played a significant role in the modern breeding program and are considered an essential part of precision breeding. In this review, we discuss the rapid advance in plant breeding technology for efficient crop improvements and provide details on various approaches/platforms that are helpful for crop improvement. This review will help researchers understand the recent developments in crop breeding and improvements.
Collapse
Affiliation(s)
| | - Duraipandiyan Veeramuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Theivanayagam Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Mariapackiam Soosaimanickam
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
- Department of Advanced Zoology & Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, India
| |
Collapse
|
15
|
Saradadevi GP, Fultz D, Ramgopal MK, Subramanian AT, Prince G, Thakur V, Mohannath G. Structural variation among assembled genomes facilitates development of rapid and low-cost NOR-linked markers and NOR-telomere junction mapping in Arabidopsis. PLANT CELL REPORTS 2023; 42:1059-1069. [PMID: 37074465 DOI: 10.1007/s00299-023-03012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Genome-wide structural variants we identified and new NOR-linked markers we developed would be useful for future genome-wide association studies (GWAS), and for new gene/trait mapping purposes. Bioinformatic alignment of the assembled genomes of Col-0 and Sha ecotypes of Arabidopsis thaliana revealed ~ 13,000 genome-wide structural variants involving simple insertions or deletions and repeat contractions or expansions. Using some of these structural variants, we developed new, rapid, and low-cost PCR-based molecular markers that are genetically linked to the nucleolus organizer regions (NORs). A. thaliana has two NORs, one each on chromosome 2 (NOR2) and chromosome 4 (NOR4). Both NORs are ~ 4 Mb each, and hundreds of 45S ribosomal RNA (rRNA) genes are tandemly arrayed at these loci. Using previously characterized recombinant inbred lines (RILs) derived from Sha x Col-0 crosses, we validated the utility of the newly developed NOR-linked markers in genetically mapping rRNA genes and the associated telomeres to either NOR2 or NOR4. Lastly, we sequenced Sha genome using Oxford Nanopore Technology (ONT) and used the data to obtain sequences of NOR-telomere junctions, and with the help of RILs, we mapped them as new genetic markers to their respective NORs (NOR2-TEL2N and NOR4-TEL4N). The structural variants obtained from this study would serve as valuable data for genome-wide association studies (GWAS), and to rapidly design more genome-wide genetic (molecular) markers for new gene/trait mapping purposes.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Dalen Fultz
- Department of Biology and Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, 47405, USA
| | - Murali Krishna Ramgopal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Abirami T Subramanian
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Gerin Prince
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
16
|
Pei D, Song S, Kang J, Zhang C, Wang J, Dong T, Ge M, Pervaiz T, Zhang P, Fang J. Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes. Genes (Basel) 2023; 14:genes14030663. [PMID: 36980935 PMCID: PMC10048371 DOI: 10.3390/genes14030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
SSR (simple sequence repeat) DNA markers are widely used for genotype DNA identification, QTL mapping, and analyzing genetic biodiversity. However, SSRs in grapes are still in their early stages, with a few primer pairs accessible. With the whole-genome sequencing (WGS) of several grape varieties, characterization of grape SSR changed to be necessary not only to genomics but to also help SSR development and utility. Based on this, we identified the whole-genome SSR of nine grape cultivars (‘PN40024’, ‘Cabernet Sauvignon’, ‘Carménère’, ‘Chardonnay’, ‘Merlot’, ‘Riesling’, ‘Zinfandel’, ‘Shine Muscat’, and ‘Muscat Hamburg’) with whole-genome sequences released publicly and found that there are great differences in the distribution of SSR loci in different varieties. According to the difference in genome size, the number of SSRs ranged from 267,385 (Cabernet Sauvignon) to 627,429 (Carménère), the density of the SSR locus in the genome of nine cultivars was generally 1 per Kb. SSR motif distribution characteristic analysis of these grape cultivars showed that the distribution patterns among grape cultivars were conservative, mainly enriched in A/T. However, there are some differences in motif types (especially tetranucleotides, pentanucleotides, and hexanucleotides), quantity, total length, and average length in different varieties, which might be related to the size of the assembled genome or the specificity of variety domestication. The distribution characteristics of SSRs were revealed by whole-genome analysis of simple repeats of grape varieties. In this study, 32 pairs of primers with lower polymorphism have been screened, which provided an important research foundation for the development of molecular markers of grape variety identification and the construction of linkage maps of important agronomic traits for crop improvement.
Collapse
Affiliation(s)
- Dan Pei
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyan Song
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, Zhenjiang 212400, China
| | - Jun Kang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Zhang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Dong
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqing Ge
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 22963, USA
| | - Peian Zhang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
17
|
Fine Mapping and Identification of SmAPRR2 Regulating Rind Color in Eggplant ( Solanum melongena L.). Int J Mol Sci 2023; 24:ijms24043059. [PMID: 36834473 PMCID: PMC9964064 DOI: 10.3390/ijms24043059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Rind color is an economically important agronomic trait in eggplant that impacts consumer preferences. In this study, bulked segregant analysis and competitive allele-specific PCR were employed to identify the candidate gene for eggplant rind color through constructing a 2794 F2 population generated from a cross between "BL01" (green pericarp) and "B1" (white pericarp). Genetic analysis of rind color revealed that a single dominant gene controls green color of eggplant peel. Pigment content measurement and cytological observations demonstrated that chlorophyll content and chloroplast number in BL01 were higher than in B1. A candidate gene (EGP19168.1) was fine-mapped to a 20.36 Kb interval on chromosome 8, which was predicted to encode the two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2). Subsequently, allelic sequence analysis revealed that a SNP deletion (ACT→AT) in white-skinned eggplant led to a premature termination codon. Genotypic validation of 113 breeding lines using the Indel marker closely linked to SmAPRR2 could predict the skin color (green/white) trait with an accuracy of 92.9%. This study will be valuable for molecular marker-assisted selection in eggplant breeding and provides theoretical foundation for analyzing the formation mechanism of eggplant peel color.
Collapse
|
18
|
Xiang M, Liu S, Wang X, Zhang M, Yan W, Wu J, Wang Q, Li C, Zheng W, He Y, Ge Y, Wang C, Kang Z, Han D, Zeng Q. Development of breeder chip for gene detection and molecular-assisted selection by target sequencing in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:13. [PMID: 37313130 PMCID: PMC10248658 DOI: 10.1007/s11032-023-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 06/15/2023]
Abstract
Wheat is an essential food crop and its high and stable yield is suffering from great challenges due to the limitations of current breeding technology and various stresses. Accelerating molecularly assisted stress-resistance breeding is critical. Through a meta-analysis of published loci in wheat over the last two decades, we selected 60 loci with main breeding objectives, high heritability, and reliable genotyping, such as stress resistance, yield, plant height, and resistance to spike germination. Then, using genotyping by target sequencing (GBTS) technology, we developed a liquid phase chip based on 101 functional or closely linked markers. The genotyping of 42 loci was confirmed in an extensive collection of Chinese wheat cultivars, indicating that the chip can be used in molecular-assisted selection (MAS) for target breeding goals. Besides, we can perform the preliminary parentage analysis with the genotype data. The most significant contribution of this work lies in translating a large number of molecular markers into a viable chip and providing reliable genotypes. Breeders can quickly screen germplasm resources, parental breeding materials, and intermediate materials for the presence of excellent allelic variants using the genotyping data by this chip, which is high throughput, convenient, reliable, and cost-efficient. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01359-3.
Collapse
Affiliation(s)
- Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingming Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yilin He
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035 Hebei China
| | - Yunxia Ge
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035 Hebei China
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
- Yangling Seed Industry Innovation Center, Yangling, 712100 Shaanxi China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
19
|
Li Y, Huo Y, Yang Y, Wang Z, Sun Y, Liu B, Wu X. Construction of a high-resolution genetic map and identification of single nucleotide polymorphism markers relevant to flower stalk height in onion. FRONTIERS IN PLANT SCIENCE 2023; 14:1100691. [PMID: 36818885 PMCID: PMC9928573 DOI: 10.3389/fpls.2023.1100691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Onion (Allium cepa L., 2n=16) is an economically and nutritionally important vegetable crop worldwide. Construction of a high-resolution genetic map and map-based gene mining in onion have lagged behind other vegetable crops such as tomato and pepper. METHODS In this study, we constructed a high-resolution genetic map of onion using 321 F2 individuals from a cross between two double haploid lines DH-1×DH-17 and employing specific length amplified fragment (SLAF)-seq technology. The genetic map containing 10,584 polymorphic SLAFs with 21,250 single nucleotide polymorphism (SNP) markers and 8 linkage groups was developed for onion, which spanned 928.32 cM, with an average distance of 0.09 cM between adjacent markers. RESULTS Using this map, we carried out QTL mapping of Ms locus related to the male-fertile trait and reproduced previous mapping results, which proved that this map was of good quality. Then, four QTLs (located on LG2, LG5, and LG8) were detected for flower stalk height, explaining 26.60% of the phenotypic variance. Among them, we proposed that 20 SLAF markers (in three QTLs) of flower stalk height trait were effective favorable allelic variant markers associated with heterosis. DISCUSSION Overall, the genetic map was structured using SLAF-seq based on DH lines, and it is the highest-quality and highest-resolution linkage map of onion to date. It lays a foundation for the fine mapping and candidate gene identification of flower stalk height, and provides new insights into the developmental genetic mechanisms in onion breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiong Wu
- *Correspondence: Bingjiang Liu, ; Xiong Wu,
| |
Collapse
|
20
|
Zhang J, Toremurat Z, Liang Y, Cheng J, Sun Z, Huang Y, Liu J, Chaogetu BUREN, Ren G, Chen H. Study on the Association between LRRC8B Gene InDel and Sheep Body Conformation Traits. Genes (Basel) 2023; 14:genes14020356. [PMID: 36833283 PMCID: PMC9956668 DOI: 10.3390/genes14020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Marker-assisted selection is an important method for livestock breeding. In recent years, this technology has been gradually applied to livestock breeding to improve the body conformation traits. In this study, the LRRC8B (Leucine Rich Repeat Containing 8 VRAC Subunit B) gene was selected to evaluate the association between its genetic variations and the body conformation traits in two native sheep breeds in China. Four body conformation traits, including withers height, body length, chest circumference, and body weight, were collected from 269 Chaka sheep. We also collected the body length, chest width, withers height, chest depth, chest circumference, cannon bone circumference, and height at hip cross of 149 Small-Tailed Han sheep. Two different genotypes, ID and DD, were detected in all sheep. Our data showed that the polymorphism of the LRRC8B gene was significantly associated with chest depth (p < 0.05) in Small-Tailed Han sheep, and it is greater in sheep with DD than those with ID. In conclusion, our data suggested that the LRRC8B gene could serve as a candidate gene for marker-assisted selection in Small-Tailed Han sheep.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhansaya Toremurat
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yilin Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhenzhen Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangming Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junxia Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - BUREN Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha 817000, China
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- Correspondence: (G.R.); (H.C.); Tel.: +86-029-87092102 (H.C.); Fax: +86-029-87092164 (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (G.R.); (H.C.); Tel.: +86-029-87092102 (H.C.); Fax: +86-029-87092164 (H.C.)
| |
Collapse
|
21
|
Guo C, Zhang X, Li Y, Xie J, Gao P, Hao P, Han L, Zhang J, Wang W, Liu P, Ding J, Chang Y. Whole-genome resequencing reveals genetic differences and the genetic basis of parapodium number in Russian and Chinese Apostichopus japonicus. BMC Genomics 2023; 24:25. [PMID: 36647018 PMCID: PMC9843871 DOI: 10.1186/s12864-023-09113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Apostichopus japonicus is an economically important species in the global aquaculture industry. Russian A. japonicus, mainly harvested in the Vladivostok region, exhibits significant phenotypic differentiation, including in many economically important traits, compared with Chinese A. japonicus owing to differences in their habitat. However, both the genetic basis for the phenotypic divergence and the population genetic structure of Russian and Chinese A. japonicus are unknown. RESULT In this study, 210 individuals from seven Russian and Chinese A. japonicus populations were sampled for whole-genome resequencing. The genetic structure analysis differentiated the Russian and Chinese A. japonicus into two groups. Population genetic analyses indicated that the Russian population showed a high degree of allelic linkage and had undergone stronger positive selection compared with the Chinese populations. Gene ontology terms enriched among candidate genes with group selection analysis were mainly involved in immunity, such as inflammatory response, antimicrobial peptides, humoral immunity, and apoptosis. Genome-wide association analysis yielded eight single-nucleotide polymorphism loci significantly associated with parapodium number, and these loci are located in regions with a high degree of genomic differentiation between the Chinese and Russia populations. These SNPs were associated with five genes. Gene expression validation revealed that three of these genes were significantly differentially expressed in individuals differing in parapodium number. AJAP08772 and AJAP08773 may directly affect parapodium production by promoting endothelial cell proliferation and metabolism, whereas AJAP07248 indirectly affects parapodium production by participating in immune responses. CONCLUSIONS This study, we performed population genetic structure and GWAS analysis on Chinese and Russian A. japonicus, and found three candidate genes related to the number of parapodium. The results provide an in-depth understanding of the differences in the genetic structure of A. japonicus populations in China and Russia, and provide important information for subsequent genetic analysis and breeding of this species.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pingping Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
- Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Jinyuan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Peng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| |
Collapse
|
22
|
Liu X, Deng X, Kong W, Sun T, Li Y. The Pyramiding of Elite Allelic Genes Related to Grain Number Increases Grain Number per Panicle Using the Recombinant Lines Derived from Indica-japonica Cross in Rice. Int J Mol Sci 2023; 24:ijms24021653. [PMID: 36675168 PMCID: PMC9865901 DOI: 10.3390/ijms24021653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Indica(xian)-japonica(geng) hybrid rice has many heterosis traits that can improve rice yield. However, the traditional hybrid technology will struggle to meet future needs for the development of higher-yield rice. Available genomics resources can be used to efficiently understand the gene-trait association trait for rice breeding. Based on the previously constructed high-density genetic map of 272 high-generation recombinant inbred lines (RILs) originating from the cross of Luohui 9 (indica, as female) and RPY geng (japonica, as male) and high-quality genomes of parents, here, we further explore the genetic basis for an important complex trait: possible causes of grain number per panicle (GNPP). A total of 20 genes related to grains number per panicle (GNPP) with the differences of protein amino acid between LH9 and RPY were used to analyze genotype combinations, and PCA results showed a combination of PLY1, LAX1, DTH8 and OSH1 from the RPY geng with PYL4, SP1, DST and GNP1 from Luohui 9 increases GNPP. In addition, we also found that the combination of LAX1-T2 and GNP1-T3 had the most significant increase in GNPP. Notably, Molecular Breeding Knowledgebase (MBK) showed a few aggregated rice cultivars, LAX1-T2 and GNP1-T3, which may be a result of the natural geographic isolation between the two gene haplotypes. Therefore, we speculate that the pyramiding of japonica-type LAX-T2 with indica-type GNP1-T3 via hybridization can significantly improve rice yield by increasing GNPP.
Collapse
Affiliation(s)
- Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
23
|
Duval H, Coindre E, Ramos-Onsins SE, Alexiou KG, Rubio-Cabetas MJ, Martínez-García PJ, Wirthensohn M, Dhingra A, Samarina A, Arús P. Development and Evaluation of an Axiom TM 60K SNP Array for Almond ( Prunus dulcis). PLANTS (BASEL, SWITZERLAND) 2023; 12:242. [PMID: 36678957 PMCID: PMC9866729 DOI: 10.3390/plants12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits.
Collapse
Affiliation(s)
- Henri Duval
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Eva Coindre
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Sebastian E. Ramos-Onsins
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Konstantinos G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| | - Maria J. Rubio-Cabetas
- CITA (Agrifood Research and Technology Centre of Aragon), Department of Plant Science, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Pedro J. Martínez-García
- CEBAS (Centro de Edafología y Biología Aplicada del Segura), CSIC, Department of Plant Breeding, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - Michelle Wirthensohn
- Waite Research Institute, University of Adelaide, PMB 1 Glen, Osmond, SA 5064, Australia
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Anna Samarina
- Thermo Fisher Scientific, Frankfurter Str. 129B, 64293 Darmstadt, Germany
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
24
|
Chaudhari HG, Prajapati S, Wardah ZH, Raol G, Prajapati V, Patel R, Shati AA, Alfaifi MY, Elbehairi SEI, Sayyed RZ. Decoding the microbial universe with metagenomics: a brief insight. Front Genet 2023; 14:1119740. [PMID: 37197021 PMCID: PMC10183756 DOI: 10.3389/fgene.2023.1119740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
A major part of any biological system on earth involves microorganisms, of which the majority are yet to be cultured. The conventional methods of culturing microbes have given fruitful outcomes yet have limitations. The curiosity for better understanding has led to the development of culture-independent molecular methods that help push aside the roadblocks of earlier methods. Metagenomics unifies the scientific community in search of a better understanding of the functioning of the ecosystem and its component organisms. This approach has opened a new paradigm in advanced research. It has brought to light the vast diversity and novelty among microbial communities and their genomes. This review focuses on the development of this field over time, the techniques and analysis of data generated through sequencing platforms, and its prominent interpretation and representation.
Collapse
Affiliation(s)
- Hiral G. Chaudhari
- Shri Alpesh N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat, India
| | - Shobha Prajapati
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Zuhour Hussein Wardah
- Shri Alpesh N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat, India
| | - Gopal Raol
- Shri R. P. Arts, Shri K.B. Commerce, and Smt. BCJ Science College, Khambhat, Gujarat, India
| | - Vimalkumar Prajapati
- Division of Microbial and Environmental Biotechnology, Aspee Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, Gujarat, India
- *Correspondence: Vimalkumar Prajapati,
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
25
|
Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100344. [PMID: 35655429 PMCID: PMC9700174 DOI: 10.1016/j.xplc.2022.100344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 06/01/2023]
Abstract
Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has been observed over the last two decades and is analyzed here from an interdisciplinary perspective based on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields, working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to systematically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological significance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspectives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring novel phenotypic traits, and (3) facilitating multi-omics communication.
Collapse
Affiliation(s)
- Haiyu Tao
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shan Xu
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yongchao Tian
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhaofeng Li
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yan Ge
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaoping Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Guodong Zhou
- Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Xiong Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ze Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yanfeng Ding
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Dong Jiang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Qinghua Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
26
|
Jha UC, Nayyar H, von Wettberg EJB, Naik YD, Thudi M, Siddique KHM. Legume Pangenome: Status and Scope for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2022; 11:3041. [PMID: 36432770 PMCID: PMC9696634 DOI: 10.3390/plants11223041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 05/31/2023]
Abstract
In the last decade, legume genomics research has seen a paradigm shift due to advances in genome sequencing technologies, assembly algorithms, and computational genomics that enabled the construction of high-quality reference genome assemblies of major legume crops. These advances have certainly facilitated the identification of novel genetic variants underlying the traits of agronomic importance in many legume crops. Furthermore, these robust sequencing technologies have allowed us to study structural variations across the whole genome in multiple individuals and at the species level using 'pangenome analysis.' This review updates the progress of constructing pangenome assemblies for various legume crops and discusses the prospects for these pangenomes and how to harness the information to improve various traits of economic importance through molecular breeding to increase genetic gain in legumes and tackle the increasing global food crisis.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research, Kanpur 208024, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Eric J. B. von Wettberg
- Department and Plant and Soil Science, Gund Institute for the Environment, The University of Vermont, Burlington, VT 05405, USA
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa 848125, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa 848125, India
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Department of Agricultural Biotechnology and Molecular Biology, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
27
|
Dolatabadian A, Yuan Y, Bayer PE, Petereit J, Severn-Ellis A, Tirnaz S, Patel D, Edwards D, Batley J. Copy Number Variation among Resistance Genes Analogues in Brassica napus. Genes (Basel) 2022; 13:2037. [PMID: 36360273 PMCID: PMC9690292 DOI: 10.3390/genes13112037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2024] Open
Abstract
Copy number variations (CNVs) are defined as deletions, duplications and insertions among individuals of a species. There is growing evidence that CNV is a major factor underlining various autoimmune disorders and diseases in humans; however, in plants, especially oilseed crops, the role of CNVs in disease resistance is not well studied. Here, we investigate the genome-wide diversity and genetic properties of CNVs in resistance gene analogues (RGAs) across eight Brassica napus lines. A total of 1137 CNV events (704 deletions and 433 duplications) were detected across 563 RGAs. The results show CNVs are more likely to occur across clustered RGAs compared to singletons. In addition, 112 RGAs were linked to a blackleg resistance QTL, of which 25 were affected by CNV. Overall, we show that the presence and abundance of CNVs differ between lines, suggesting that in B. napus, the distribution of CNVs depends on genetic background. Our findings advance the understanding of CNV as an important type of genomic structural variation in B. napus and provide a resource to support breeding of advanced canola lines.
Collapse
Affiliation(s)
- Aria Dolatabadian
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Philipp Emanuel Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anita Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Dhwani Patel
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
28
|
Gui S, Wei W, Jiang C, Luo J, Chen L, Wu S, Li W, Wang Y, Li S, Yang N, Li Q, Fernie AR, Yan J. A pan-Zea genome map for enhancing maize improvement. Genome Biol 2022; 23:178. [PMID: 35999561 PMCID: PMC9396798 DOI: 10.1186/s13059-022-02742-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Background Maize (Zea mays L.) is at the vanguard facing the upcoming breeding challenges. However, both a super pan-genome for the Zea genus and a comprehensive genetic variation map for maize breeding are still lacking. Results Here, we construct an approximately 6.71-Gb pan-Zea genome that contains around 4.57-Gb non-B73 reference sequences from fragmented de novo assemblies of 721 pan-Zea individuals. We annotate a total of 58,944 pan-Zea genes and find around 44.34% of them are dispensable in the pan-Zea population. Moreover, 255,821 common structural variations are identified and genotyped in a maize association mapping panel. Further analyses reveal gene presence/absence variants and their potential roles during domestication of maize. Combining genetic analyses with multi-omics data, we demonstrate how structural variants are associated with complex agronomic traits. Conclusions Our results highlight the underexplored role of the pan-Zea genome and structural variations to further understand domestication of maize and explore their potential utilization in crop improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02742-7.
Collapse
Affiliation(s)
- Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenglin Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuyan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
29
|
Zhang Y, Xiao J, Yang K, Wang Y, Tian Y, Liang Z. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt. PLoS One 2022; 17:e0272702. [PMID: 35947630 PMCID: PMC9365129 DOI: 10.1371/journal.pone.0272702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Watermelon (Citrullus lanatus) is one of the most popular fruit crops. However, Fusarium wilt (FW) is a serious soil-borne disease caused by Fusarium oxysporum f. sp. niveum (FON) that severely limits the development of the watermelon industry. Trichoderma spp. is an important plant anti-pathogen biocontrol agent. The results of our previous study indicated that Trichoderma asperellum M45a (T. asperellum M45a) could control FW by enhancing the relative abundance of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of watermelon. However, there are few studies on its mechanism in the pathogen resistance of watermelon. Therefore, transcriptome sequencing of T. asperellum M45a-treated watermelon roots combined with metabolome sequencing of the rhizosphere soil was performed with greenhouse pot experiments. The results demonstrated that T. asperellum M45a could stably colonize roots and significantly increase the resistance-related enzymatic activities (e.g., lignin, cinnamic acid, peroxidase and peroxidase) of watermelon. Moreover, the expression of defense-related genes such as MYB and PAL in watermelon roots significantly improved with the inoculation of T. asperellum M45a. In addition, KEGG pathway analysis showed that a large number of differentially expressed genes were significantly enriched in phenylpropane metabolic pathways, which may be related to lignin and cinnamic acid synthesis, thus further inducing the immune response to resist FON. Furthermore, metabolic analysis indicated that four differential metabolic pathways were enriched in M45a-treated soil, including six upregulated compounds and one down-regulated compound. Among them, galactinol and urea were significantly positively correlated with Trichoderma. Hence, this study provides insight into the biocontrol mechanism of T. asperellum M45a to resist soil-borne diseases, which can guide its industrial application.
Collapse
Affiliation(s)
- Yi Zhang
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiling Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Institute of Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Ke Yang
- Institute of Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yuqin Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail: (YT); (ZL)
| | - Zhihuai Liang
- Institute of Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
- * E-mail: (YT); (ZL)
| |
Collapse
|
30
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
31
|
Amani MR, Zebarjadi A, Kahrizi D, Ercisli S. Somatic embryogenesis and β-glucuronidase transformation in chickpea (Cicer arietinum cv. Bivanich). Mol Biol Rep 2022; 49:11219-11227. [PMID: 35501539 DOI: 10.1007/s11033-022-07450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is an important kernel legume in the world. To optimize the plant tissue culture some experiments such as direct regeneration, proliferation, rooting shoots and somatic embryogenesis were done. METHODS AND RESULTS In experiments were used direct regeneration and proliferation, various levels of plant growth regulators NAA (0 and 1.0 mg/l), BAP (0, 1, 3 and 5 mg/l) and three explants' types (epicotyl, cotyledon and embryonic axis). The results of both experiments showed that embryonic axis explant was better than other explants. The highest percentage was obtained in MS media containing 1 mg/l BAP and also 3 mg/l BAP and 0.1 mg/l NAA with an average of 72%. The highest average number of branches (4.66) was found in the proliferation of embryonic axis in MS medium containing 3 mg/l BAP. The highest rooting shoot (90%) was found in 1/2MS in B5 medium vitamins with 0.2 mg/l of IBA and 0.5 mg/l NAA. Somatic embryogenesis experiments were compared on the concentration gradient of 2,4-D in fine embryonic axis explants. The results displayed that the concentration gradient of 10 mg/l 2,4-D to 5 mg/l of 2,4-D and then to zero concentration showed the highest number of embryos. CONCLUSION The best environment for regeneration embryos was MS medium with 2.5 mg/l of 2,4-D concentration gradient to zero. In this study, the PCR reaction showed the presence of the β-glucuronidase (gus) marker gene in regenerated cotyledons for 20 min in all three strains studied.
Collapse
Affiliation(s)
- Mohammad Reza Amani
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Alireza Zebarjadi
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran.
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Sezai Ercisli
- Faculty of Agriculture, Department of Horticulture, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
32
|
Meng Q, Manghwar H, Hu W. Study on Supergenus Rubus L.: Edible, Medicinal, and Phylogenetic Characterization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1211. [PMID: 35567211 PMCID: PMC9102695 DOI: 10.3390/plants11091211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Rubus L. is one of the most diverse genera belonging to Rosaceae; it consists of more than 700 species with a worldwide distribution. It thus provides an ideal natural "supergenus" for studying the importance of its edible, medicinal, and phylogenetic characteristics for application in our daily lives and fundamental scientific studies. The Rubus genus includes many economically important species, such as blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), black raspberry (R. occidentalis L.), and raspberry (R. chingii Hu), which are widely utilized in the fresh fruit market and the medicinal industry. Although Rubus species have existed in human civilization for hundreds of years, their utilization as fruit and in medicine is still largely inadequate, and many questions on their complex phylogenetic relationships need to be answered. In this review, we briefly summarize the history and progress of studies on Rubus, including its domestication as a source of fresh fruit, its medicinal uses in pharmacology, and its systematic position in the phylogenetic tree. Recent available evidence indicates that (1) thousands of Rubus cultivars were bred via time- and labor-consuming methods from only a few wild species, and new breeding strategies and germplasms were thus limited; (2) many kinds of species in Rubus have been used as medicinal herbs, though only a few species (R. ideaus L., R. chingii Hu, and R. occidentalis L.) have been well studied; (3) the phylogeny of Rubus is very complex, with the main reason for this possibly being the existence of multiple reproductive strategies (apomixis, hybridization, and polyploidization). Our review addresses the utilization of Rubus, summarizing major relevant achievements and proposing core prospects for future application, and thus could serve as a useful roadmap for future elite cultivar breeding and scientific studies.
Collapse
Affiliation(s)
- Qinglin Meng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Weiming Hu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| |
Collapse
|
33
|
Giordani W, Gama HC, Chiorato AF, Garcia AAF, Vieira MLC. Genome-wide association studies dissect the genetic architecture of seed shape and size in common bean. G3 (BETHESDA, MD.) 2022; 12:jkac048. [PMID: 35218340 PMCID: PMC8982408 DOI: 10.1093/g3journal/jkac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Seed weight and size are important yield components. Thus, selecting for large seeds has been a key objective in crop domestication and breeding. In common bean, seed shape is also important since it influences industrial processing and plays a vital role in determining the choices of consumers and farmers. In this study, we performed genome-wide association studies on a core collection of common bean accessions to dissect the genetic architecture and identify genomic regions associated with seed morphological traits related to weight, size, and shape. Phenotypic data were collected by high-throughput image-based approaches, and utilized to test associations with 10,362 single-nucleotide polymorphism markers using multilocus mixed models. We searched within genome-associated regions for candidate genes putatively involved in seed phenotypic variation. The collection exhibited high variability for the entire set of seed traits, and the Andean gene pool was found to produce larger, heavier seeds than the Mesoamerican gene pool. Strong pairwise correlations were verified for most seed traits. Genome-wide association studies identified marker-trait associations accounting for a considerable amount of phenotypic variation in length, width, projected area, perimeter, and circularity in 4 distinct genomic regions. Promising candidate genes were identified, e.g. those encoding an AT-hook motif nuclear-localized protein 8, type 2C protein phosphatases, and a protein Mei2-like 4 isoform, known to be associated with seed size and weight regulation. Moreover, the genes that were pinpointed are also good candidates for functional analysis to validate their influence on seed shape and size in common bean and other related crops.
Collapse
Affiliation(s)
- Willian Giordani
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Henrique Castro Gama
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Antonio Augusto Franco Garcia
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Department of Genetics, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil
| |
Collapse
|
34
|
Pangenomics in Microbial and Crop Research: Progress, Applications, and Perspectives. Genes (Basel) 2022; 13:genes13040598. [PMID: 35456404 PMCID: PMC9031676 DOI: 10.3390/genes13040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Advances in sequencing technologies and bioinformatics tools have fueled a renewed interest in whole genome sequencing efforts in many organisms. The growing availability of multiple genome sequences has advanced our understanding of the within-species diversity, in the form of a pangenome. Pangenomics has opened new avenues for future research such as allowing dissection of complex molecular mechanisms and increased confidence in genome mapping. To comprehensively capture the genetic diversity for improving plant performance, the pangenome concept is further extended from species to genus level by the inclusion of wild species, constituting a super-pangenome. Characterization of pangenome has implications for both basic and applied research. The concept of pangenome has transformed the way biological questions are addressed. From understanding evolution and adaptation to elucidating host–pathogen interactions, finding novel genes or breeding targets to aid crop improvement to design effective vaccines for human prophylaxis, the increasing availability of the pangenome has revolutionized several aspects of biological research. The future availability of high-resolution pangenomes based on reference-level near-complete genome assemblies would greatly improve our ability to address complex biological problems.
Collapse
|
35
|
Dash M, Somvanshi VS, Godwin J, Budhwar R, Sreevathsa R, Rao U. Exploring Genomic Variations in Nematode-Resistant Mutant Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 13:823372. [PMID: 35401589 PMCID: PMC8988285 DOI: 10.3389/fpls.2022.823372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa) production is seriously affected by the root-knot nematode Meloidogyne graminicola, which has emerged as a menace in upland and irrigated rice cultivation systems. Previously, activation tagging in rice was utilized to identify candidate gene(s) conferring resistance against M. graminicola. T-DNA insertional mutants were developed in a rice landrace (acc. JBT 36/14), and four mutant lines showed nematode resistance. Whole-genome sequencing of JBT 36/14 was done along with the four nematode resistance mutant lines to identify the structural genetic variations that might be contributing to M. graminicola resistance. Sequencing on Illumina NovaSeq 6000 platform identified 482,234 genetic variations in JBT 36/14 including 448,989 SNPs and 33,245 InDels compared to reference indica genome. In addition, 293,238-553,648 unique SNPs and 32,395-65,572 unique InDels were found in the four mutant lines compared to their JBT 36/14 background, of which 93,224 SNPs and 8,170 InDels were common between all the mutant lines. Functional annotation of genes containing these structural variations showed that the majority of them were involved in metabolism and growth. Trait analysis revealed that most of these genes were involved in morphological traits, physiological traits and stress resistance. Additionally, several families of transcription factors, such as FAR1, bHLH, and NAC, and putative susceptibility (S) genes, showed the presence of SNPs and InDels. Our results indicate that subject to further genetic validations, these structural genetic variations may be involved in conferring nematode resistance to the rice mutant lines.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Roli Budhwar
- Bionivid Technology Private Limited, Bangalore, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
36
|
Grewal S, Coombes B, Joynson R, Hall A, Fellers J, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Chromosome-specific KASP markers for detecting Amblyopyrum muticum segments in wheat introgression lines. THE PLANT GENOME 2022; 15:e20193. [PMID: 35102721 DOI: 10.1002/tpg2.20193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 05/23/2023]
Abstract
Many wild-relative species are being used in prebreeding programs to increase the genetic diversity of wheat (Triticum aestivum L.). Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterize wheat-wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based Kompetitive allele-specific polymerase chain reaction (KASP) markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and polymerase chain reaction (PCR)-amplicon-based sequencing of the wild species. But chromosome-specific KASP assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum (Boiss.) Eig and development of a de novo SNP discovery pipeline that generated ∼38,000 SNPs in unique wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as diagnostic for Am. muticum in a wheat background. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat-Am. muticum doubled haploid (DH) introgression lines. The chromosome-specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | | | - Ryan Joynson
- Earlham Institute, Norwich Research Park, Norwich, UK
- Current address: Limagrain Europe, Clermont-Ferrand, France
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - John Fellers
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Cai-Yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Peter Isaac
- iDna Genetics Ltd., Norwich Research Park, Norwich, UK
| | - Ian P King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| |
Collapse
|
37
|
Zanini SF, Bayer PE, Wells R, Snowdon RJ, Batley J, Varshney RK, Nguyen HT, Edwards D, Golicz AA. Pangenomics in crop improvement-from coding structural variations to finding regulatory variants with pangenome graphs. THE PLANT GENOME 2022; 15:e20177. [PMID: 34904403 DOI: 10.1002/tpg2.20177] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 05/15/2023]
Abstract
Since the first reported crop pangenome in 2014, advances in high-throughput and cost-effective DNA sequencing technologies facilitated multiple such studies including the pangenomes of oilseed rape (Brassica napus L.), soybean [Glycine max (L.) Merr.], rice (Oryza sativa L.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.). Compared with single-reference genomes, pangenomes provide a more accurate representation of the genetic variation present in a species. By combining the genomic data of multiple accessions, pangenomes allow for the detection and annotation of complex DNA polymorphisms such as structural variations (SVs), one of the major determinants of genetic diversity within a species. In this review we summarize the current literature on crop pangenomics, focusing on their application to find candidate SVs involved in traits of agronomic interest. We then highlight the potential of pangenomes in the discovery and functional characterization of noncoding regulatory sequences and their variations. We conclude with a summary and outlook on innovative data structures representing the complete content of plant pangenomes including annotations of coding and noncoding elements and outcomes of transcriptomic and epigenomic experiments.
Collapse
Affiliation(s)
- Silvia F Zanini
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ. Giessen, Giessen, 35392, Germany
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Rachel Wells
- Dep. of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR47UH, UK
| | - Rod J Snowdon
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ. Giessen, Giessen, 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop Food Innovation, Food Futures Institute, Murdoch Univ., Murdoch, WA, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Agnieszka A Golicz
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ. Giessen, Giessen, 35392, Germany
| |
Collapse
|
38
|
QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (Capsicum annuum) Using Genotyping-by-Sequencing (GBS). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs.
Collapse
|
39
|
DNA-Based Tools to Certify Authenticity of Rice Varieties—An Overview. Foods 2022; 11:foods11030258. [PMID: 35159410 PMCID: PMC8834242 DOI: 10.3390/foods11030258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the most cultivated and consumed crops worldwide. It is mainly produced in Asia but, due to its large genetic pool, it has expanded to several ecosystems, latitudes and climatic conditions. Europe is a rice producing region, especially in the Mediterranean countries, that grow mostly typical japonica varieties. The European consumer interest in rice has increased over the last decades towards more exotic types, often more expensive (e.g., aromatic rice) and Europe is a net importer of this commodity. This has increased food fraud opportunities in the rice supply chain, which may deliver mixtures with lower quality rice, a problem that is now global. The development of tools to clearly identify undesirable mixtures thus became urgent. Among the various tools available, DNA-based markers are considered particularly reliable and stable for discrimination of rice varieties. This review covers aspects ranging from rice diversity and fraud issues to the DNA-based methods used to distinguish varieties and detect unwanted mixtures. Although not exhaustive, the review covers the diversity of strategies and ongoing improvements already tested, highlighting important advantages and disadvantages in terms of costs, reliability, labor-effort and potential scalability for routine fraud detection.
Collapse
|
40
|
Mir RA, Nazir M, Naik S, Mukhtar S, Ganai BA, Zargar SM. Utilizing the underutilized plant resources for development of life style foods: Putting nutrigenomics to use. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:128-138. [PMID: 34998100 DOI: 10.1016/j.plaphy.2021.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sufficient amount of minerals, vitamins, and proteins in human diet play indispensable role in maintaining the active metabolism for better human health. All the essential nutrients that are requisite for an individual's survival are acquired from plants as well as animals. Micronutrients and macronutrients directly influence the metabolic pathways and their deficiencies play a substantial role in development of manifold disorders. In addition to environmental factors, quality and quantity of foods are key factors in maintaining the human health. Transition from healthy to diseased state is concurrent with the pattern of gene expression that is largely influenced by nutrition and environment. A combined approach to study the influence of nutrition on expression of numerous genes can be well explored through nutrigenomic studies. Nutrigenomics includes studies wherein applied genomics is used to investigate nutritional science to understand the compartmentalization of genes that influence the cause of diet-related complications. This review describes the role of underutilized crops as frontline foods to circumvent the health complications through the nutrigenomic studies. Further dynamics of nutrigenomic tools to study the impact of nutrition on the changing pattern of genome stability and gene expression for developing precise safety measures against wide range of health ailments linked to metabolic networks. Additionally, this review provides detailed information on nutrigenomic studies undertaken to unravel the potential of underutilized crops to augment the human health and to carry the agronomic/genomic approaches to enhance nutritional profile of underutilized crops to overcome diet-related disorders.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185131, India
| | - Muslima Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Samiullah Naik
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Shazia Mukhtar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India.
| |
Collapse
|
41
|
Hale B, Ferrie AMR, Chellamma S, Samuel JP, Phillips GC. Androgenesis-Based Doubled Haploidy: Past, Present, and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:751230. [PMID: 35069615 PMCID: PMC8777211 DOI: 10.3389/fpls.2021.751230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
Androgenesis, which entails cell fate redirection within the microgametophyte, is employed widely for genetic gain in plant breeding programs. Moreover, androgenesis-responsive species provide tractable systems for studying cell cycle regulation, meiotic recombination, and apozygotic embryogenesis within plant cells. Past research on androgenesis has focused on protocol development with emphasis on temperature pretreatments of donor plants or floral buds, and tissue culture optimization because androgenesis has different nutritional requirements than somatic embryogenesis. Protocol development for new species and genotypes within responsive species continues to the present day, but slowly. There is more focus presently on understanding how protocols work in order to extend them to additional genotypes and species. Transcriptomic and epigenetic analyses of induced microspores have revealed some of the cellular and molecular responses required for or associated with androgenesis. For example, microRNAs appear to regulate early microspore responses to external stimuli; trichostatin-A, a histone deacetylase inhibitor, acts as an epigenetic additive; ά-phytosulfokine, a five amino acid sulfated peptide, promotes androgenesis in some species. Additionally, present work on gene transfer and genome editing in microspores suggest that future endeavors will likely incorporate greater precision with the genetic composition of microspores used in doubled haploid breeding, thus likely to realize a greater impact on crop improvement. In this review, we evaluate basic breeding applications of androgenesis, explore the utility of genomics and gene editing technologies for protocol development, and provide considerations to overcome genotype specificity and morphogenic recalcitrance in non-model plant systems.
Collapse
Affiliation(s)
- Brett Hale
- Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR, United States
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | | | | | | | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
- College of Agriculture, Arkansas State University, Jonesboro, AR, United States
- Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Jonesboro, AR, United States
| |
Collapse
|
42
|
Zhang N, Feng X, Zeng Q, Lin H, Wu Z, Gao X, Huang Y, Wu J, Qi Y. Integrated Analysis of miRNAs Associated With Sugarcane Responses to Low-Potassium Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:750805. [PMID: 35058942 PMCID: PMC8763679 DOI: 10.3389/fpls.2021.750805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Sugarcane is among the most important global crops and a key bioenergy source. Sugarcane production is restricted by limited levels of available soil potassium (K+). The ability of plants to respond to stressors can be regulated by a range of microRNAs (miRNAs). However, there have been few studies regarding the roles of miRNAs in the regulation of sugarcane responses to K+-deficiency. To understand how these non-coding RNAs may influence sugarcane responses to low-K+ stress, we conducted expression profiling of miRNAs in sugarcane roots under low-K+ conditions via high-throughput sequencing. This approach led to the identification of 324 and 42 known and novel miRNAs, respectively, of which 36 were found to be differentially expressed miRNAs (DEMs) under low-K+ conditions. These results also suggested that miR156-x/z and miR171-x are involved in these responses as potential regulators of lateral root formation and the ethylene signaling pathway, respectively. A total of 705 putative targets of these DEMs were further identified through bioinformatics predictions and degradome analyses, and GO and KEGG enrichment analyses revealed these target mRNAs to be enriched for catalytic activity, binding functions, metabolic processes, plant hormone signal transduction, and mitogen-activated protein kinase (MAPK) signaling. In summary, these data provide an overview of the roles of miRNAs in the regulation of sugarcane response to low-K+ conditions.
Collapse
Affiliation(s)
- Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaomin Feng
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiaoying Zeng
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Huanzhang Lin
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zilin Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoning Gao
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Yonghong Huang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongwen Qi
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
43
|
Genome-Wide Variation Analysis of Four Vegetable Soybean Cultivars Based on Re-Sequencing. PLANTS 2021; 11:plants11010028. [PMID: 35009032 PMCID: PMC8747356 DOI: 10.3390/plants11010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Vegetable soybean is a type of value-added specialty soybean, served as a fresh vegetable or snack in China. Due to the difference from other types, it is important to understand the genetic structure and diversity of vegetable soybean for further utilization in breeding programs. The four vegetable cultivars, Taiwan-75, Zhexiandou No. 8, Zhexian No. 9 and Zhexian No. 10 are popular soybean varieties planted in Zhejiang province, and have large pods and intermediate maturity. The clustering showed a close relationship of these four cultivars in simple sequence repeat analysis. To reveal the genome variation of vegetable soybean, these four improved lines were analyzed by whole-genome re-sequencing. The average sequencing depth was 7X and the coverage ratio of each cultivar was at least more than 94%. Compared with the reference genome, a large number of single-nucleotide polymorphisms, insertion/deletions and structure variations were identified with different chromosome distributions. The average heterozygosity rate of the single-nucleotide polymorphisms was 11.99% of these four cultivars. According to the enrichment analysis, there were 23,371 genes identified with putative modifications, and a total of 282 genes were related to carbohydrate metabolic processes. These results provide useful information for genetic research and future breeding, which can facilitate the selection procedures in vegetable soybean breeding.
Collapse
|
44
|
Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J. A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). PHYSIOLOGIA PLANTARUM 2021; 173:1729-1764. [PMID: 33547804 DOI: 10.1111/ppl.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Melon (Cucumis melo L.) is an important cucurbit and has been considered as a model plant for studying sex determination. The four most common sexual morphotypes in melon are monoecious (A-G-M), gynoecious (--ggM-), andromonoecious (A-G-mm), and hermaphrodite (--ggmm). Sex expression in melons is complex, as the genes and associated networks that govern the sex expression are not fully explored. Recently, RNA-seq transcriptomic profiling, ChIP-qPCR analysis integrated with gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathways predicted the differentially expressed genes including sex-specific ACS and ACO genes, in regulating the sex-expression, phytohormonal cross-talk, signal transduction, and secondary metabolism in melons. Integration of transcriptional control through genetic interaction in between the ACS7, ACS11, and WIP1 in epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3, epigenetically, overall determine sex expression. Alignment of protein sequences for establishing phylogenetic evolution, motif comparison, and protein-protein interaction supported the structural conservation while presence of the conserved hydrophilic and charged residues across the diverged evolutionary group predicted the functional conservation of the ACS protein. Presence of the putative cis-binding elements or DNA motifs, and its further comparison with DAP-seq-based cistrome and epicistrome of Arabidopsis, unraveled strong ancestry of melons with Arabidopsis. Motif comparison analysis also characterized putative genes and transcription factors involved in ethylene biosynthesis, signal transduction, and hormonal cross-talk related to sex expression. Overall, we have comprehensively reviewed research findings for a deeper insight into transcriptional and epigenetic regulation of sex expression and flower development in melons.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Binod Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| |
Collapse
|
45
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
46
|
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front Genet 2021; 12:742095. [PMID: 34858472 PMCID: PMC8631721 DOI: 10.3389/fgene.2021.742095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Functional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops. Advances in sequencing and availability of different omics technologies have given opportunity to utilize these tools to enhance the functional components of the foods, thus ensuring the nutritional security. Integrated omics approaches including genomics, transcriptomics, proteomics, metabolomics coupled with artificial intelligence and machine learning approaches can be used to improve the crops. This review provides insights into omics studies that are carried out to find the active components and crop improvement by enhancing the functional compounds in different plants including cereals, millets, pulses, oilseeds, fruits, vegetables, spices, beverages and medicinal plants. There is a need to characterize functional foods that are being used in traditional medicines, as well as utilization of this knowledge to improve the staple foods in order to tackle malnutrition and hunger more effectively.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Chittaranjan Kole
- President, International Phytomedomics and Nutriomics Consortium (ipnc.info), Daejeon, South Korea
| | - Naveen Puppala
- New Mexico State University-Agricultural Science Center at Clovis, New Mexico, NM, United States
| |
Collapse
|
47
|
Kishor DS, Alavilli H, Lee SC, Kim JG, Song K. Development of SNP Markers for White Immature Fruit Skin Color in Cucumber ( Cucumis sativus L.) Using QTL-seq and Marker Analyses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112341. [PMID: 34834706 PMCID: PMC8625156 DOI: 10.3390/plants10112341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/03/2023]
Abstract
Despite various efforts in identifying the genes governing the white immature fruit skin color in cucumber, the genetic basis of the white immature fruit skin color is not well known. In the present study, genetic analysis showed that a recessive gene confers the white immature fruit skin-color phenotype over the light-green color of a Korean slicer cucumber. High-throughput QTL-seq combined with bulked segregation analysis of two pools with the extreme phenotypes (white and light-green fruit skin color) in an F2 population identified two significant genomic regions harboring QTLs for white fruit skin color within the genomic region between 34.1 and 41.67 Mb on chromosome 3, and the genomic region between 12.2 and 12.7 Mb on chromosome 5. Further, nonsynonymous SNPs were identified with a significance of p < 0.05 within the QTL regions, resulting in eight homozygous variants within the QTL region on chromosome 3. SNP marker analysis uncovered the novel missense mutations in Chr3CG52930 and Chr3CG53640 genes and showed consistent results with the phenotype of light-green and white fruit skin-colored F2 plants. These two genes were located 0.5 Mb apart on chromosome 3, which are considered strong candidate genes. Altogether, this study laid a solid foundation for understanding the genetic basis and marker-assisted breeding of immature fruit skin color in cucumber.
Collapse
Affiliation(s)
- D. S. Kishor
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea; (D.S.K.); (H.A.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea; (D.S.K.); (H.A.)
| | | | - Jeong-Gu Kim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea; (D.S.K.); (H.A.)
| |
Collapse
|
48
|
Lee YR, Kim CW, Han J, Choi HJ, Han K, Lee ES, Kim DS, Lee J, Siddique MI, Lee HE. Genotyping-by-Sequencing Derived Genetic Linkage Map and Quantitative Trait Loci for Sugar Content in Onion ( Allium cepa L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112267. [PMID: 34834630 PMCID: PMC8625195 DOI: 10.3390/plants10112267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Onion (2n = 2x = 16) has been a nutritional, medicinal and economically valuable vegetable crop all over the world since ancient times. To accelerate the molecular breeding in onion, genetic linkage maps are prerequisite. However, construction of genetic linkage maps of onion remains relatively rudimentary due to a large genome (about 16.3 Gbp) as well as biennial life cycle, cross-pollinated nature, and high inbreeding depression. In this study, we constructed single nucleotide polymorphism (SNP)-based genetic linkage map of onion in an F2 segregating population derived from a cross between the doubled haploid line '16P118' and inbred line 'Sweet Green' through genotyping by sequencing (GBS). A total of 207.3 Gbp of raw sequences were generated using an Illumina HiSeq X system, and 24,341 SNPs were identified with the criteria based on three minimum depths, lower than 30% missing rate, and more than 5% minor allele frequency. As a result, an onion genetic linkage map consisting of 216 GBS-based SNPs were constructed comprising eight linkage groups spanning a genetic length of 827.0 cM. Furthermore, we identified the quantitative trait loci (QTLs) for the sucrose, glucose, fructose, and total sugar content across the onion genome. We identified a total of four QTLs associated with sucrose (qSC4.1), glucose (qGC5.1), fructose (qFC5.1), and total sugar content (qTSC5.1) explaining the phenotypic variation (R2%) ranging from 6.07-11.47%. This map and QTL information will contribute to develop the molecular markers to breed the cultivars with high sugar content in onion.
Collapse
Affiliation(s)
- Ye-Rin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - Cheol Woo Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - JiWon Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - Hyun Jin Choi
- Postharvest Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea;
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - Eun Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - Jundae Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Muhammad Irfan Siddique
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.-R.L.); (C.W.K.); (J.H.); (K.H.); (E.S.L.); (D.-S.K.); (M.I.S.)
- Correspondence: ; Tel.: +82-63-238-6674
| |
Collapse
|
49
|
Yue JJ, Yuan JL, Wu FH, Yuan YH, Cheng QW, Hsu CT, Lin CS. Protoplasts: From Isolation to CRISPR/Cas Genome Editing Application. Front Genome Ed 2021; 3:717017. [PMID: 34713263 PMCID: PMC8525356 DOI: 10.3389/fgeed.2021.717017] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
In the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas) system, protoplasts are not only useful for rapidly validating the mutagenesis efficiency of various RNA-guided endonucleases, promoters, sgRNA designs, or Cas proteins, but can also be a platform for DNA-free gene editing. To date, the latter approach has been applied to numerous crops, particularly those with complex genomes, a long juvenile period, a tendency for heterosis, and/or self-incompatibility. Protoplast regeneration is thus a key step in DNA-free gene editing. In this report, we review the history and some future prospects for protoplast technology, including protoplast transfection, transformation, fusion, regeneration, and current protoplast applications in CRISPR/Cas-based breeding.
Collapse
Affiliation(s)
- Jin-Jun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jin-Ling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsuan Yuan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Qiao-Wei Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
50
|
Liu J, Zhan J, Chen J, Lu X, Zhi S, Ye G. Validation of Genes Affecting Rice Grain Zinc Content Through Candidate Gene-Based Association Analysis. Front Genet 2021; 12:701658. [PMID: 34434221 PMCID: PMC8381382 DOI: 10.3389/fgene.2021.701658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022] Open
Abstract
Several key genes governing Zn homeostasis and grain zinc content (GZC) have been functionally characterized. However, the effects of these genes in diverse breeding populations have not been evaluated; thus, their availability in breeding is unclear. In this study, the effects of 65 genes related to rice zinc responses on GZC were evaluated using two panels of breeding lines, and the superior haplotypes were identified. One panel consisted of mega varieties from the International Rice Research Institute (IRRI), South Asia, and Southeast Asia (SEA), and the other panel is breeding lines/varieties from South China (SC). In addition, a multiparent advanced generation intercross (MAGIC) population, named as DC1, was also employed. Three analytical methods, single-locus mixed linear model (SL-MLM), multilocus random-SNP-effect mixed linear model (mrMLM), and haplotype-based association analysis (Hap-AA), were applied. OsIDEF1 (which explained 12.3% of the phenotypic variance) and OsZIFL7 (8.3-9.1%), OsZIP7 (18.9%), and OsIRT1 (17.9%) were identified by SL-MLM in SEA and SC, respectively, whereas no gene was significantly associated with GZC in DC1. In total, five (OsNRAMP6, OsYSL15, OsIRT1, OsIDEF1, and OsZIFL7, 7.70-15.39%), three (OsFRDL1, OsIRT1, and OsZIP7, 11.87-17.99%), and two (OsYSL7 and OsZIP7, 9.85-10.57%) genes were detected to be significantly associated with GZC in SEA, SC, and DC1 by mrMLM, respectively. Hap-AA indicated that Hap1-OsNRAMP5, Hap5-OsZIP4, Hap1-OsIRT1, Hap3-OsNRAMP6, Hap6-OsMTP1, and Hap6-OsYSL15 had the largest effects for GZC in SEA, whereas Hap3-OsOPT7, Hap4-OsIRT2, Hap4-OsZIP7, Hap5-OsIRT1, and Hap5-OsSAMS1 were the most significant in the SC population. Besides, superior alleles were also identified for the significant genes. The genes significantly associated with GZC and their superior haplotypes identified in different panels could be used in enhancing GZC through molecular breeding, which could further address the problem of Zn malnutrition among rice consumers.
Collapse
Affiliation(s)
- Jindong Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhui Zhan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jingguang Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Xiang Lu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuai Zhi
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Strategic Innovation Platform, International Rice Research Institute, Makati, Philippines
| |
Collapse
|