1
|
Chaudhuri R, Bhattacharya S, Dash J. Bioorthogonal Chemistry in Translational Research: Advances and Opportunities. Chembiochem 2023; 24:e202300474. [PMID: 37800582 DOI: 10.1002/cbic.202300474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Bioorthogonal chemistry is a rapidly expanding field of research that involves the use of small molecules that can react selectively with biomolecules in living cells and organisms, without causing any harm or interference with native biochemical processes. It has made significant contributions to the field of biology and medicine by enabling selective labeling, imaging, drug targeting, and manipulation of bio-macromolecules in living systems. This approach offers numerous advantages over traditional chemistry-based methods, including high specificity, compatibility with biological systems, and minimal interference with biological processes. In this review, we provide an overview of the recent advancements in bioorthogonal chemistry and their current and potential applications in translational research. We present an update on this innovative chemical approach that has been utilized in cells and living systems during the last five years for biomedical applications. We also highlight the nucleic acid-templated synthesis of small molecules by using bioorthogonal chemistry. Overall, bioorthogonal chemistry provides a powerful toolset for studying and manipulating complex biological systems, and holds great potential for advancing translational research.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| | - Semantee Bhattacharya
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| | - Jyotirmayee Dash
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| |
Collapse
|
2
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
3
|
Metz A, Wollenhaupt J, Glöckner S, Messini N, Huber S, Barthel T, Merabet A, Gerber HD, Heine A, Klebe G, Weiss MS. Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Acta Crystallogr D Struct Biol 2021; 77:1168-1182. [PMID: 34473087 PMCID: PMC8411975 DOI: 10.1107/s2059798321008196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.
Collapse
Affiliation(s)
- Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Steffen Glöckner
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Niki Messini
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Simon Huber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Tatjana Barthel
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Ahmed Merabet
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Hans-Dieter Gerber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Andreas Heine
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
4
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA‐Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| |
Collapse
|
5
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA-Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020; 59:14965-14972. [PMID: 32436364 DOI: 10.1002/anie.202005070] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 11/11/2022]
Abstract
Dynamic combinatorial libraries (DCLs) is a powerful tool for ligand discovery in biomedical research; however, the application of DCLs has been hampered by their low diversity. Recently, the concept of DNA encoding has been employed in DCLs to create DNA-encoded dynamic libraries (DEDLs); however, all current DEDLs are limited to fragment identification, and a challenging process of fragment linking is required after selection. We report an anchor-directed DEDL approach that can identify full ligand structures from large-scale DEDLs. This method is also able to convert unbiased libraries into focused ones targeting specific protein classes. We demonstrated this method by selecting DEDLs against five proteins, and novel inhibitors were identified for all targets. Notably, several selective BD1/BD2 inhibitors were identified from the selections against bromodomain 4 (BRD4), an important anti-cancer drug target. This work may provide a broadly applicable method for inhibitor discovery.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology China, 1088 Xueyuan Road, Shenzhen, China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
6
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
7
|
Wong EL, Nawrotzky E, Arkona C, Kim BG, Beligny S, Wang X, Wagner S, Lisurek M, Carstanjen D, Rademann J. The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation. Nat Commun 2019; 10:66. [PMID: 30622248 PMCID: PMC6325109 DOI: 10.1038/s41467-018-07923-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Protein-templated fragment ligations have been established as a powerful method for the assembly and detection of optimized protein ligands. Initially developed for reversible ligations, the method has been expanded to irreversible reactions enabling the formation of super-additive fragment combinations. Here, protein-induced Mannich ligations are discovered as a biocatalytic reaction furnishing inhibitors of the transcription factor STAT5. STAT5 protein catalyzes multicomponent reactions of a phosphate mimetic, formaldehyde, and 1H-tetrazoles yielding protein ligands with greatly increased binding affinity and ligand efficiency. Reactions are induced under physiological conditions selectively by native STAT5 but not by other proteins. Formation of ligation products and (auto-)inhibition of the reaction are quantified and the mechanism is investigated. Inhibitors assembled by STAT5 block specifically the phosphorylation of this protein in a cellular model of acute myeloid leukemia (AML), DNA-binding of STAT5 dimers, expression of downstream targets of the transcription factor, and the proliferation of cancer cells in mice. The oncogene STAT5 is involved in cancer cell proliferation. Here, the authors use STAT5 protein to assemble its own small molecule inhibitors via Mannich ligation (three-component-reactions) and show that the resultant ligands can inhibit the proliferation of cancer cells in a mouse model.
Collapse
Affiliation(s)
- Ee Lin Wong
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Eric Nawrotzky
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Arkona
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Boo Geun Kim
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Samuel Beligny
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Xinning Wang
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Stefan Wagner
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Michael Lisurek
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dirk Carstanjen
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany. .,Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
8
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
9
|
Bongard J, Lorenz M, Vetter IR, Stege P, Porfetye AT, Schmitz AL, Kaschani F, Wolf A, Koch U, Nussbaumer P, Klebl B, Kaiser M, Ehrmann M. Identification of Noncatalytic Lysine Residues from Allosteric Circuits via Covalent Probes. ACS Chem Biol 2018; 13:1307-1312. [PMID: 29658704 DOI: 10.1021/acschembio.8b00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalent modifications of nonactive site lysine residues by small molecule probes has recently evolved into an important strategy for interrogating biological systems. Here, we report the discovery of a class of bioreactive compounds that covalently modify lysine residues in DegS, the rate limiting protease of the essential bacterial outer membrane stress response pathway. These modifications lead to an allosteric activation and allow the identification of novel residues involved in the allosteric activation circuit. These findings were validated by structural analyses via X-ray crystallography and cell-based reporter systems. We anticipate that our findings are not only relevant for a deeper understanding of the structural basis of allosteric activation in DegS and other HtrA serine proteases but also pinpoint an alternative use of covalent small molecules for probing essential biochemical mechanisms.
Collapse
Affiliation(s)
- Jens Bongard
- Microbiology, Faculty of Biology, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Marian Lorenz
- Microbiology, Faculty of Biology, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Ingrid R. Vetter
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Patricia Stege
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Arthur T. Porfetye
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Anna Laura Schmitz
- Chemical Biology, Faculty of Biology, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Faculty of Biology, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Alex Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Uwe Koch
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Markus Kaiser
- Chemical Biology, Faculty of Biology, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Michael Ehrmann
- Microbiology, Faculty of Biology, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|
10
|
Antagonists of the miRNA-Argonaute 2 Protein Complex: Anti-miR-AGOs. Methods Mol Biol 2018; 1517:239-249. [PMID: 27924487 DOI: 10.1007/978-1-4939-6563-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
microRNAs (miRNAs) have been identified as high-value drug targets. A widely applied strategy in miRNA inhibition is the use of antisense agents. However, it has been shown that oligonucleotides are poorly cell permeable because of their complex chemical structure and due to their negatively charged backbone. Consequently, the general application of oligonucleotides in therapy is limited. Since miRNAs' functions are executed exclusively by the Argonaute 2 protein, we therefore describe a protocol for the design of a novel miRNA inhibitor class: antagonists of the miRNA-Argonaute 2 protein complex, so-called anti-miR-AGOs, that not only block the crucial binding site of the target miRNA but also bind to the protein's active site. Due to their lower molecular weight and, thus, more drug-like chemical structure, the novel inhibitor class may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.
Collapse
|
11
|
Abstract
Only 20 years after the discovery of small non-coding, single-stranded ribonucleic acids, so-called microRNAs (miRNAs), as post-transcriptional gene regulators, the first miRNA-targeting drug Miravirsen for the treatment of hepatitis C has been successfully tested in clinical Phase II trials. Addressing miRNAs as drug targets may enable the cure, or at least the treatment of diseases, which presently seems impossible. However, due to miRNAs' chemical structure, generation of potential drug molecules with necessary pharmacokinetic properties is still challenging and requires a re-thinking of the drug discovery process. Therefore, this chapter highlights the potential of miRNAs as drug targets, discusses the challenges, and tries to give a complete overview of recent strategies in miRNA drug discovery.
Collapse
Affiliation(s)
- Marco F Schmidt
- BEROCEUTICA GmbH, c/o Universität Potsdam, August-Bebel-Strasse 89, 14482, Potsdam, Germany.
| |
Collapse
|
12
|
Meghani NM, Amin HH, Lee BJ. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov Today 2017; 22:1604-1619. [PMID: 28754291 DOI: 10.1016/j.drudis.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 01/30/2023]
Abstract
The concept of click chemistry (CC), first introduced by K.B. Sharpless, has been widely adopted for use in drug discovery, novel drug delivery systems (DDS), polymer chemistry, and material sciences. In this review, we outline novel aspects of CC related to drug discovery and drug delivery, with a brief overview of molecular mechanisms underlying each click reaction commonly used by researchers, and the main patents that paved the way for further diverse medicinal applications. We also describe recent progress in drug discovery and polymeric and carbon material-based drug delivery for potential pharmaceutical applications and advancements based on the CC approach, and discuss some intrinsic limitations of this popular conjugation reaction. The use of CC is likely to significantly advance drug discovery and bioconjugation development.
Collapse
Affiliation(s)
- Nilesh M Meghani
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hardik H Amin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
13
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 129:7464-7485. [PMID: 32313319 PMCID: PMC7159557 DOI: 10.1002/ange.201610372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/28/2022]
Abstract
AbstractProteintemplat‐gesteuerte Fragmentligationen sind ein neuartiges Konzept zur Unterstützung der Wirkstofffindung und können dazu beitragen, die Wirksamkeit von Proteinliganden zu verbessern. Es handelt sich dabei um chemische Reaktionen zwischen niedermolekularen Verbindungen (“Fragmenten”), die die Oberfläche eines Proteins als Reaktionsgefäß verwenden, um die Bildung eines Proteinliganden mit erhöhter Bindungsaffinität zu katalysieren. Die Methode nutzt die molekulare Erkennung kleiner reaktiver Fragmente durch die Proteine sowohl zur Assemblierung der Liganden als auch zur Identifizierung bioaktiver Fragmentkombinationen. Chemische Synthese und Bioassay werden dabei in einem Schritt vereint. Dieser Aufsatz diskutiert die biophysikalischen Grundlagen der reversiblen und irreversiblen Fragmentligationen und gibt einen Überblick über die Methoden, mit denen die durch das Proteintemplat gebildeten Ligationsprodukte detektiert werden können. Der chemische Reaktionsraum und aktuelle Anwendungen wie auch die Bedeutung dieses Konzeptes für die Wirkstofffindung werden erörtert.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| |
Collapse
|
14
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Angew Chem Int Ed Engl 2017; 56:7358-7378. [PMID: 28117936 PMCID: PMC7159684 DOI: 10.1002/anie.201610372] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| |
Collapse
|
15
|
Jaegle M, Steinmetzer T, Rademann J. Protein-Templated Formation of an Inhibitor of the Blood Coagulation Factor Xa through a Background-Free Amidation Reaction. Angew Chem Int Ed Engl 2017; 56:3718-3722. [PMID: 28199769 PMCID: PMC5363247 DOI: 10.1002/anie.201611547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Indexed: 11/16/2022]
Abstract
Protein‐templated reactions enable the target‐guided formation of protein ligands from reactive fragments, ideally with no background reaction. Herein, we investigate the templated formation of amides. A nucleophilic fragment that binds to the coagulation factor Xa was incubated with the protein and thirteen differentially activated dipeptides. The protein induced a non‐catalytic templated reaction for the phenyl and trifluoroethyl esters; the latter was shown to be a completely background‐free reaction. Starting from two fragments with millimolar affinity, a 29 nm superadditive inhibitor of factor Xa was obtained. The fragment ligation reaction was detected with high sensitivity by an enzyme activity assay and by mass spectrometry. The reaction progress and autoinhibition of the templated reaction by the formed ligation product were determined, and the structure of the protein–inhibitor complex was elucidated.
Collapse
Affiliation(s)
- Mike Jaegle
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Torsten Steinmetzer
- Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, 35037, Marburg, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany
| |
Collapse
|
16
|
Jaegle M, Steinmetzer T, Rademann J. Proteintemplat‐gesteuerte Bildung eines Inhibitors des Koagulationsfaktors Xa durch eine Amidierung ohne Hintergrundreaktion. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mike Jaegle
- Medizinische Chemie Institut für Pharmazie Freie Universität Berlin Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| | - Torsten Steinmetzer
- Philipps-Universität Marburg Fachbereich Pharmazie Institut für Pharmazeutische Chemie Marbacher Weg 6 35037 Marburg Deutschland
| | - Jörg Rademann
- Medizinische Chemie Institut für Pharmazie Freie Universität Berlin Königin-Luise-Straße 2+4 14195 Berlin Deutschland
| |
Collapse
|
17
|
Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Nat Commun 2016; 7:12761. [PMID: 27677239 PMCID: PMC5052702 DOI: 10.1038/ncomms12761] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/29/2016] [Indexed: 02/01/2023] Open
Abstract
Small-molecule fragments binding to biomacromolecules can be starting points for the development of drugs, but are often difficult to detect due to low affinities. Here we present a strategy that identifies protein-binding fragments through their potential to induce the target-guided formation of covalently bound, irreversible enzyme inhibitors. A protein-binding nucleophile reacts reversibly with a bis-electrophilic warhead, thereby positioning the second electrophile in close proximity of the active site of a viral protease, resulting in the covalent de-activation of the enzyme. The concept is implemented for Coxsackie virus B3 3C protease, a pharmacological target against enteroviral infections. Using an aldehyde-epoxide as bis-electrophile, active fragment combinations are validated through measuring the protein inactivation rate and by detecting covalent protein modification in mass spectrometry. The structure of one enzyme-inhibitor complex is determined by X-ray crystallography. The presented warhead activation assay provides potent non-peptidic, broad-spectrum inhibitors of enteroviral proteases.
Collapse
|
18
|
Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Med Chem 2016; 8:381-404. [DOI: 10.4155/fmc-2015-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For the last 15 years, kinetic target-guided syntheses, including in situ click chemistry, have been used as alternative methods to find ligands to therapeutically relevant proteins. In this review, a comprehensive survey of biological targets used in kinetic target-guided synthesis covers historical and recent examples. The chemical reactions employed and practical aspects, including controls, library sizes and product detection, are presented. A particular focus is on the reagents and warhead selection and design with a critical overview of the challenges encountered. As protein supply remains a key success factor, it appears that increased efforts should be taken toward miniaturization in order to expand the scope of this strategy and qualify it as a fully fledged drug discovery tool.
Collapse
|
19
|
Catalytic activation of pre-substrates via dynamic fragment assembly on protein templates. Nat Commun 2014; 5:5170. [PMID: 25403979 DOI: 10.1038/ncomms6170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022] Open
Abstract
Sensitive detection of small molecule fragments binding to defined sites of biomacromolecules is still a considerable challenge. Here we demonstrate that protein-binding fragments are able to induce enzymatic reactions on the protein surface via dynamic fragment ligation. Fragments binding to the S1 pocket of serine proteases containing a nitrogen, oxygen or sulphur nucleophile are found to activate electrophilic pre-substrates through a reversible, covalent ligation reaction. The dynamic ligation reaction positions the pre-substrate molecule at the active site of the protein thereby inducing its enzymatic cleavage. Catalytic activation of pre-substrates is confirmed by fluorescence spectroscopy and by high-performance liquid chromatography. The approach is investigated with 3 pre-substrates and 14 protein-binding fragments and the specific activation and the templating effect exerted by the enzyme is quantified for each protease-fragment-pre-substrate combination. The described approach enables the site-specific identification of protein-binding fragments, the functional characterization of enzymatic sites and the quantitative analysis of protein template-assisted ligation reactions.
Collapse
|
20
|
Schmidt MF. Drug target miRNAs: chances and challenges. Trends Biotechnol 2014; 32:578-585. [PMID: 25304465 DOI: 10.1016/j.tibtech.2014.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
miRNAs, short ribonucleic acid gene regulators, are increasingly popular drug targets. Traditionally 'undruggable' proteins can be targeted via their miRNA gene regulators, enabling the treatment of diseases that, at present, seem impossible to cure. However, addressing miRNAs requires innovation at the level of drug discovery. This review article outlines the potential of miRNAs as drug targets, focuses on the challenges of developing miRNA-targeting drugs, and surveys new advances. The aim is to provide an orientation guide for scientists, as well business analysts, to help them navigate the jungle of different approaches in miRNA drug discovery.
Collapse
Affiliation(s)
- Marco F Schmidt
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| |
Collapse
|
21
|
Schneider G. De novo design - hop(p)ing against hope. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e453-60. [PMID: 24451634 DOI: 10.1016/j.ddtec.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Current trends in computational de novo design provide a fresh approach to 'scaffold-hopping' in drug discovery. The methodological repertoire is no longer limited to receptor-based methods, but specifically ligand-based techniques that consider multiple properties in parallel, including the synthetic feasibility of the computer-generated molecules and their polypharmacology, provide innovative ideas for the discovery of new chemical entities. The concept of fragment-based and virtual reaction-driven design enables rapid compound optimization from scratch with a manageable complexity of the search. Starting from known drugs as a reference, such algorithms suggest drug-like molecules with motivated scaffold variations, and advanced mathematical models of structure-activity landscapes and multi-objective design techniques have created new opportunities for hit and lead finding.
Collapse
|
22
|
Biased and unbiased strategies to identify biologically active small molecules. Bioorg Med Chem 2014; 22:4474-89. [DOI: 10.1016/j.bmc.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
|
23
|
Abstract
As microRNA silencing processes are mediated by the protein Argonaute 2 and for target RNA binding only a short sequence at the microRNA's 5' end (seed region) is crucial, we report a novel inhibitor class: the microRNA-specific Argonaute 2 protein inhibitors that not only block this short recognition sequence but also bind to the protein's active site. We developed a model for rational drug design, enabling the identification of Argonaute 2 active site binders and their linkage with a peptide nucleic acid sequence (PNA), which addresses the microRNA of interest. The designed inhibitors targeting microRNA-122, a hepatitis C virus drug target, had an IC50 of 100 nM, 10-fold more active than the simple PNA sequence (IC50 of 1 μM), giving evidence that the strategy has potential. Due to their lower molecular weight, these inhibitors may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.
Collapse
Affiliation(s)
- Marco F. Schmidt
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge,
United Kingdom
| | - Oliver Korb
- Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, CB2 1EZ Cambridge,
United Kingdom
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge,
United Kingdom
| |
Collapse
|
24
|
Fernández-Bachiller MI, Horatscheck A, Lisurek M, Rademann J. Alzheimer's disease: identification and development of β-secretase (BACE-1) binding fragments and inhibitors by dynamic ligation screening (DLS). ChemMedChem 2013; 8:1041-56. [PMID: 23757181 DOI: 10.1002/cmdc.201300078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/25/2013] [Indexed: 11/12/2022]
Abstract
The application of dynamic ligation screening (DLS), a methodology for fragment-based drug discovery (FBDD), to the aspartic protease β-secretase (BACE-1) is reported. For this purpose, three new fluorescence resonance energy transfer (FRET) substrates were designed and synthesized. Their kinetic parameters (Vmax , KM , and kcat ) were determined and compared with a commercial substrate. Secondly, a peptide aldehyde was designed as a chemically reactive inhibitor (CRI) based on the Swedish mutation substrate sequence. Incubation of this CRI with the protease, a FRET substrate, and one amine per well taken from an amine library, which was assembled by a maximum common substructure (MCS) approach, revealed the fragment 3-(3-aminophenyl)-2H-chromen-2-one (1) to be a competitive BACE-1 inhibitor that enhanced the activity of the CRI. Irreversibly formed fragment combination products of 1 with the initial peptide sequence were active and confirmed the targeting of the active site through the ethane-1,2-diamine isostere. Finally, structure-assisted combination of fragment 1 with secondary fragments that target the S1 site in hit optimization yielded novel, entirely fragment-based BACE-1 inhibitors with up to 30-fold improved binding affinity. Interactions with the protein were explained by molecular modeling studies, which indicate that the new fragment combinations interact with the catalytic aspartic acid dyad, as well as with the adjacent binding sites required for potency.
Collapse
Affiliation(s)
- María Isabel Fernández-Bachiller
- Medicinal Chemistry Department, Leibniz Institut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch, Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
26
|
Horatscheck A, Wagner S, Ortwein J, Kim BG, Lisurek M, Beligny S, Schütz A, Rademann J. Benzoylphosphonat-basierte, photoaktive Phosphotyrosinpeptidmimetika zur funktionellen Modulierung von Proteintyrosinphosphatasen und hochspezifischen Markierung von SH2-Domänen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Horatscheck A, Wagner S, Ortwein J, Kim BG, Lisurek M, Beligny S, Schütz A, Rademann J. Benzoylphosphonate-based photoactive phosphopeptide mimetics for modulation of protein tyrosine phosphatases and highly specific labeling of SH2 domains. Angew Chem Int Ed Engl 2012; 51:9441-7. [PMID: 22907897 DOI: 10.1002/anie.201201475] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/31/2012] [Indexed: 11/09/2022]
Affiliation(s)
- André Horatscheck
- Abteilung für Medizinische Chemie, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gelin M, Poncet-Montange G, Assairi L, Morellato L, Huteau V, Dugué L, Dussurget O, Pochet S, Labesse G. Screening and in situ synthesis using crystals of a NAD kinase lead to a potent antistaphylococcal compound. Structure 2012; 20:1107-17. [PMID: 22608967 DOI: 10.1016/j.str.2012.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/09/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022]
Abstract
Making new ligands for a given protein by in situ ligation of building blocks (or fragments) is an attractive method. However, it suffers from inherent limitations, such as the limited number of available chemical reactions and the low information content of usual chemical library deconvolution. Here, we describe a focused screening of adenosine derivatives using X-ray crystallography. We discovered an unexpected and biocompatible chemical reactivity and have simultaneously identified the mode of binding of the resulting products. We observed that the NAD kinase from Listeria monocytogenes (LmNADK1) can promote amide formation between 5'-amino-5'-deoxyadenosine and carboxylic acid groups. This unexpected reactivity allowed us to bridge in situ two adenosine derivatives to fully occupy the active NAD site. This guided the design of a close analog showing micromolar inhibition of two human pathogenic NAD kinases and potent bactericidal activity against Staphylococcus aureus in vitro.
Collapse
Affiliation(s)
- Muriel Gelin
- Atelier de Bio- et Chimie Informatique Structurale, Centre de Biochimie Structurale, CNRS, UMR5048, Universités Montpellier 1 et 2, F-34090 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Ahsanullah, Al-Gharabli SI, Rademann J. Soluble Peptidyl Phosphoranes for Metal-Free, Stereoselective Ligations in Organic and Aqueous Solution. Org Lett 2011; 14:14-7. [DOI: 10.1021/ol202627h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahsanullah
- Institute of Pharmacy, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Chemical-Pharmaceutical Engineering, German-Jordanian University, 35247 Amman, Jordan
| | - Samer I. Al-Gharabli
- Institute of Pharmacy, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Chemical-Pharmaceutical Engineering, German-Jordanian University, 35247 Amman, Jordan
| | - Jörg Rademann
- Institute of Pharmacy, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and Chemical-Pharmaceutical Engineering, German-Jordanian University, 35247 Amman, Jordan
| |
Collapse
|
31
|
Schmidt MF, Groves MR, Rademann J. Dynamic Substrate Enhancement for the Identification of Specific, Second-Site-Binding Fragments Targeting a Set of Protein Tyrosine Phosphatases. Chembiochem 2011; 12:2640-6. [DOI: 10.1002/cbic.201100414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 11/08/2022]
|
32
|
Douguet D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res 2010; 38:W615-21. [PMID: 20444867 PMCID: PMC2896156 DOI: 10.1093/nar/gkq322] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 04/17/2010] [Indexed: 01/22/2023] Open
Abstract
e-LEA3D web server integrates three complementary tools to perform computer-aided drug design based on molecular fragments. In drug discovery projects, there is a considerable interest in identifying novel and diverse molecular scaffolds to enhance chances of success. The de novo drug design tool is used to invent new ligands to optimize a user-specified scoring function. The composite scoring function includes both structure- and ligand-based evaluations. The de novo approach is an alternative to a blind virtual screening of large compound collections. A heuristic based on a genetic algorithm rapidly finds which fragments or combination of fragments fit a QSAR model or the binding site of a protein. While the approach is ideally suited for scaffold-hopping, this module also allows a scan for possible substituents to a user-specified scaffold. The second tool offers a traditional virtual screening and filtering of an uploaded library of compounds. The third module addresses the combinatorial library design that is based on a user-drawn scaffold and reactants coming, for example, from a chemical supplier. The e-LEA3D server is available at: http://bioinfo.ipmc.cnrs.fr/lea.html.
Collapse
Affiliation(s)
- Dominique Douguet
- CNRS UMR6097-Université Nice-Sophia Antipolis 660, route des lucioles 06560 Valbonne, France.
| |
Collapse
|
33
|
Huang R, Martinez-Ferrando I, Cole PA. Enhanced interrogation: emerging strategies for cell signaling inhibition. Nat Struct Mol Biol 2010; 17:646-9. [PMID: 20520657 DOI: 10.1038/nsmb0610-646] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent and developing chemical approaches for modulating signaling pathways. In particular, we discuss targeting mutant signaling proteins, disrupting protein-protein interactions in cellular signaling networks, designing bivalent inhibitors of signaling proteins and identifying allosteric regulators of signaling enzymes. Over the past decade, great progress in the harvesting of chemical tools for basic research and clinical medicine has been made, but many challenges remain, and examples of exciting future targets are highlighted.
Collapse
Affiliation(s)
- Rong Huang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
34
|
Caraballo R, Sakulsombat M, Ramström O. Towards Dynamic Drug Design: Identification and Optimization of β-Galactosidase Inhibitors from a Dynamic Hemithioacetal System. Chembiochem 2010; 11:1600-6. [DOI: 10.1002/cbic.201000158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Scott DE, Dawes GJ, Ando M, Abell C, Ciulli A. A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry. Chembiochem 2009; 10:2772-9. [PMID: 19827080 PMCID: PMC4458376 DOI: 10.1002/cbic.200900537] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Indexed: 11/06/2022]
Abstract
A new strategy that combines the concepts of fragment-based drug design and dynamic combinatorial chemistry (DCC) for targeting adenosine recognition sites on enzymes is reported. We demonstrate the use of 5'-deoxy-5'-thioadenosine as a noncovalent anchor fragment in dynamic combinatorial libraries templated by Mycobacterium tuberculosis pantothenate synthetase. A benzyl disulfide derivative was identified upon library analysis by HPLC. Structural and binding studies of protein-ligand complexes by X-ray crystallography and isothermal titration calorimetry informed the subsequent optimisation of the DCC hit into a disulfide containing the novel meta-nitrobenzyl fragment that targets the pantoate binding site of pantothenate synthetase. Given the prevalence of adenosine-recognition motifs in enzymes, our results provide a proof-of-concept for using this strategy to probe adjacent pockets for a range of adenosine binding enzymes, including other related adenylate-forming ligases, kinases, and ATPases, as well as NAD(P)(H), CoA and FAD(H2) binding proteins.
Collapse
Affiliation(s)
- Duncan E. Scott
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Gwen J. Dawes
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Michiyo Ando
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Alessio Ciulli
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| |
Collapse
|