1
|
van der Heide D, Hatt LP, Wirth S, Pirera ME, Armiento AR, Stoddart MJ. In vitroosteogenesis of hMSCs on collagen membranes embedded within LEGO ®-inspired 3D printed PCL constructs for mandibular bone repair. Biofabrication 2024; 16:045020. [PMID: 39079546 DOI: 10.1088/1758-5090/ad6931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight itsin vitroosteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide®Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion.In vitroosteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct's potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.
Collapse
Affiliation(s)
- Daphne van der Heide
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Luan Phelipe Hatt
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Maria E Pirera
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | | | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| |
Collapse
|
2
|
Bjorgvinsdottir O, Ferguson SJ, Snorradottir BS, Gudjonsson T, Wuertz-Kozak K. The influence of physical and spatial substrate characteristics on endothelial cells. Mater Today Bio 2024; 26:101060. [PMID: 38711934 PMCID: PMC11070711 DOI: 10.1016/j.mtbio.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/10/2024] [Accepted: 04/13/2024] [Indexed: 05/08/2024] Open
Abstract
Cardiovascular diseases are a main cause of death worldwide, leading to a growing demand for medical devices to treat this patient group. Central to the engineering of such devices is a good understanding of the biology and physics of cell-surface interactions. In existing blood-contacting devices, such as vascular grafts, the interaction between blood, cells, and material is one of the main limiting factors for their long-term durability. An improved understanding of the material's chemical- and physical properties as well as its structure all play a role in how endothelial cells interact with the material surface. This review provides an overview of how different surface structures influence endothelial cell responses and what is currently known about the underlying mechanisms that guide this behavior. The structures reviewed include decellularized matrices, electrospun fibers, pillars, pits, and grated surfaces.
Collapse
Affiliation(s)
- Oddny Bjorgvinsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Stephen J. Ferguson
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37 / 39, 8092, Zurich, Switzerland
| | | | - Thorarinn Gudjonsson
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 160 Lomb Memorial Drive Bldg. 73, Rochester, NY, 14623, USA
| |
Collapse
|
3
|
Manivasagam VK, Popat KC. Endothelial and smooth muscle cell interaction with hydrothermally treated titanium surfaces. IN VITRO MODELS 2024; 3:109-123. [PMID: 39872939 PMCID: PMC11756477 DOI: 10.1007/s44164-024-00073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 01/30/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and the most common form is coronary artery disease (CAD). Treatment options include coronary artery bypass surgery (CABG) or percutaneous heart intervention (PCI), but both have drawbacks. Bare metal stents (BMS) are commonly used to treat CAD; however, they lead to restenosis. Drug-eluting stents (DES) were developed to overcome this limitation; however, they lead to late thrombosis. Hence, there is an urgent need to engineer stent surfaces that selectively prevents smooth muscle cell adhesion and proliferation (restenosis), while promoting endothelial cell adhesion and differentiation (endothelialization), thus enhancing hemocompatibility. In this study, hydrothermal treatment with either sodium hydroxide or sulfuric acid was used to modify the surface of titanium. Titanium surface treated with sulfuric acid led to a micro-nano-surface morphology that selectively promoted endothelial cell adhesion and differentiation while prevented smooth muscle cell proliferation.
Collapse
Affiliation(s)
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- Department of Bioengineering, George Mason University, Fairfax, VA USA
| |
Collapse
|
4
|
Faase RA, Keeling NM, Plaut JS, Leycam C, Munares GA, Hinds MT, Baio JE, Jurney PL. Temporal Changes in the Surface Chemistry and Topography of Reactive Ion Plasma-Treated Poly(vinyl alcohol) Alter Endothelialization Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:389-400. [PMID: 38117934 PMCID: PMC10788828 DOI: 10.1021/acsami.3c16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.
Collapse
Affiliation(s)
- Ryan A. Faase
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Novella M. Keeling
- Biomedical
Engineering Program, University of Colorado
Boulder, 1111 Engineering Drive 521 UCB, Boulder, Colorado 80309-0521, United States
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Justin S. Plaut
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Christian Leycam
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Gabriela Acevedo Munares
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Monica T. Hinds
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Joe E. Baio
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Patrick L. Jurney
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| |
Collapse
|
5
|
Liu Z, Rütten S, Buhl EM, Zhang M, Liu J, Rojas-González DM, Mela P. Development of a Silk Fibroin-Small Intestinal Submucosa Small-Diameter Vascular Graft with Sequential VEGF and TGF-β1 Inhibitor Delivery for In Situ Tissue Engineering. Macromol Biosci 2023; 23:e2300184. [PMID: 37262314 DOI: 10.1002/mabi.202300184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Proper endothelialization and limited collagen deposition on the luminal surface after graft implantation plays a crucial role to prevent the occurrence of stenosis. To achieve these conditions, a biodegradable graft with adequate mechanical properties and the ability to sequentially deliver therapeutic agents isfabricated. In this study, a dual-release system is constructed through coaxial electrospinning by incorporating recombinant human vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) inhibitor into silk fibroin (SF) nanofibers to form a bioactive membrane. The functionalized SF membrane as the inner layer of the graft is characterized by the release profile, cell proliferation and protein expression. It presents excellent biocompatibility and biodegradation, facilitating cell attachment, proliferation, and infiltration. The core-shell structure enables rapid VEGF release within 10 days and sustained plasmid delivery for 21 days. A 2.0-mm-diameter vascular graft is fabricated by integrating the SF membrane with decellularized porcine small intestinal submucosa (SIS), aiming to facilitate the integration process under a stable extracellular matrix structure. The bioengineered graft is functionalized with the sequential administration of VEGF and TGF-β1, and with the reinforced and compatible mechanical properties, thereby offers an orchestrated solution for stenosis with potential for in situ vascular tissue engineering applications.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, Jimo road 150, Shanghai, 200120, PR China
| | - Stephan Rütten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Pauwelsstrasse, 30, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Pauwelsstrasse, 30, 52074, Aachen, Germany
| | - Minjun Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju road 639, Shanghai, 200011, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, Jimo road 150, Shanghai, 200120, PR China
| | - Diana M Rojas-González
- Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| |
Collapse
|
6
|
Sabet Sarvestani F, Tamaddon AM, Yaghoobi R, Geramizadeh B, Abolmaali SS, Kaviani M, Keshtkar S, Pakbaz S, Azarpira N. Indirect co-culture of islet cells in 3D biocompatible collagen/laminin scaffold with angiomiRs transfected mesenchymal stem cells. Cell Biochem Funct 2023; 41:296-308. [PMID: 36815688 DOI: 10.1002/cbf.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Diabetes is an autoimmune disease in which the pancreatic islets produce insufficient insulin. One of the treatment strategies is islet isolation, which may damage these cells as they lack vasculature. Biocompatible scaffolds are one of the efficient techniques for dealing with this issue. The current study is aimed to determine the effect of transfected BM-MSCS with angiomiR-126 and -210 on the survival and functionality of islets loaded into a 3D scaffold via laminin (LMN). AngiomiRs/Poly Ethylenimine polyplexes were transfected into bone marrow-mesenchymal stem cells (BM-MSCs), followed by 3-day indirect co-culturing with islets laden in collagen (Col)-based hydrogel scaffolds containing LMN. Islet proliferation and viability were significantly increased in LMN-containing scaffolds, particularly in the miRNA-126 treated group. Insulin gene expression was superior in Col scaffolds, especially, in the BM-MSCs/miRNA-126 treated group. VEGF was upregulated in the LMN-containing scaffolds in both miRNA-treated groups, specifically in the miRNA-210, leading to VEGF secretion. MiRNAs' target genes showed no downregulation in LMN-free scaffolds; while a drastic downregulation was seen in the LMN-containing scaffolds. The highest insulin secretion was recorded in the Oxidized dextran (Odex)/ColLMN+ group with miRNA-126. LMN-containing biocompatible scaffolds, once combined with angiomiRs and their downstream effectors, promote islets survival and restore function, leading to enhanced angiogenesis and glycemic status.
Collapse
Affiliation(s)
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran, Shiraz, Iran
| | - Ramin Yaghoobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Zhou R, Wu Y, Chen K, Zhang D, Chen Q, Zhang D, She Y, Zhang W, Liu L, Zhu Y, Gao C, Liu R. A Polymeric Strategy Empowering Vascular Cell Selectivity and Potential Application Superior to Extracellular Matrix Peptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200464. [PMID: 36047924 DOI: 10.1002/adma.202200464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Endothelialization of vascular implants plays a vital role in maintaining the long-term vascular patency. In situ endothelialization and re-endothelialization is generally achieved by selectively promoting endothelial cell (EC) adhesion and, meanwhile, suppressing smooth muscle cell (SMC) adhesion. Currently, such EC versus SMC selectivity is achieved and extensively used in vascular-related biomaterials utilizing extracellular-matrix-derived EC-selective peptides, dominantly REDV and YIGSR. Nevertheless, the application of EC-selective peptides is limited due to their easy proteolysis, time-consuming synthesis, and expensiveness. To address these limitations, a polymeric strategy in designing and finding EC-selective biomaterials using amphiphilic β-peptide polymers by tuning serum protein adsorption is reported. The optimal β-peptide polymer displays EC versus SMC selectivity even superior to EC-selective REDV peptide regarding cell adhesion, proliferation, and migration of ECs versus SMCs. Study of the mechanism indicates that surface adsorption of bovine serum albumin, an abundant and anti-adhesive serum protein, plays a critical role in the ECs versus SMCs selectivity of β-peptide polymer. In addition, surface modification of the optimal β-peptide polymer effectively promotes the endothelialization of vascular implants and inhibits intimal hyperplasia. This study provides an alternative strategy in designing and finding EC-selective biomaterials, implying great potential in the vascular-related biomaterial study and application.
Collapse
Affiliation(s)
- Ruiyi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueming Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunrui She
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Zia AW, Liu R, Wu X. Structural design and mechanical performance of composite vascular grafts. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThis study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions; materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations; and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover, the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the three-dimensional (3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future.
Graphic abstract
Collapse
|
9
|
Barnett H, Shevchuk M, Peppas NA, Caldorera-Moore M. Influence of extracellular cues of hydrogel biomaterials on stem cell fate. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1324-1347. [PMID: 35297325 DOI: 10.1080/09205063.2022.2054398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Tissue engineering is a multidisciplinary field that focuses on creating functional tissue through the combination of biomimetic scaffolds, a cell source, and biochemical/physiochemical cues. Stem cells are often used as the cell source due to their multipotent properties and autologous sourcing; however, the combination of physical and chemical cues that regulate their behavior creates challenges in reproducibly directing them to a specific fate. Hydrogel biomaterials are widely explored as tissue scaffolds due to their innate biomimetic properties and tailorability. For these constructs to be successful, properties such as surface chemistry and spatial configuration, stiffness, and degradability of the biomaterial used for the scaffold framework should be analogous to the natural environment of the tissue they are repairing/replacing. This is imperative, as cues from the surrounding extracellular matrix (ECM) influence stem cell behavior and direct cell differentiation to a specific lineage. Hydrogels offer great promise as tools to control stem cell fate, as researchers can modulate the degradation rates, mechanical properties, swelling behavior, and chemical properties of the biomaterial scaffold to mimic the instructive cues of the native ECM. Discussion of the advantages and challenges of utilizing hydrogel biomaterials as the basis of tissue scaffolds is reviewed herein, as well as specific examples of hydrogels in tissue engineering and advances in hydrogel research to achieve desired cell phenotypes.
Collapse
Affiliation(s)
- Haley Barnett
- School of Sciences, University of Louisiana Monroe, Monroe, LA, USA
| | - Mariya Shevchuk
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, and Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Mary Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
10
|
Sun B, Hou L, Sun B, Han Y, Zou Y, Huang J, Zhang Y, Feng C, Dou X, Xu F. Use of Electrospun Phenylalanine/Poly-ε-Caprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling. Front Bioeng Biotechnol 2021; 9:773635. [PMID: 34900965 PMCID: PMC8656108 DOI: 10.3389/fbioe.2021.773635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023] Open
Abstract
The fabrication of tissue-engineered vascular grafts to replace damaged vessels is a promising therapy for cardiovascular diseases. Endothelial remodeling in the lumen of TEVGs is critical for successful revascularization. However, the construction of well-functioning TEVGs remains a fundamental challenge. Herein, chiral hybrid scaffolds were prepared by electrospinning using D/L-phenylalanine based gelators [D(L)PHEG] and poly-ε-caprolactone (PCL). The chirality of scaffolds significantly affected the endothelial remodeling progress of TEVGs. Compared with L-phenylalanine based gelators/poly-ε-caprolactone (L/PCL) and PCL, D-phenylalanine based gelators/poly-ε-caprolactone (D/PCL) scaffolds enhanced cell adhesion, and proliferation and upregulated the expression of fibronectin-1, and vinculin. These results suggests that chiral hybrid scaffolds can promote endothelial remodeling of TEVGs by upregulating adhesion-associated protein levels. This study offers an innovative strategy for endothelial remodeling of TEVGs by fabricating chiral hybrid scaffolds, and provides new insight for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Benlin Sun
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Lei Hou
- Department of Cardiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juexin Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Department of Subject Planning Shanghai, Ninth People's Hospital Shanghai, Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wolfe JT, Shradhanjali A, Tefft BJ. Strategies for improving endothelial cell adhesion to blood-contacting medical devices. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1067-1092. [PMID: 34693761 DOI: 10.1089/ten.teb.2021.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices including stents, vascular grafts, heart valves, and left ventricular assist devices are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term anti-platelet or anti-coagulation therapy. Although ECs have been seeded onto or recruited to these blood-contacting surfaces, most ECs are lost upon exposure to shear stress due to circulating blood. Many investigators have attempted to generate a stable EC monolayer by improving EC adhesion using surface modifications, material coatings, nanofiber topology, and modifications to the cells. Despite some success with enhanced EC retention in vitro and in animal models, no studies to date have proven efficacious for routinely creating a stable endothelium in the clinical setting. This review summarizes past and present techniques directed at improving the adhesion of ECs to blood-contacting devices.
Collapse
Affiliation(s)
- Jayne Taylor Wolfe
- Medical College of Wisconsin, 5506, Biomedical Engineering, 8701 Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226-0509;
| | - Akankshya Shradhanjali
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| | - Brandon J Tefft
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| |
Collapse
|
12
|
Bornert F, Clauss F, Hua G, Idoux-Gillet Y, Keller L, Fernandez De Grado G, Offner D, Smaida R, Wagner Q, Fioretti F, Kuchler-Bopp S, Schulz G, Wenzel W, Gentile L, Risser L, Müller B, Huck O, Benkirane-Jessel N. Mechanistic Illustration: How Newly-Formed Blood Vessels Stopped by the Mineral Blocks of Bone Substitutes Can Be Avoided by Using Innovative Combined Therapeutics. Biomedicines 2021; 9:952. [PMID: 34440156 PMCID: PMC8394928 DOI: 10.3390/biomedicines9080952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 08/01/2021] [Indexed: 12/30/2022] Open
Abstract
One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. We have also elucidated the mechanism to understand how the newly-formed vessels can no longer encounter mineral blocks and pursue their course of vasculature, giving our advanced therapeutical bone filling great potential to be used in many applications, by combining filling and nano-regenerative medicine that currently fall short because of problems related to the lack of oxygen and nutrients.
Collapse
Affiliation(s)
- Fabien Bornert
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - François Clauss
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Guoqiang Hua
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Gabriel Fernandez De Grado
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Damien Offner
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Rana Smaida
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Quentin Wagner
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Georg Schulz
- Biomaterials Science Center, University of Basel, Gewerbestrasse 14, CH-4123 Allschwil, Switzerland; (G.S.); (B.M.)
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Campus North, Building 640, DE-76131 Karlsruhe, Germany;
| | - Luca Gentile
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
| | - Laurent Risser
- Toulouse Institute of Mathematics, UMR 5219 University of Toulouse, CNRS UPS IMT, 31062 Toulouse, France;
| | - Bert Müller
- Biomaterials Science Center, University of Basel, Gewerbestrasse 14, CH-4123 Allschwil, Switzerland; (G.S.); (B.M.)
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France; (F.B.); (F.C.); (G.H.); (Y.I.-G.); (L.K.); (G.F.D.G.); (D.O.); (R.S.); (Q.W.); (F.F.); (S.K.-B.); (L.G.); (O.H.)
- Faculty of Dental Surgery, University of Strasbourg, University Hospital Strasbourg (HUS), 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France
- Department of Pediatric Dentistry, University Hospital Strasbourg (HUS), 1 Place de l’Hôpital, 67000 Strasbourg, France
| |
Collapse
|
13
|
Friedrich RP, Janko C, Unterweger H, Lyer S, Alexiou C. SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the past decades, a wide variety of different superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized. Due to their unique properties, such as big surface-to-volume ratio, superparamagnetism and comparatively low toxicity, they are principally well suited for many different technical and biomedical applications. Meanwhile, there are a numerous synthesis methods for SPIONs, but high requirements for biocompatibility have so far delayed a successful translation into the clinic. Moreover, depending on the planned application, such as for imaging, magnetic drug targeting, hyperthermia or for hybrid materials intended for regenerative medicine, specific physicochemical and biological properties are inevitable. Since a summary of all existing SPION systems, their properties and application is far too extensive, this review reports on selected methods for SPION synthesis, their biocompatibility and biomedical applications.
Collapse
Affiliation(s)
- Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery , Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship Universitätsklinikum , Erlangen , Germany
| |
Collapse
|
14
|
Ramirez-Calderon G, Susapto HH, Hauser CAE. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29281-29292. [PMID: 34142544 DOI: 10.1021/acsami.1c03787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Blood vessel generation is an essential process for tissue formation, regeneration, and repair. Notwithstanding, vascularized tissue fabrication in vitro remains a challenge, as current fabrication techniques and biomaterials lack translational potential in medicine. Naturally derived biomaterials harbor the risk of immunogenicity and pathogen transmission, while synthetic materials need functionalization or blending to improve their biocompatibility. In addition, the traditional top-down fabrication techniques do not recreate the native tissue microarchitecture. Self-assembling ultrashort peptides (SUPs) are promising chemically synthesized natural materials that self-assemble into three-dimensional nanofibrous hydrogels resembling the extracellular matrix (ECM). Here, we use a modular tissue-engineering approach, embedding SUP microgels loaded with human umbilical vein endothelial cells (HUVECs) into a 3D SUP hydrogel containing human dermal fibroblast neonatal (HDFn) cells to trigger angiogenesis. The SUPs IVFK and IVZK were used to fabricate microgels that gel in a water-in-oil emulsion using a microfluidic droplet generator chip. The fabricated SUP microgels are round structures that are 300-350 μm diameter in size and have ECM-like topography. In addition, they are stable enough to keep their original size and shape under cell culture conditions and long-term storage. When the SUP microgels were used as microcarriers for growing HUVECs and HDFn cells on the microgel surface, cell attachment, stretching, and proliferation could be demonstrated. Finally, we performed an angiogenesis assay in both SUP hydrogels using all SUP combinations between micro- and bulky hydrogels. Endothelial cells were able to migrate from the microgel to the surrounding area, showing angiogenesis features such as sprouting, branching, coalescence, and lumen formation. Although both SUP hydrogels support vascular network formation, IVFK outperformed IVZK in terms of vessel network extension and branching. Overall, these results demonstrated that cell-laden SUP microgels have great potential to be used as a microcarrier cell delivery system, encouraging us to study the angiogenesis process and to develop vascularized tissue-engineering therapies.
Collapse
|
15
|
Wang L, Serpooshan V, Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med 2021; 8:621781. [PMID: 33718449 PMCID: PMC7952323 DOI: 10.3389/fcvm.2021.621781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Hsu YI, Mahara A, Yamaoka T. Identification of circulating cells interacted with integrin α4β1 ligand peptides REDV or HGGVRLY. Peptides 2021; 136:170470. [PMID: 33279572 DOI: 10.1016/j.peptides.2020.170470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Recently, artificial blood vessels modified by integrin α4β1 ligand, such as REDV, showed endothelialization improvement and antithrombotic properties have been reported. Early endothelialization was affected by the type of circulating cells captured by the peptide in the initial transplantation state, however, it is still not clarified. In this study, we identified in vitro circulating cells bound with the peptides arginine-glutamic acid-aspartic acid-valine (REDV) or histidine-glycine-glycine-valine-arginine-leucine-tyrosine (HGGVRLY). The effect of free C- or N-terminal of HGGVRLY on the type of peptide-binding cells was also studied. The rat circulating cells were isolated from blood and incubated with 5(6)-carboxyfluorescein (5/6-FAM, F) labeled F-REDV (C-terminal free), F-HGGVRLY (C-terminal free), or HGGVRLY-F (N-terminal free). Furthermore, peptide-binding cells were identified by co-staining with various antibodies labeled with PE, PerCP/Cy5.5, or APC. N-terminal free HGGVRLY-F was found to bind to more circulating cells than C-terminal free F-REDV and F-HGGVRLY. The ratio of integrin α4β1 positive cell bound with F-REDV, F-HGGVRLY, or HGGVRLY-F reached over 90 %, demonstrating that HGGVRLY is also a ligand of integrin α4β1. Among identified cell types, we found that F-REDV mainly bounds with EPC and BMSC, while F-HGGVRLY with BMSC. HGGVRLY-F bounds with EPC and BMSC, exhibiting a higher EPC binding ratio than F-REDV and F-HGGVRLY.
Collapse
Affiliation(s)
- Yu-I Hsu
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
17
|
Zheng M, Guo J, Li Q, Yang J, Han Y, Yang H, Yu M, Zhong L, Lu D, Li L, Sun L. Syntheses and characterization of anti-thrombotic and anti-oxidative Gastrodin-modified polyurethane for vascular tissue engineering. Bioact Mater 2021; 6:404-419. [PMID: 32995669 PMCID: PMC7486448 DOI: 10.1016/j.bioactmat.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular grafts must avoid negative inflammatory responses and thrombogenesis to prohibit fibrotic deposition immediately upon implantation and promote the regeneration of small diameter blood vessels (<6 mm inner diameter). Here, polyurethane (PU) elastomers incorporating anti-coagulative and anti-inflammatory Gastrodin were fabricated. The films had inter-connected pores with porosities equal to or greater than 86% and pore sizes ranging from 250 to 400 μm. Incorporation of Gastrodin into PU films resulted in desirable mechanical properties, hydrophilicity, swelling ratios and degradation rates without collapse. The released Gastrodin maintained bioactivity over 21 days as assessed by its anti-oxidative capability. The Gastrodin/PU had better anti-coagulation response (less observable BSA, fibrinogen and platelet adhesion/activation and suppressed clotting in whole blood). Red blood cell compatibility, measured by hemolysis, was greatly improved with 2Gastrodin/PU compared to other Gastrodin/PU groups. Notably, Gastrodin/PU upregulated anti-oxidant factors Nrf2 and HO-1 expression in H2O2 treated HUVECs, correlated with decreasing pro-inflammatory cytokines TNF-α and IL-1β in RAW 264.7 cells. Upon implantation in a subcutaneous pocket, PU was encapsulated by an obvious fibrous capsule, concurrent with a large amount of inflammatory cell infiltration, while Gastrodin/PU induced a thinner fibrous capsule, especially 2Gastrodin/PU. Further, enhanced adhesion and proliferation of HUVECs seeded onto films in vitro demonstrated that 2Gastrodin/PU could help cell recruitment, as evidenced by rapid host cell infiltration and substantial blood vessel formation in vivo. These results indicate that 2Gastrodin/PU has the potential to facilitate blood vessel regeneration, thus providing new insight into the development of clinically effective vascular grafts.
Collapse
Affiliation(s)
- Meng Zheng
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jiazhi Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Hongcai Yang
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Mali Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
18
|
Swaminathan V, Bryant BR, Tchantchaleishvili V, Rajab TK. Bioengineering lungs - current status and future prospects. Expert Opin Biol Ther 2020; 21:465-471. [PMID: 33028138 DOI: 10.1080/14712598.2021.1834534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Once pulmonary disease progresses to end-stage pulmonary disease, treatment options are very limited. An important advance in the field is the development of a bioartificial lung derived from a generic matrix scaffold populated with patients' own cells. Significant progress has already been made in the engineering of bioartificial lungs. AREAS COVERED This review explains how previous and current research contributes to the goal of creating a successful bioartificial lung, and the barriers faced in doing so. We will also highlight some of the design considerations being explored to optimize bioartificial lungs and considerations for clinical translation. EXPERT OPINION While current bioartificial lungs are able to provide short-term gas exchange in large-animal studies, much work is still required to combine the disciplines of cell biology, materials science, and tissue engineering to create such clinically useful and functioning artificial lungs.
Collapse
Affiliation(s)
- Vishal Swaminathan
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Barry R Bryant
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Taufiek Konrad Rajab
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Cheng C, Harpster MH, Oakey J. Convection-driven microfabricated hydrogels for rapid biosensing. Analyst 2020; 145:5981-5988. [PMID: 32820752 PMCID: PMC7819640 DOI: 10.1039/d0an01069c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A microscale biosensing platform using rehydration-mediated swelling of bio-functionalized hydrogel structures and rapid target analyte capture is described. Induced convective flow mitigates diffusion limited incubation times, enabling model assays to be completed in under three minutes. Assay design parameters have been evaluated, revealing fabrication criteria required to tune detection sensitivity.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82070, USA.
| | | | | |
Collapse
|
20
|
Conditioned medium produced by fibroblasts cultured in low oxygen pressure allows the formation of highly structured capillary-like networks in fibrin gels. Sci Rep 2020; 10:9291. [PMID: 32518266 PMCID: PMC7283357 DOI: 10.1038/s41598-020-66145-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering is an emerging and promising concept to replace or cure failing organs, but its clinical translation currently encounters issues due to the inability to quickly produce inexpensive thick tissues, which are necessary for many applications. To circumvent this problem, we postulate that cells secrete the optimal cocktail required to promote angiogenesis when they are placed in physiological conditions where their oxygen supply is reduced. Thus, dermal fibroblasts were cultivated under hypoxia (2% O2) to condition their cell culture medium. The potential of this conditioned medium was tested for human umbilical vein endothelial cell proliferation and for their ability to form capillary-like networks into fibrin gels. The medium conditioned by dermal fibroblasts under hypoxic conditions (DF-Hx) induced a more significant proliferation of endothelial cells compared to medium conditioned by dermal fibroblasts under normoxic conditions (DF-Nx). In essence, doubling time for endothelial cells in DF-Hx was reduced by 10.4% compared to DF-Nx after 1 week of conditioning, and by 20.3% after 2 weeks. The DF-Hx allowed the formation of more extended and more structured capillary-like networks than DF-Nx or commercially available medium, paving the way to further refinements.
Collapse
|
21
|
Joshi A, Xu Z, Ikegami Y, Yamane S, Tsurashima M, Ijima H. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling. Int J Biol Macromol 2020; 151:186-192. [PMID: 32070734 DOI: 10.1016/j.ijbiomac.2020.02.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Endothelization of a tissue-engineered substrate is important for its application as an artificial vascular graft. Despite recent advancements in artificial graft fabrication, a graft of <5 mm is difficult to fabricate owing to insufficient endothelization that results in thrombosis after transplantation. We aimed to perform a co-culture of adipose-derived mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) on antithrombogenic polycaprolactone (PCL)/heparin-gelatin co-spun nanofibers to evaluate the role of co-culturing in promoting quick endothelization of vascular substrates without surface modification by growth factors or other ECM proteins that trigger the endothelization process. Using a co-axial electrospinning technique, we attempted to fabricate our scaffold balancing between mechanical properties and biocompatibility. Antithrombogenic characteristics were then imparted to the fabricated nanofiber substrate by grafting of heparin. Finally, we performed a co-culture of MSCs and HUVECs on the fabricated co-spun nanofiber substrate to obtain proper endothelization of our material under the in-vitro culture. Staining for CD-31 at seven days of culture revealed enhanced CD-31 expression under the co-culture condition; actin staining revealed healthy cobblestone HUVEC morphology, suggesting that MSCs can aid in proper endothelization. Hence, we conclude that co-culture is effective for quick endothelization of vascular substrates.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Zhe Xu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Soichiro Yamane
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Masanori Tsurashima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
22
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
23
|
Oh SY, Choi DH, Jin YM, Yu Y, Kim HY, Kim G, Park YS, Jo I. Optimization of Microenvironments Inducing Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Endothelial Cell-Like Cells. Tissue Eng Regen Med 2019; 16:631-643. [PMID: 31824825 DOI: 10.1007/s13770-019-00221-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background Stem cell engineering is appealing consideration for regenerating damaged endothelial cells (ECs) because stem cells can differentiate into EC-like cells. In this study, we demonstrate that tonsil-derived mesenchymal stem cells (TMSCs) can differentiate into EC-like cells under optimal physiochemical microenvironments. Methods TMSCs were preconditioned with Dulbecco's Modified Eagle Medium (DMEM) or EC growth medium (EGM) for 4 days and then replating them on Matrigel to observe the formation of a capillary-like network under light microscope. Microarray, quantitative real time polymerase chain reaction, Western blotting and immunofluorescence analyses were used to evaluate the expression of gene and protein of EC-related markers. Results Preconditioning TMSCs in EGM for 4 days and then replating them on Matrigel induced the formation of a capillary-like network in 3 h, but TMSCs preconditioned with DMEM did not form such a network. Genome analyses confirmed that EGM preconditioning significantly affected the expression of genes related to angiogenesis, blood vessel morphogenesis and development, and vascular development. Western blot analyses revealed that EGM preconditioning with gelatin coating induced the expression of endothelial nitric oxide synthase (eNOS), a mature EC-specific marker, as well as phosphorylated Akt at serine 473, a signaling molecule related to eNOS activation. Gelatin-coating during EGM preconditioning further enhanced the stability of the capillary-like network, and also resulted in the network more closely resembled to those observed in human umbilical vein endothelial cells. Conclusion This study suggests that under specific conditions, i.e., EGM preconditioning with gelatin coating for 4 days followed by Matrigel, TMSCs could be a source of generating endothelial cells for treating vascular dysfunction.
Collapse
Affiliation(s)
- Se-Young Oh
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Da Hyeon Choi
- 3School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yoon Mi Jin
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Yeonsil Yu
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Ha Yeong Kim
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,4Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Gyungah Kim
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Yoon Shin Park
- 3School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Inho Jo
- 1Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea.,2Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| |
Collapse
|
24
|
Wang F, Li G, Guan X, Han Z, Yu X, You Q. Overexpression of eNOS decrease tissue factor (TF) level in CD34+ cells exhibit increased antithrombogenic property in small caliber vascular graft. THE JOURNAL OF CARDIOVASCULAR SURGERY 2019; 60:136-143. [PMID: 26337012 DOI: 10.23736/s0021-9509.18.08951-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have reduced expression of eNOS, this may decrease their antithrombogenic property when used as seeding cells for small caliber vascular graft. The aim of this study is to investigate whether overexpression of eNOS in EPCs can increase its antithrombogenic property and regulate tissue factor (TF) level. METHODS CD34+ cells were isolated from canine bone marrow. Differentiation of CD34 cells into endothelial cells was inducted by VEGF. Overexpression of eNOS in CD34+ cells were obtained by transfection with eNOS plasmid. TF expression was examined by western blot after TNFα stimulation. Platelets adhesion assay was performed to determine antiplatelet adhesion property of the cells in vitro. The cells were seeded onto the lumimal surface of small caliber vascular graft and implanted in vivo. The thrombopoiesis in vivo were examined by SEM. RESULTS Transfection with eNOS gene decreased the level of TF in CD34+ cells. The expression of TF increased after stimulation with TNFα in time dependent manner, this effect was abrogated by eNOS gene transfection. Overexpression of eNOS significantly inhibited the platelet adhesion on EPCs in vitro. Over expression of eNOS in CD34+ cells also decreased thrombopoiesis and fibrin adhesion onto the lumimal surface of small caliber vascular graft in vivo. CONCLUSIONS Overexpression of eNOS decrease TF level in CD34+ cells, and increase antithrombogenic property of small caliber vascular graft.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiothoracic Surgery, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiansu University, Jiansu, China
| | - Xin Guan
- Department of Cardiothoracic Surgery, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhaoqing Han
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingjun You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China -
| |
Collapse
|
25
|
Szulc DA, Cheng HLM. One-Step Labeling of Collagen Hydrogels with Polydopamine and Manganese Porphyrin for Non-Invasive Scaffold Tracking on Magnetic Resonance Imaging. Macromol Biosci 2019; 19:e1800330. [PMID: 30645045 DOI: 10.1002/mabi.201800330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non-invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging-based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive-contrast "bright" manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine-tune the in vivo behavior of their scaffolds for optimal regeneration.
Collapse
Affiliation(s)
- Daniel Andrzej Szulc
- Institute of Biomaterials & Biomedical Engineering, The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, University of Toronto, 164 College Street, RS407, Toronto, ON, M5S 3G9, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomaterials & Biomedical Engineering, The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, University of Toronto, 164 College Street, RS407, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
26
|
Jiang S, Wu J, Hang Y, Liu Q, Li D, Chen H, Brash JL. Sustained release of a synthetic structurally-tailored glycopolymer modulates endothelial cells for enhanced endothelialization of materials. J Mater Chem B 2019. [DOI: 10.1039/c9tb00714h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GAG-mimicking polymers were prepared by a novel method allowing close control of structure and can be used as potent synthetic bioactive modifiers to promote endothelialization of materials.
Collapse
Affiliation(s)
- Shuaibing Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yingjie Hang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Dan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
27
|
Thatikonda N, Nilebäck L, Kempe A, Widhe M, Hedhammar M. Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM. ACS Biomater Sci Eng 2018; 4:3384-3396. [DOI: 10.1021/acsbiomaterials.8b00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Naresh Thatikonda
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Linnea Nilebäck
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Adam Kempe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Mona Widhe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| |
Collapse
|
28
|
Zhao Q, Cui H, Wang J, Chen H, Wang Y, Zhang L, Du X, Wang M. Regulation Effects of Biomimetic Hybrid Scaffolds on Vascular Endothelium Remodeling. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23583-23594. [PMID: 29943973 DOI: 10.1021/acsami.8b06205] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The formation of complete and well-functioning endothelium is critical for the success of tissue-engineered vascular grafts yet remaining a fundamental challenge. Endothelium remodeling onto the lumen of tissue-engineered vascular grafts is affected by their topographical, mechanical, and biochemical characteristics. For meeting multiple requirements, composite strategies have recently emerged for fabricating hybrid scaffolds, where the integrated properties are tuned by varying their compositions. However, the underlying principle how the integrated properties of hybrid scaffolds regulate vascular endothelium remodeling remains unclear. To uncover the regulation effects of hybrid scaffolds on vascular endothelium remodeling, we prepared different biomimetic hybrid scaffolds using gelatin methacrylamide (GelMA) and poly-ε-caprolactone (PCL) and then investigated vascular endothelial cell responses on them. GelMA and PCL, respectively, conferred the resulting scaffolds with biomimetic bioactivity and mechanical properties, which were tuned by varying GelMA/PCL mass ratios (3:1, 1:1, or 1:3). On different GelMA/PCL hybrid scaffolds, distinct vascular endothelial cell responses were observed. Firm cell-scaffold/cell-cell interactions were rapidly established on the hybrid scaffolds with the highest mass ratio of bioactive GelMA. However, they were mechanically insufficient as vascular grafts. On the contrary, the scaffolds with the highest mass ratio of PCL showed significantly reinforced mechanical properties but poor biological performance. Between the two extremes, the scaffolds with the same GelMA/PCL mass ratio balanced the pros and cons of two materials. Therefore, they could meet the mechanical requirements of vascular grafts and support the early-stage vascular endothelial cell remodeling by appropriate biological signaling and mechanotransduction. This investigation experimentally proves that scaffold bioactivity is the dominant factor affecting vascular endothelial cell adhesion and remodeling, whereas mechanical properties are crucial factors for the integrity of endothelium. This work offers a universal design strategy for desirable vascular grafts for improved endothelium remodeling.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Juan Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Hongxu Chen
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Lidong Zhang
- Department of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT) , Chinese Academy of Sciences (CAS) , Shenzhen 518055 , China
| | - Min Wang
- Department of Mechanical Engineering , The University of Hong Kong , Hong Kong , China
| |
Collapse
|
29
|
Chantawong P, Tanaka T, Uemura A, Shimada K, Higuchi A, Tajiri H, Sakura K, Murakami T, Nakazawa Y, Tanaka R. Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:191. [PMID: 29138940 DOI: 10.1007/s10856-017-5999-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Life-threatening cardiovascular anomalies require surgery for structural repair with cardiovascular patches. The biomaterial patch, derived from Bombyx mori silk fibroin (SF), is used as an alternative material due to its excellent tissue affinity and biocompatibility. However, SF lacks the elastomeric characteristics required for a cardiovascular patch. In order to overcome this shortcoming, we combined the thermoplastic polyurethane, Pellethane® (PU) with SF to develop an elastic biocompatible patch. Therefore, the purpose of this study was to investigate the feasibility of the blended SF/PU patch in a vascular model. Additionally, we focused on the effects of different SF concentrations in the SF/PU patch on its biological and physical properties. Three patches of different compositions (SF, SF7PU3 and SF4PU6) were created using an electrospinning method. Each patch type (n = 18) was implanted into rat abdominal aorta and histopathology was assessed at 1, 3, and 6 months post-implantation. The results showed that with increasing SF content the tensile strength and elasticity decreased. Histological evaluation revealed that inflammation gradually decreased in the SF7PU3 and SF patches throughout the study period. At 6 months post-implantation, the SF7PU3 patch demonstrated progressive remodeling, including significantly higher tissue infiltration, elastogenesis and endothelialization compared with SF4PU6. In conclusion, an increase of SF concentration in the SF/PU patch had effects on vascular remodeling and physical properties. Moreover, our blended patch might be an attractive alternative material that could induce the growth of a neo-artery composed of tissue present in native artery.
Collapse
Affiliation(s)
- Pinkarn Chantawong
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Takashi Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Akira Higuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Hirokazu Tajiri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Kohta Sakura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan
| | - Tomoaki Murakami
- Department of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, 184-8588, Tokyo, Japan.
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan.
| |
Collapse
|
30
|
Fedele C, De Gregorio M, Netti PA, Cavalli S, Attanasio C. Azopolymer photopatterning for directional control of angiogenesis. Acta Biomater 2017; 63:317-325. [PMID: 28927933 DOI: 10.1016/j.actbio.2017.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022]
Abstract
Understanding cellular behavior in response to microenvironmental stimuli is central to tissue engineering. An increasing number of reports emphasize the high sensitivity of cells to the physical characteristics of the surrounding milieu and in particular, topographical cues. In this work, we investigated the influence of dynamic topographic signal presentation on sprout formation and the possibility to obtain a space-time control over sprouting directionality without growth factors, in order to investigate the contribution of just topography in the angiogenic process. To test our hypothesis, we employed a 3D angiogenesis assay based on the use of spheroids derived from human umbilical vein endothelial cells (HUVECs). We then modulated the in situ presentation of topographical cues during early-stage angiogenesis through real-time photopatterning of an azobenzene-containing polymer, poly (Disperse Red 1 methacrylate) (pDR1m). Pattern inscription on the polymer surface was made using the focused laser of a confocal microscope. We demonstrate that during early-stage angiogenesis, sprouts followed the pattern direction, while spheroid cores acquired a polarized shape. These findings confirmed that sprout directionality was influenced by the photo-inscribed pattern, probably through contact guidance of leader cells, thus validating the proposed platform as a valuable tool for understanding complex processes involved in cell-topography interactions in multicellular systems. STATEMENT OF SIGNIFICANCE The complex relationship between endothelial cells and the surrounding environment that leads to formation of a newly formed vascular network during tissue repair is currently unknown. We have developed an innovative in vitro platform to study these mechanisms in a space and time controlled fashion simulating what happens during regeneration. In particular, we combine a "smart" surface, namely a polymer film, with a three-dimensional living cell aggregate. The polymer is activated by light through which we can design a path to guide cells toward the formation of a new vessel. Our work lies at the intersection of stimuli-responsive biointerfaces and cell biology and may be particularly inspiring for those interested in designing biomaterial surface related to angiogenesis.
Collapse
Affiliation(s)
- Chiara Fedele
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Maria De Gregorio
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy; Dipartimento di Medicina Veterinaria e Produzione Animale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy.
| | - Chiara Attanasio
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy.
| |
Collapse
|
31
|
Cortella LRX, Cestari IA, Guenther D, Lasagni AF, Cestari IN. Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation. ACTA ACUST UNITED AC 2017; 12:065010. [PMID: 28762961 DOI: 10.1088/1748-605x/aa8353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 μm groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.
Collapse
Affiliation(s)
- L R X Cortella
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900-São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Oshikawa M, Okada K, Kaneko N, Sawamoto K, Ajioka I. Affinity-Immobilization of VEGF on Laminin Porous Sponge Enhances Angiogenesis in the Ischemic Brain. Adv Healthc Mater 2017; 6. [PMID: 28488337 DOI: 10.1002/adhm.201700183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Indexed: 11/10/2022]
Abstract
Ischemic brain stroke is caused by blood flow interruption, leading to focal ischemia, neuron death, and motor, sensory, and/or cognitive dysfunctions. Angiogenesis, neovascularization from existing blood vessel, is essential for tissue growth and repair. Proangiogenic therapy for stroke is promising for preventing excess neuron death and improving functional recovery. Vascular endothelial growth factor (VEGF) is a critical factor for angiogenesis by promoting the proliferation, the survival, and the migration of endothelial cells. Here, angiogenic biomaterials to support injured brain regeneration are developed. Porous laminin (LN)-rich sponge (LN-sponge), on which histidine-tagged VEGF (VEGF-Histag) is immobilized via affinity interaction is developed. In an in vivo mouse stroke model, transplanting VEGF-Histag-LN-sponge produces remarkably stronger angiogenic activity than transplanting LN-sponge with soluble VEGF. The findings indicate that using affinity interactions to immobilize VEGF is a practical approach for developing angiogenic biomaterials for regenerating the injured brain.
Collapse
Affiliation(s)
- Mio Oshikawa
- Center for Brain Integration Research (CBIR); Tokyo Medical and Dental University (TMDU); 1-5-45 Yushima Bunkyo-ku Tokyo 113-8510 Japan
| | - Kei Okada
- Center for Brain Integration Research (CBIR); Tokyo Medical and Dental University (TMDU); 1-5-45 Yushima Bunkyo-ku Tokyo 113-8510 Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; 1 Kawasumi, Mizuho-cho, Mizuho-ku Nagoya Aichi 467-8601 Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; 1 Kawasumi, Mizuho-cho, Mizuho-ku Nagoya Aichi 467-8601 Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; 38 Nishigonaka Myodaiji Okazaki Aichi 444-8585 Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR); Tokyo Medical and Dental University (TMDU); 1-5-45 Yushima Bunkyo-ku Tokyo 113-8510 Japan
- The Japan Science and Technology Agency (JST); Precursory Research for Embryonic Science and Technology (PRESTO); 4-1-8 Honcho Kawaguchi-shi Saitama 332-0012 Japan
| |
Collapse
|
33
|
García JR, García AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res 2016; 6:77-95. [PMID: 26014967 DOI: 10.1007/s13346-015-0236-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
34
|
Hauser S, Jung F, Pietzsch J. Human Endothelial Cell Models in Biomaterial Research. Trends Biotechnol 2016; 35:265-277. [PMID: 27789063 DOI: 10.1016/j.tibtech.2016.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) models have evolved as important tools in biomaterial research due to ubiquitously occurring interactions between implanted materials and the endothelium. However, screening the available literature has revealed a gap between material scientists and physiologists in terms of their understanding of these biomaterial-endothelium interactions and their relative importance. Consequently, EC models are often applied in nonphysiological experimental setups, or too extensive conclusions are drawn from their results. The question arises whether this might be one reason why, among the many potential biomaterials, only a few have found their way into the clinic. In this review, we provide an overview of established EC models and possible selection criteria to enable researchers to determine the most reliable and relevant EC model to use.
Collapse
Affiliation(s)
- Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Helmholtz Virtual Institute 'Multifunctional Biomaterials for Medicine', Teltow, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany; Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany.
| |
Collapse
|
35
|
Yang J, Li Q, Yang X, Feng Y, Ren X, Shi C, Zhang W. Multitargeting Gene Delivery Systems for Enhancing the Transfection of Endothelial Cells. Macromol Rapid Commun 2016; 37:1926-1931. [DOI: 10.1002/marc.201600345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
| | - Qian Li
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
| | - Xiao Yang
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
| | - Yakai Feng
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Weijin Road 92 Tianjin 300072 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Yaguan Road 135 Tianjin 300350 China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Yaguan Road 135 Tianjin 300350 China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering; Wenzhou Zhejiang 325011 China
- Institute of Biomaterials and Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology; Logistics University of Chinese People's Armed Police Force; Tianjin 300162 China
| |
Collapse
|
36
|
Kim JJ, Hou L, Huang NF. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater 2016; 41:17-26. [PMID: 27262741 PMCID: PMC4969172 DOI: 10.1016/j.actbio.2016.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
UNLABELLED Engineering of three-dimensional (3D) tissues is a promising approach for restoring diseased or dysfunctional myocardium with a functional replacement. However, a major bottleneck in this field is the lack of efficient vascularization strategies, because tissue constructs produced in vitro require a constant flow of oxygen and nutrients to maintain viability and functionality. Compared to angiogenic cell therapy and growth factor treatment, bioengineering approaches such as spatial micropatterning, integration of sacrificial materials, tissue decellularization, and 3D bioprinting enable the generation of more precisely controllable neovessel formation. In this review, we summarize the state-of-the-art approaches to develop 3D tissue engineered constructs with vasculature, and demonstrate how some of these techniques have been applied towards regenerative medicine for treatment of heart failure. STATEMENT OF SIGNIFICANCE Tissue engineering is a promising approach to replace or restore dysfunctional tissues/organs, but a major bottleneck in realizing its potential is the challenge of creating scalable 3D tissues. Since most 3D engineered tissues require a constant supply of nutrients, it is necessary to integrate functional vasculature within the tissues in order to facilitate the transport of nutrients. To address these needs, researchers are employing biomaterial engineering and design strategies to foster vessel formation within 3D tissues. This review highlights the state-of-the-art bioengineering tools and technologies to create vascularized 3D tissues for clinical applications in regenerative medicine, highlighting the application of these technologies to engineer vascularized cardiac patches for treatment of heart failure.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Gabriel M, Niederer K, Becker M, Raynaud CM, Vahl CF, Frey H. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach. Bioconjug Chem 2016; 27:1216-21. [DOI: 10.1021/acs.bioconjchem.6b00047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Gabriel
- Sidra Medical and Research Center, Cardiovascular
Division, QCRC, Doha, Qatar
| | - Kerstin Niederer
- Department
of Organic Chemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | | | | | - Holger Frey
- Department
of Organic Chemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
38
|
Hamilton C, Callanan A. Secreted Endothelial Cell Factors Immobilized on Collagen Scaffolds Enhance the Recipient Endothelial Cell Environment. Biores Open Access 2016; 5:61-71. [PMID: 27057474 PMCID: PMC4817599 DOI: 10.1089/biores.2016.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Strategies to design novel vascular scaffolds are a continuing aim in tissue engineering and often such designs encompass the use of recombinant factors to enhance the performance of the scaffold. The established use of cell secretion utilized in feeder systems and conditioned media offer a source of paracrine factors, which has potential to be used in tissue-engineered (TE) scaffolds. Here we utilize this principle from endothelial cells (ECs), to create a novel TE scaffold by harnessing secreted factors and immobilizing these to collagen scaffolds. This research revealed increased cellular attachment and positive angiogenic gene upregulation responses in recipient ECs grown on these conditioned scaffolds. Also, the conditioning method did not affect the mechanical structural integrity of the scaffolds. These results may advocate the potential use of this system to improve vascular scaffolds' in vivo performance. In addition, this process may be a future method utilized to improve other tissue engineering scaffold therapies.
Collapse
Affiliation(s)
- Charlotte Hamilton
- Institute of Bioengineering, The University of Edinburgh , The King's Buildings, Edinburgh, United Kingdom
| | - Anthony Callanan
- Institute of Bioengineering, The University of Edinburgh , The King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:53-60. [DOI: 10.1016/j.msec.2015.09.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/07/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022]
|
40
|
Sarker M, Chen X, Schreyer D. Experimental approaches to vascularisation within tissue engineering constructs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:683-734. [DOI: 10.1080/09205063.2015.1059018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Khan M, Yang J, Shi C, Lv J, Feng Y, Zhang W. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater 2015; 20:69-81. [PMID: 25839123 DOI: 10.1016/j.actbio.2015.03.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/31/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
Surface tailoring is an attractive approach to enhancing selective endothelialization, which is a prerequisite for current vascular prosthesis applications. Here, we modified polycarbonate urethane (PCU) surface with both poly(ethylene glycol) and Cys-Ala-Gly-peptide (CAG) for the purpose of creating a hydrophilic surface with targeting adhesion of endothelial cells (ECs). In the first step, PCU-film surface was grafted with poly(ethylene glycol) methacrylate (PEGMA) to covalently tether hydrophilic polymer brushes via surface initiated atom transfer radical polymerization (SI-ATRP), followed by grafting of an active monomer pentafluorophenyl methacrylate (PFMA) by a second ATRP. The postpolymerization modification of the terminal reactive groups with allyl amine molecules created pendant allyl groups, which were subsequently functionalized with cysteine terminated CAG-peptide via photo-initiated thiol-ene click chemistry. The functionalized surfaces were characterized by water contact angle and XPS analysis. The growth and proliferation of human ECs or human umbilical arterial smooth muscle cells on the functionalized surfaces were investigated for 1, 3 and 7 day/s. The results indicated that these peptide functionalized surfaces exhibited enhanced EC adhesion, growth and proliferation. Furthermore, they suppressed platelet adhesion in contact with platelet-rich plasma for 2h. Therefore, these surfaces with EC targeting ligand could be an effective anti-thrombogenic platform for vascular tissue engineering application.
Collapse
|
42
|
Yang J, Khan M, Zhang L, Ren X, Guo J, Feng Y, Wei S, Zhang W. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. J Mater Chem B 2015; 3:7682-7697. [DOI: 10.1039/c5tb01155h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional surfaces have been created by surface modification and click reactions. These surfaces possess excellent hemocompatibility and endothelialization, as well as effective antimicrobial activity.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Musammir Khan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Li Zhang
- Tianjin University Helmholtz-Zentrum Geesthacht
- Joint Laboratory for Biomaterials and Regenerative Medicine
- 300072 Tianjin
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Shuping Wei
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
43
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
44
|
Ramanan V, Scull MA, Sheahan TP, Rice CM, Bhatia SN. New Methods in Tissue Engineering: Improved Models for Viral Infection. Annu Rev Virol 2014; 1:475-499. [PMID: 25893203 PMCID: PMC4398347 DOI: 10.1146/annurev-virology-031413-085437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.
Collapse
Affiliation(s)
- Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
| | - Margaret A Scull
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Timothy P Sheahan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
45
|
Robotti F, Franco D, Bänninger L, Wyler J, Starck CT, Falk V, Poulikakos D, Ferrari A. The influence of surface micro-structure on endothelialization under supraphysiological wall shear stress. Biomaterials 2014; 35:8479-86. [DOI: 10.1016/j.biomaterials.2014.06.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023]
|
46
|
Lee YB, Jun I, Bak S, Shin YM, Lim YM, Park H, Shin H. Reconstruction of vascular structure with multicellular components using cell transfer printing methods. Adv Healthc Mater 2014; 3:1465-74. [PMID: 24610737 DOI: 10.1002/adhm.201300548] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/12/2014] [Indexed: 12/23/2022]
Abstract
Natural vessel has three types of concentric cell layers that perform their specific functions. Here, the fabrication of vascular structure is reported by transfer printing of three different cell layers using thermosensitive hydrogels. Tetronic-tyramine and RGD peptide are co-crosslinked to prepare cell adhesive and thermosensitive hydrogels. The hydrogel increases its diameter by 1.26 times when the temperature reduces from 37 °C to 4 °C. At optimized seeding density, three types of cells form monolayers on the hydrogel, which is then transferred to the target surface within 3 min. Three monolayers are simultaneously transferred on one substrate with controlled shape and arrangement. The same approach is applied onto nanofiber scaffolds that are cultured for more than 5 d. Every type of monolayer shows proliferation and migration on nanofiber scaffolds, and the formation of robust cell-cell contact is revealed by CD31 staining in endothelial cell layer. A vascular structure with multicellular components is fabricated by transfer of three monolayers on nanofibers that are manually rolled with the diameter and length of the tube being approximately 3 mm and 12 mm, respectively. Collectively, it is concluded that the tissue transfer printing is a useful tool for constructing a vascular structure and mimicking natural structure of different types of tissues.
Collapse
Affiliation(s)
- Yu Bin Lee
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu, Seoul 133-791 Republic of Korea
| | - Indong Jun
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu, Seoul 133-791 Republic of Korea
| | - Seongwoo Bak
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu, Seoul 133-791 Republic of Korea
| | - Young Min Shin
- Research Division for Industry & Environment; Advanced Radiation Technology Institute; Korea Atomic Energy Research Institute; Jeongeup 580-185 Republic of Korea
| | - Youn-Mook Lim
- Research Division for Industry & Environment; Advanced Radiation Technology Institute; Korea Atomic Energy Research Institute; Jeongeup 580-185 Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering; Chung-Ang University; 84 Heukseok-Ro Dongjakgu, Seoul Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu, Seoul 133-791 Republic of Korea
| |
Collapse
|
47
|
Montgomery M, Zhang B, Radisic M. Cardiac Tissue Vascularization: From Angiogenesis to Microfluidic Blood Vessels. J Cardiovasc Pharmacol Ther 2014; 19:382-393. [PMID: 24764132 DOI: 10.1177/1074248414528576] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myocardial infarction results from a blockage of a major coronary artery that shuts the delivery of oxygen and nutrients to a region of the myocardium, leading to massive cardiomyocytes death and regression of microvasculature. Growth factor and cell delivery methods have been attempted to revascularize the ischemic myocardium and prevent further cell death. Implantable cardiac tissue patches were engineered to directly revascularize as well as remuscularize the affected muscle. However, inadequate vascularization in vitro and in vivo limits the efficacy of these new treatment options. Breakthroughs in cardiac tissue vascularization will profoundly impact ischemic heart therapies. In this review, we discuss the full spectrum of vascularization approaches ranging from biological angiogenesis to microfluidic blood vessels as related to cardiac tissue engineering.
Collapse
Affiliation(s)
- Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Abstract
Reports of peptoid structures and interfaces highlighting their potential as synthetically convenient, multifunctional, modular and precisely tunable biomaterials are reviewed.
Collapse
Affiliation(s)
- King Hang Aaron Lau
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow, UK
| |
Collapse
|
49
|
Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy 2013; 15:1309-22. [PMID: 23999157 DOI: 10.1016/j.jcyt.2013.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
This review summarizes recent efforts to create vascularized bone tissue in vitro and in vivo through the use of cell-based therapy approaches. The treatment of large and recalcitrant bone wounds is a serious clinical problem, and in the United States approximately 10% of all fractures are complicated by delayed union or non-union. Treatment approaches with the use of growth factor and gene delivery have shown some promise, but results are variable and clinical complications have arisen. Cell-based therapies offer the potential to recapitulate key components of the bone-healing cascade, which involves concomitant regeneration of vasculature and new bone tissue. For this reason, osteogenic and vasculogenic cell types have been combined in co-cultures to capitalize on the function of each cell type and to promote heterotypic interactions. Experiments in both two-dimensional and three-dimensional systems have provided insight into the mechanisms by which osteogenic and vasculogenic cells interact to form vascularized bone, and these approaches have been translated to ectopic and orthotopic models in small-animal studies. The knowledge generated by these studies will inform and facilitate the next generation of pre-clinical studies, which are needed to move cell-based orthopaedic repair strategies into the clinic. The science and application of cytotherapy for repair of large and ischemic bone defects is developing rapidly and promises to provide new treatment methods for these challenging clinical problems.
Collapse
|
50
|
Miklas JW, Dallabrida SM, Reis LA, Ismail N, Rupnick M, Radisic M. QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels. PLoS One 2013; 8:e72956. [PMID: 24013716 PMCID: PMC3754933 DOI: 10.1371/journal.pone.0072956] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 07/22/2013] [Indexed: 12/29/2022] Open
Abstract
Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a prime candidate molecule. We demonstrated previously that QHREDGS improved cardiomyocyte metabolism and mitigated serum starved apoptosis. In this paper we further demonstrate the potency of QHREDGS in its ability to enhance endothelial cell survival, metabolism and tube formation. When endothelial cells were exposed to the soluble form of QHREDGS, improvements in endothelial cell barrier functionality, nitric oxide production and cell metabolism (ATP levels) in serum starved conditions were found. The functionality of the peptide was then examined when conjugated to collagen-chitosan hydrogel, a potential carrier for in vivo application. The presence of the peptide in the hydrogel mitigated paclitaxel induced apoptosis of endothelial cells in a dose dependent manner. Furthermore, the peptide modified hydrogels stimulated tube-like structure formation of encapsulated endothelial cells. When integrin αvβ3 or α5β1 were antibody blocked during cell encapsulation in peptide modified hydrogels, tube formation was abolished. Therefore, the dual protective nature of the novel peptide QHREDGS may position this peptide as an appealing augmentation for collagen-chitosan hydrogels that could be used for biomaterial delivered cell therapies in the settings of myocardial infarction.
Collapse
Affiliation(s)
- Jason W. Miklas
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Susan M. Dallabrida
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lewis A. Reis
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nesreen Ismail
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Maria Rupnick
- Brigham and Women’s Hospital, Cardiovascular Division, Boston, Massachusetts, United States of America (Affiliates of Harvard Medical School, Boston, Massachusetts, United States of America)
| | - Milica Radisic
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|