1
|
Shi X, Zhang J, Ding Y, Li H, Yao S, Hu T, Zhao C, Wang J. Ultrasensitive detection platform for Staphylococcus aureus based on DNAzyme tandem blocking CRISPR/Cas12a system. Biosens Bioelectron 2024; 264:116671. [PMID: 39163781 DOI: 10.1016/j.bios.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Detection methods based on CRISPR/Cas12a have been widely developed in the application of pathogenic microorganisms to guarantee food safety and public health. For sensitive detection, the CRISPR-based strategies are often in tandem with amplification methods. However, that may increase the detection time and the process may introduce nucleic acid contamination resulting in non-specific amplification. Herein, we established a sensitive S. aureus detection strategy based on the CRISPR/Cas12a system combined with DNAzyme. The activity of Cas12a is blocked by extending the spacer of crRNA (bcrRNA) and can be reactivated by Mn2+. NH2-modified S. aureus-specific aptamer was loaded on the surface of Fe3O4 MNPs (apt-Fe3O4 MNPs) and MnO2 NPs (apt-MnO2 NPs) by EDC/NHS chemistry. The S. aureus was captured to form apt-Fe3O4 MNPs/S. aureus/apt-MnO2 NPs complex and then MnO2 NPs were etched to release Mn2+ to activate DNAzyme. The active DNAzyme can cleave the hairpin structure in bcrRNA to recover the activity of the CRISPR/Cas system. By initiating the whole detection process by generating Mn2+ through nanoparticle etching, we established a rapid detection assay without nucleic acid extraction and amplification process. The proposed strategy has been applied in the ultrasensitive quantitative detection of S. aureus and has shown good performance with an LOD of 5 CFU/mL in 29 min. Besides, the proposed method can potentially be applied to other targets by simply changing the recognition element and has the prospect of developing a universal detection strategy.
Collapse
Affiliation(s)
- Xuening Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Jing Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yukun Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Hang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Shuo Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Tingting Hu
- Changchun Customs Technology Center, Changchun, 130033, China.
| | - Chao Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Padmakumar JP, Sun JJ, Cho W, Zhou Y, Krenz C, Han WZ, Densmore D, Sontag ED, Voigt CA. Partitioning of a 2-bit hash function across 66 communicating cells. Nat Chem Biol 2024:10.1038/s41589-024-01730-1. [PMID: 39317847 DOI: 10.1038/s41589-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.
Collapse
Affiliation(s)
- Jai P Padmakumar
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica J Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Cho
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yangruirui Zhou
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Christopher Krenz
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Woo Zhong Han
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Christopher A Voigt
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ilyas M, Shah Q, Gul A, Ibrahim H, Fatima R, Babar MM, Rajadas J. Advances in CRISPR-Cas systems for epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:185-209. [PMID: 39266182 DOI: 10.1016/bs.pmbts.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The CRISPR-Cas9 method has revolutionized the gene editing. Epigenetic changes, including DNA methylation, RNA modification, and changes in histone proteins, have been intensively studied and found to play a key role in the pathogenesis of human diseases. CRISPR-While the utility of DNA and chromatin modifications, known as epigenetics, is well understood, the functional significance of various alterations of RNA nucleotides has recently gained attention. Recent advancements in improving CRISPR-based epigenetic modifications has resulted in the availability of a powerful source that can selectively modify DNA, allowing for the maintenance of epigenetic memory over several cell divisions. Accurate identification of DNA methylation at specific locations is crucial for the prompt detection of cancer and other diseases, as DNA methylation is strongly correlated to the onset as well as the advancement of such conditions. Genetic or epigenetic perturbations can disrupt the regulation of imprinted genes, resulting in the development of diseases. When histone code editors and DNA de-/ methyltransferases are coupled with catalytically inactive Cas9 (dCas9), and CRISPRa and CRISPRi, they demonstrate excellent efficacy in editing the epigenome of eukaryotic cells. Advancing and optimizing the extracellular delivery platform can, hence, further facilitate the manipulation of CRISPR-Cas9 gene editing technique in upcoming clinical studies. The current chapter focuses on how the CRISP/ Cas9 system provides an avenue for the epigenetic modifications and its employability for human benefit.
Collapse
Affiliation(s)
- Mahnoor Ilyas
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Qasim Shah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Huzaifa Ibrahim
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rania Fatima
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| |
Collapse
|
4
|
Zheng F, Kawabe Y, Kamihira M. RNA Aptamer-Mediated Gene Activation Systems for Inducible Transgene Expression in Animal Cells. ACS Synth Biol 2024; 13:230-241. [PMID: 38073086 DOI: 10.1021/acssynbio.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.
Collapse
Affiliation(s)
- Feiyang Zheng
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Yu Y, Gawlitt S, de Andrade E Sousa LB, Merdivan E, Piraud M, Beisel CL, Barquist L. Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect machine learning and data integration. Genome Biol 2024; 25:13. [PMID: 38200565 PMCID: PMC10782694 DOI: 10.1186/s13059-023-03153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
CRISPR interference (CRISPRi) is the leading technique to silence gene expression in bacteria; however, design rules remain poorly defined. We develop a best-in-class prediction algorithm for guide silencing efficiency by systematically investigating factors influencing guide depletion in genome-wide essentiality screens, with the surprising discovery that gene-specific features substantially impact prediction. We develop a mixed-effect random forest regression model that provides better estimates of guide efficiency. We further apply methods from explainable AI to extract interpretable design rules from the model. This study provides a blueprint for predictive models for CRISPR technologies where only indirect measurements of guide activity are available.
Collapse
Affiliation(s)
- Yanying Yu
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Sandra Gawlitt
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | | | - Erinc Merdivan
- Helmholtz AI, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Marie Piraud
- Helmholtz AI, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
- Medical Faculty, University of Würzburg, Würzburg, 97080, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany.
- Medical Faculty, University of Würzburg, Würzburg, 97080, Germany.
| |
Collapse
|
6
|
Zhao Y, Poudel P, Wang S. Detection of MicroRNAs Using Synthetic Toehold Switch in Mammalian Cells. Methods Mol Biol 2024; 2774:243-258. [PMID: 38441769 DOI: 10.1007/978-1-0716-3718-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Engineering synthetic gene circuits to control cellular functions has a broad application in the field of synthetic biology. Synthetic RNA-based switches that can operate at the transcriptional and posttranscriptional level have also drawn significant interest for the application of next-generation therapeutics and diagnostics. Thus, RNA-based switchable platforms are needed to report dynamic cellular mechanisms which play an important role in cell development and diseases. Recently, several RNA-based switches have been designed and utilized for biosensing and molecular diagnostics. However, miRNA-based switches have not been well established or characterized, especially for eukaryotic translational control. Here, we designed a novel synthetic toehold switch for detection of exogenously and endogenously expressed miRNAs in CHO, HeLa, HEK 293, and MDA-MB-231 breast cancer cells. Multiplex detection of miR-155 and miR-21 was tested using two toehold switches to evaluate the orthogonality and programmability of this synthetic platform.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Pratima Poudel
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA.
| |
Collapse
|
7
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
8
|
Liu Y, Liu W, Wang B. Engineering CRISPR guide RNAs for programmable RNA sensors. Biochem Soc Trans 2023; 51:2061-2070. [PMID: 37955062 PMCID: PMC10754282 DOI: 10.1042/bst20221486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
As the most valuable feature of the CRISPR system, the programmability based on Watson-Crick base pairing has been widely exploited in engineering RNA sensors. The base pairing in these systems offers a connection between the RNA of interest and the CRISPR effector, providing a highly specific mechanism for RNA detection both in vivo and in vitro. In the last decade, despite the many successful RNA sensing approaches developed during the era of CRISPR explosion, a deeper understanding of the characteristics of CRISPR systems and the continuous expansion of the CRISPR family members indicates that the CRISPR-based RNA sensor remains a promising area from which a variety of new functions and applications can be engineered. Here, we present a systematic overview of the various strategies of engineering CRISPR gRNA for programmable RNA detection with an aim to clarify the role of gRNA's programmability among the present limitations and future development of CRISPR-enabled RNA sensors.
Collapse
Affiliation(s)
- Yang Liu
- MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Wei Liu
- MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
9
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
10
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
11
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
13
|
Specht DA, Cortes LB, Lambert G. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback. ACS Synth Biol 2022; 11:2927-2937. [PMID: 36017994 PMCID: PMC9486968 DOI: 10.1021/acssynbio.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/24/2023]
Abstract
The controlled binding of the catalytically dead CRISPR nuclease (dCas) to DNA can be used to create complex, programmable transcriptional genetic circuits, a fundamental goal of synthetic biology. This approach, called CRISPR interference (CRISPRi), is advantageous over existing methods because the programmable nature of CRISPR proteins in principle enables the simultaneous regulation of many different targets without crosstalk. However, the performance of dCas-based genetic circuits is limited by both the sensitivity to leaky repression within CRISPRi logic gates and retroactive effects due to a shared pool of dCas proteins. By utilizing antisense RNAs (asRNAs) to sequester gRNA transcripts as well as CRISPRi feedback to self-regulate asRNA production, we demonstrate a mechanism that suppresses unwanted repression by CRISPRi and improves logical gene circuit function in Escherichia coli. This improvement is particularly pronounced during stationary expression when CRISPRi circuits do not achieve the expected regulatory dynamics. Furthermore, the use of dual CRISPRi/asRNA inverters restores the logical performance of layered circuits such as a double inverter. By studying circuit induction at the single-cell level in microfluidic channels, we provide insight into the dynamics of antisense sequestration of gRNA and regulatory feedback on dCas-based repression and derepression. These results demonstrate how CRISPRi inverters can be improved for use in more complex genetic circuitry without sacrificing the programmability and orthogonality of dCas proteins.
Collapse
Affiliation(s)
- David A. Specht
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Louis B. Cortes
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Guillaume Lambert
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Fischer F, Benner C, Goyala A, Grigolon G, Vitiello D, Wu J, Zarse K, Ewald CY, Ristow M. Ingestion of single guide RNAs induces gene overexpression and extends lifespan in Caenorhabditis elegans via CRISPR activation. J Biol Chem 2022; 298:102085. [PMID: 35636511 PMCID: PMC9243178 DOI: 10.1016/j.jbc.2022.102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Inhibition of gene expression in Caenorhabditis elegans, a versatile model organism for studying the genetics of development and aging, is achievable by feeding nematodes with bacteria expressing specific dsRNAs. Overexpression of hypoxia-inducible factor 1 (hif-1) or heat-shock factor 1 (hsf-1) by conventional transgenesis has previously been shown to promote nematodal longevity. However, it is unclear whether other methods of gene overexpression are feasible, particularly with the advent of CRISPR-based techniques. Here, we show that feeding C. elegans engineered to stably express a Cas9-derived synthetic transcription factor with bacteria expressing promoter-specific single guide RNAs (sgRNAs) also allows activation of gene expression. We demonstrate that CRISPR activation via ingested sgRNAs specific for the respective promoter regions of hif-1 or hsf-1 increases gene expression and extends lifespan of C. elegans. Furthermore, and as an in silico resource for future studies aiming to use CRISPR activation in C. elegans, we provide predicted promoter-specific sgRNA target sequences for >13,000 C. elegans genes with experimentally defined transcription start sites. We anticipate that the approach and components described herein will help to facilitate genome-wide gene overexpression studies, for example, to identify modulators of aging or other phenotypes of interest, by enabling induction of transcription by feeding of sgRNA-expressing bacteria to nematodes.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| | - Christoph Benner
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Science and Policy Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Anita Goyala
- Extracellular Matrix Regeneration Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Davide Vitiello
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - JiaYee Wu
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Kim Zarse
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Endocrinology and Diabetology, Berlin, Germany
| | - Collin Y Ewald
- Extracellular Matrix Regeneration Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Endocrinology and Diabetology, Berlin, Germany.
| |
Collapse
|
15
|
Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, Chikkaputtaiah C. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. PLANTA 2022; 255:109. [PMID: 35460444 DOI: 10.1007/s00425-022-03894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Precise genome engineering approaches could be perceived as a second paradigm for targeted trait improvement in crop plants, with the potential to overcome the constraints imposed by conventional CRISPR/Cas technology. The likelihood of reduced agricultural production due to highly turbulent climatic conditions increases as the global population expands. The second paradigm of stress-resilient crops with enhanced tolerance and increased productivity against various stresses is paramount to support global production and consumption equilibrium. Although traditional breeding approaches have substantially increased crop production and yield, effective strategies are anticipated to restore crop productivity even further in meeting the world's increasing food demands. CRISPR/Cas, which originated in prokaryotes, has surfaced as a coveted genome editing tool in recent decades, reshaping plant molecular biology in unprecedented ways and paving the way for engineering stress-tolerant crops. CRISPR/Cas is distinguished by its efficiency, high target specificity, and modularity, enables precise genetic modification of crop plants, allowing for the creation of allelic variations in the germplasm and the development of novel and more productive agricultural practices. Additionally, a slew of advanced biotechnologies premised on the CRISPR/Cas methodologies have augmented fundamental research and plant synthetic biology toolkits. Here, we describe gene editing tools, including CRISPR/Cas and its imitative tools, such as base and prime editing, multiplex genome editing, chromosome engineering followed by their implications in crop genetic improvement. Further, we comprehensively discuss the latest developments of CRISPR/Cas technology including CRISPR-mediated gene drive, tissue-specific genome editing, dCas9 mediated epigenetic modification and programmed self-elimination of transgenes in plants. Finally, we highlight the applicability and scope of advanced CRISPR-based techniques in crop genetic improvement.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
16
|
Lan T, Que H, Luo M, Zhao X, Wei X. Genome editing via non-viral delivery platforms: current progress in personalized cancer therapy. Mol Cancer 2022; 21:71. [PMID: 35277177 PMCID: PMC8915502 DOI: 10.1186/s12943-022-01550-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is a severe disease that substantially jeopardizes global health. Although considerable efforts have been made to discover effective anti-cancer therapeutics, the cancer incidence and mortality are still growing. The personalized anti-cancer therapies present themselves as a promising solution for the dilemma because they could precisely destroy or fix the cancer targets based on the comprehensive genomic analyses. In addition, genome editing is an ideal way to implement personalized anti-cancer therapy because it allows the direct modification of pro-tumor genes as well as the generation of personalized anti-tumor immune cells. Furthermore, non-viral delivery system could effectively transport genome editing tools (GETs) into the cell nucleus with an appreciable safety profile. In this manuscript, the important attributes and recent progress of GETs will be discussed. Besides, the laboratory and clinical investigations that seek for the possibility of combining non-viral delivery systems with GETs for the treatment of cancer will be assessed in the scope of personalized therapy.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Sichuan, 610041, Chengdu, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China.
| |
Collapse
|
17
|
Rehman F, Gong H, Bao Y, Zeng S, Huang H, Wang Y. CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. PLANT MOLECULAR BIOLOGY 2022; 108:157-173. [PMID: 35032250 DOI: 10.1007/s11103-021-01229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Domestication traits particularly fruit size and plant architecture and flowering are critical in transforming a progenitor's wild stature into a super improved plant. The latest advancements in the CRISPR system, as well as its rapid adoption, are speeding up plant breeding. Solanaceae has a varied range of important crops, with a few model crops, such as tomato and, more recently, groundcherry, serving as a foundation for developing molecular techniques, genome editing tools, and establishing standards for other crops. Domestication traits in agricultural plants are quantified and widely adopted under modern plant breeding to improve small-fruited and bushy crop species like goji berry. The molecular mechanisms of the FW2.2, FW3.2, FW11.3, FAS/CLV3, LC/WUS, SP, SP5G, and CRISPR genome editing technology have been described in detail here. Furthermore, special focus has been placed on CRISPR gene editing achievements for revolutionizing Solanaceae breeding and changing the overall crop landscape. This review seeks to provide a thorough overview of the CRISPR technique's ongoing advancements, particularly in Solanaceae, in terms of domesticated features, future prospects, and regulatory risks. We believe that this vigorous discussion will lead to a broader understanding of CRISPR gene editing as a tool for achieving key breeding goals in other Solanaceae minor crops with significant industrial value.
Collapse
Affiliation(s)
- Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yufei Bao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hongwen Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
18
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
19
|
Khandibharad S, Nimsarkar P, Singh S. Mechanobiology of immune cells: Messengers, receivers and followers in leishmaniasis aiding synthetic devices. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:186-198. [PMID: 36051499 PMCID: PMC9424266 DOI: 10.1016/j.crimmu.2022.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022] Open
Abstract
Cytokines are influential molecules which can direct cells behavior. In this review, cytokines are referred as messengers, immune cells which respond to cytokine stimulus are referred as receivers and the immune cells which gets modulated due to their plasticity induced by infectious pathogen leishmania, are referred as followers. The advantage of plasticity of cells is taken by the parasite to switch them from parasite eliminating form to parasite survival favoring form through a process called as reciprocity which is undergone by cytokines, wherein pro-inflammatory to anti-inflammatory switch occur rendering immune cell population to switch their phenotype. Detailed study of this switch can help in identification of important targets which can help in restoring the phenotype to parasite eliminating form and this can be done through synthetic circuit, finding its wider applicability in therapeutics. Cytokines as messengers for governing reciprocity in infection. Leishmania induces reciprocity modulating the immune cells plasticity. Reciprocity of cytokines identifies important target for therapeutics. Therapeutic targets aiding the design of synthetic devices to combat infection.
Collapse
|
20
|
Chen T, Ali Al-Radhawi M, Voigt CA, Sontag ED. A synthetic distributed genetic multi-bit counter. iScience 2021; 24:103526. [PMID: 34917900 PMCID: PMC8666654 DOI: 10.1016/j.isci.2021.103526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022] Open
Abstract
A design for genetically encoded counters is proposed via repressor-based circuits. An N-bit counter reads sequences of input pulses and displays the total number of pulses, modulo 2N. The design is based on distributed computation with specialized cell types allocated to specific tasks. This allows scalability and bypasses constraints on the maximal number of circuit genes per cell due to toxicity or failures due to resource limitations. The design starts with a single-bit counter. The N-bit counter is then obtained by interconnecting (using diffusible chemicals) a set of N single-bit counters and connector modules. An optimization framework is used to determine appropriate gate parameters and to compute bounds on admissible pulse widths and relaxation (inter-pulse) times, as well as to guide the construction of novel gates. This work can be viewed as a step toward obtaining circuits that are capable of finite automaton computation in analogy to digital central processing units. A single-bit counter is designed for a repressor-based genetic circuit A scalable multi-bit counter is enabled by distributing the design across cells A computational optimization framework is proposed to guide the design
Collapse
Affiliation(s)
- Tianchi Chen
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - M Ali Al-Radhawi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA.,Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. J Gene Med 2021; 23:e3377. [PMID: 34270141 DOI: 10.1002/jgm.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.
Collapse
Affiliation(s)
- Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zinan Feng
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
|
23
|
Rao MJ, Wang L. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. PLANTA 2021; 254:68. [PMID: 34498163 DOI: 10.1007/s00425-021-03716-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this review, we have focused on the CRISPR/Cas9 technology for improving the agronomic traits in plants through point mutations, knockout, and single base editing, and we highlighted the recent progress in plant metabolic engineering. CRISPR/Cas9 technology has immense power to reproduce plants with desired characters and revolutionizing the field of genome engineering by erasing the barriers in targeted genome editing. Agriculture fields are using this advance genome editing tool to get the desired traits in the crops plants such as increase yield, improve product quality attributes, and enhance resistance against biotic and abiotic stresses by identifying and editing genes of interest. This review focuses on CRISPR/Cas-based gene knockout for trait improvement and single base editing to boost yield, quality, stress tolerance, and disease resistance traits in crops. Use of CRISPR/Cas9 system to facilitate crop domestication and hybrid breeding are also touched. We summarize recent developments and up-gradation of delivery mechanism (nanotechnology and virus particle-based delivery system) and progress in multiplex gene editing. We also shed lights in advances and challenges of engineering the important metabolic pathways that contain a variety of dietary metabolites and phytochemicals. In addition, we endorsed substantial technical hurdles and possible ways to overcome the unpredictability of CRISPR/Cas technology for broader application across various crop species. We speculated that by making a strong interconnection among all genomic fields will give a gigantic bunt of knowledge to develop crop expressing desired traits.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, 530004, People's Republic of China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, 530004, People's Republic of China.
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
24
|
Molina-Hidalgo FJ, Vazquez-Vilar M, D'Andrea L, Demurtas OC, Fraser P, Giuliano G, Bock R, Orzáez D, Goossens A. Engineering Metabolism in Nicotiana Species: A Promising Future. Trends Biotechnol 2021; 39:901-913. [PMID: 33341279 DOI: 10.1016/j.tibtech.2020.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022]
Abstract
Molecular farming intends to use crop plants as biofactories for high value-added compounds following application of a wide range of biotechnological tools. In particular, the conversion of nonfood crops into efficient biofactories is expected to be a strong asset in the development of a sustainable bioeconomy. The 'nonfood' status combined with the high metabolic versatility and the capacity of high-yield cultivation highlight the plant genus Nicotiana as one of the most appropriate 'chassis' for molecular farming. Nicotiana species are a rich source of valuable industrial, active pharmaceutical ingredients and nutritional compounds, synthesized from highly complex biosynthetic networks. Here, we review and discuss approaches currently used to design enriched Nicotiana species for molecular farming using new plant breeding techniques (NPBTs).
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP-UPV-CSIC), Valencia, Spain
| | - Lucio D'Andrea
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Olivia C Demurtas
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Paul Fraser
- School of Biological Sciences, Royal Holloway, University of London, London, UK
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP-UPV-CSIC), Valencia, Spain
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
25
|
Chen Z, Elowitz MB. Programmable protein circuit design. Cell 2021; 184:2284-2301. [PMID: 33848464 PMCID: PMC8087657 DOI: 10.1016/j.cell.2021.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.
Collapse
Affiliation(s)
- Zibo Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Singh R, Chandel S, Ghosh A, Dey D, Chakravarti R, Roy S, Ravichandiran V, Ghosh D. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Mol Biotechnol 2021; 63:459-476. [PMID: 33774733 DOI: 10.1007/s12033-021-00310-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas protein technology area is rapidly growing technique for genome editing and modulation of transcription of several microbes. Successful engineering in microbes requires an emphasis on the aspect of efficiency and targeted aiming, which can be employed using CRISPR/Cas system. Hence, this type of system is used to modify the genome of several microbes such as yeast and bacteria. In recent years, CRISPR/Cas systems have been chosen for metabolic engineering in microbes due to their specificity, orthogonality, and efficacy. Therefore, we need to review the scheme which was acquired for the execution of the CRISPR/Cas system for the modification and metabolic engineering in yeast and bacteria. In this review, we highlighted the application of the CRISPR/Cas system which has been used for the production of small molecules in the microbial system that is chemically and biologically important.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Syamal Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India.
| |
Collapse
|
27
|
Rahman MM, Tollefsbol TO. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods 2021; 187:77-91. [PMID: 32315755 PMCID: PMC7572534 DOI: 10.1016/j.ymeth.2020.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer therapeutics is an ever-evolving field due to incessant demands for effective and precise treatment options. Over the last few decades, cancer treatment strategies have shifted somewhat from surgery to targeted precision medicine. CRISPR-dCas9 is an emerging version of precision cancer therapy that has been adapted from the prokaryotic CRISPR-Cas system. Once ligated to epigenetic effectors (EE), CRISPR-dCas9 can function as an epigenetic editing tool and CRISPR-dCas9-EE complexes could be exploited to alter cancerous epigenetic features associated with different cancer hallmarks. In this article, we discuss the rationale of epigenetic editing as a therapeutic strategy against cancer. We also outline how sgRNA-dCas9 was derived from the CRISPR-Cas system. In addition, the current status of sgRNA-dCas9 use (in vivo and in vitro) in cancer is updated with a molecular illustration of CRISPR-dCas9-mediated epigenetic and transcriptional modulation. As sgRNA-dCas9 is still at the developmental phase, challenges are inherent to its use. We evaluate major challenges in targeting cancer with sgRNA-dCas9 such as off-target effects, lack of sgRNA designing rubrics, target site selection dilemmas and deficient sgRNA-dCas9 delivery systems. Finally, we appraise the sgRNA-dCas9 as a prospective cancer therapeutic by summarizing ongoing improvements of sgRNA-dCas9 methodology.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A. Wheat omics: Classical breeding to new breeding technologies. Saudi J Biol Sci 2021; 28:1433-1444. [PMID: 33613071 PMCID: PMC7878716 DOI: 10.1016/j.sjbs.2020.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.
Collapse
Affiliation(s)
- Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Majed Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mobarak Al Mosallam
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Huang X, Zhou Q, Wang M, Cao C, Ma Q, Ye J, Gui Y. A Light-Inducible Split-dCas9 System for Inhibiting the Progression of Bladder Cancer Cells by Activating p53 and E-cadherin. Front Mol Biosci 2021; 7:627848. [PMID: 33469550 PMCID: PMC7814291 DOI: 10.3389/fmolb.2020.627848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
Optogenetic systems have been increasingly investigated in the field of biomedicine. Previous studies had found the inhibitory effect of the light-inducible genetic circuits on cancer cell growth. In our study, we applied an AND logic gates to the light-inducible genetic circuits to inhibit the cancer cells more specifically. The circuit would only be activated in the presence of both the human telomerase reverse transcriptase (hTERT) and the human uroplakin II (hUPII) promoter. The activated logic gate led to the expression of the p53 or E-cadherin protein, which could inhibit the biological function of tumor cells. In addition, we split the dCas9 protein to reduce the size of the synthetic circuit compared to the full-length dCas9. This light-inducible system provides a potential therapeutic strategy for future bladder cancer.
Collapse
Affiliation(s)
- Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qun Zhou
- Department of Urology, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Mingxia Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
30
|
Shi K, Xie S, Tian R, Wang S, Lu Q, Gao D, Lei C, Zhu H, Nie Z. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. SCIENCE ADVANCES 2021; 7:7/5/eabc7802. [PMID: 33571114 PMCID: PMC7840123 DOI: 10.1126/sciadv.abc7802] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Artificial nucleic acid circuits with precisely controllable dynamic and function have shown great promise in biosensing, but their utility in molecular diagnostics is still restrained by the inability to process genomic DNA directly and moderate sensitivity. To address this limitation, we present a CRISPR-Cas-powered catalytic nucleic acid circuit, namely, CRISPR-Cas-only amplification network (CONAN), for isothermally amplified detection of genomic DNA. By integrating the stringent target recognition, helicase activity, and trans-cleavage activity of Cas12a, a Cas12a autocatalysis-driven artificial reaction network is programmed to construct a positive feedback circuit with exponential dynamic in CONAN. Consequently, CONAN achieves one-enzyme, one-step, real-time detection of genomic DNA with attomolar sensitivity. Moreover, CONAN increases the intrinsic single-base specificity of Cas12a, and enables the effective detection of hepatitis B virus infection and human bladder cancer-associated single-nucleotide mutation in clinical samples, highlighting its potential as a powerful tool for disease diagnostics.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Shuo Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Qin Lu
- Hunan Research Center for Big Data Application in Genomics, Genetalks Inc., Changsha 410152, China
| | - Denghui Gao
- Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
31
|
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is one of the hallmark of biological tools, contemplated as a valid and hopeful alternatives to genome editing. Advancements in CRISPR-based technologies have empowered scientists with an editing kit that allows them to employ their knowledge for deleting, replacing and lately "Gene Surgery", and provides unique control over genes in broad range of species, and presumably in humans. These fast-growing technologies have high strength and flexibility and are becoming an adaptable tool with implementations that are altering organism's genome and easily used for chromatin manipulation. In addition to the popularity of CRISPR in genome engineering and modern biology, this major tool authorizes breakthrough discoveries and methodological advancements in science. As scientists are developing new types of experiments, some of the applications are raising questions about what CRISPR can enable. The results of evidence-based research strongly suggest that CRISPR is becoming a practical tool for genome-engineering and to create genetically modified eukaryotes, which is needed to establish guidelines on new regulatory concerns for scientific communities.
Collapse
Affiliation(s)
- Zhabiz Golkar
- Division of Academic Affairs, Voorhees College, Denmark, SC, USA.
| |
Collapse
|
32
|
Bandyopadhyay A, Kancharla N, Javalkote VS, Dasgupta S, Brutnell TP. CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. FRONTIERS IN PLANT SCIENCE 2020; 11:584151. [PMID: 33214794 PMCID: PMC7668199 DOI: 10.3389/fpls.2020.584151] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 05/08/2023]
Abstract
Global population is predicted to approach 10 billion by 2050, an increase of over 2 billion from today. To meet the demands of growing, geographically and socio-economically diversified nations, we need to diversity and expand agricultural production. This expansion of agricultural productivity will need to occur under increasing biotic, and environmental constraints driven by climate change. Clustered regularly interspaced short palindromic repeats-site directed nucleases (CRISPR-SDN) and similar genome editing technologies will likely be key enablers to meet future agricultural needs. While the application of CRISPR-Cas9 mediated genome editing has led the way, the use of CRISPR-Cas12a is also increasing significantly for genome engineering of plants. The popularity of the CRISPR-Cas12a, the type V (class-II) system, is gaining momentum because of its versatility and simplified features. These include the use of a small guide RNA devoid of trans-activating crispr RNA, targeting of T-rich regions of the genome where Cas9 is not suitable for use, RNA processing capability facilitating simpler multiplexing, and its ability to generate double strand breaks (DSB) with staggered ends. Many monocot and dicot species have been successfully edited using this Cas12a system and further research is ongoing to improve its efficiency in plants, including improving the temperature stability of the Cas12a enzyme, identifying new variants of Cas12a or synthetically producing Cas12a with flexible PAM sequences. In this review we provide a comparative survey of CRISPR-Cas12a and Cas9, and provide a perspective on applications of CRISPR-Cas12 in agriculture.
Collapse
Affiliation(s)
| | - Nagesh Kancharla
- Reliance Industries Ltd., R&D-Synthetic Biology, Navi Mumbai, India
| | | | - Santanu Dasgupta
- Reliance Industries Ltd., R&D-Synthetic Biology, Navi Mumbai, India
| | - Thomas P. Brutnell
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing China
- Gateway Biotechnology, Inc., St. Louis, MO, United States
| |
Collapse
|
33
|
Santos-Moreno J, Schaerli Y. CRISPR-based gene expression control for synthetic gene circuits. Biochem Soc Trans 2020; 48:1979-1993. [PMID: 32964920 PMCID: PMC7609024 DOI: 10.1042/bst20200020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Synthetic gene circuits allow us to govern cell behavior in a programmable manner, which is central to almost any application aiming to harness engineered living cells for user-defined tasks. Transcription factors (TFs) constitute the 'classic' tool for synthetic circuit construction but some of their inherent constraints, such as insufficient modularity, orthogonality and programmability, limit progress in such forward-engineering endeavors. Here we review how CRISPR (clustered regularly interspaced short palindromic repeats) technology offers new and powerful possibilities for synthetic circuit design. CRISPR systems offer superior characteristics over TFs in many aspects relevant to a modular, predictable and standardized circuit design. Thus, the choice of CRISPR technology as a framework for synthetic circuit design constitutes a valid alternative to complement or replace TFs in synthetic circuits and promises the realization of more ambitious designs.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synth Biol 2020; 9:2228-2238. [PMID: 32794766 DOI: 10.1021/acssynbio.0c00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The well-designed microbial cell factory finds wide applications in chemical, pharmaceutical, and food industries due to its sustainable and environmentally friendly features. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems have been developed into powerful tools to perform genome editing and transcriptional regulation in prokaryotic and eukaryotic cells. Accordingly, these tools are useful to build microbial cell factories not only by reconstructing the genome but also by reprogramming the metabolic network. In this review, we summarize the recent significant headway and potential uses of the CRISPR technology in the construction of efficient microbial cell factories. Moreover, the future perspectives on the improvement and upgradation of CRISPR-based tools are also discussed.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
35
|
Farquhar KS, Flohr H, Charlebois DA. Advancing Antimicrobial Resistance Research Through Quantitative Modeling and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:583415. [PMID: 33072732 PMCID: PMC7530828 DOI: 10.3389/fbioe.2020.583415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is an emerging global health crisis that is undermining advances in modern medicine and, if unmitigated, threatens to kill 10 million people per year worldwide by 2050. Research over the last decade has demonstrated that the differences between genetically identical cells in the same environment can lead to drug resistance. Fluctuations in gene expression, modulated by gene regulatory networks, can lead to non-genetic heterogeneity that results in the fractional killing of microbial populations causing drug therapies to fail; this non-genetic drug resistance can enhance the probability of acquiring genetic drug resistance mutations. Mathematical models of gene networks can elucidate general principles underlying drug resistance, predict the evolution of resistance, and guide drug resistance experiments in the laboratory. Cells genetically engineered to carry synthetic gene networks regulating drug resistance genes allow for controlled, quantitative experiments on the role of non-genetic heterogeneity in the development of drug resistance. In this perspective article, we emphasize the contributions that mathematical, computational, and synthetic gene network models play in advancing our understanding of AMR to discover effective therapies against drug-resistant infections.
Collapse
Affiliation(s)
| | - Harold Flohr
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
36
|
Kuo J, Yuan R, Sánchez C, Paulsson J, Silver PA. Toward a translationally independent RNA-based synthetic oscillator using deactivated CRISPR-Cas. Nucleic Acids Res 2020; 48:8165-8177. [PMID: 32609820 PMCID: PMC7430638 DOI: 10.1093/nar/gkaa557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
In synthetic circuits, CRISPR-Cas systems have been used effectively for endpoint changes from an initial state to a final state, such as in logic gates. Here, we use deactivated Cas9 (dCas9) and deactivated Cas12a (dCas12a) to construct dynamic RNA ring oscillators that cycle continuously between states over time in bacterial cells. While our dCas9 circuits using 103-nt guide RNAs showed irregular fluctuations with a wide distribution of peak-to-peak period lengths averaging approximately nine generations, a dCas12a oscillator design with 40-nt CRISPR RNAs performed much better, having a strongly repressed off-state, distinct autocorrelation function peaks, and an average peak-to-peak period length of ∼7.5 generations. Along with free-running oscillator circuits, we measure repression response times in open-loop systems with inducible RNA steps to compare with oscillator period times. We track thousands of cells for 24+ h at the single-cell level using a microfluidic device. In creating a circuit with nearly translationally independent behavior, as the RNAs control each others' transcription, we present the possibility for a synthetic oscillator generalizable across many organisms and readily linkable for transcriptional control.
Collapse
Affiliation(s)
- James Kuo
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ruoshi Yuan
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Sánchez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Johan Paulsson
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
37
|
Purohit J, Chattopadhyay A, Teli B. Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application. Curr Genomics 2020; 21:253-270. [PMID: 33071619 PMCID: PMC7521044 DOI: 10.2174/1389202921999200525155711] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.
Collapse
Affiliation(s)
- Jyotika Purohit
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Anirudha Chattopadhyay
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Basavaraj Teli
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| |
Collapse
|
38
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
39
|
Abstract
Gene expression control based on CRISPRi (clustered regularly interspaced short palindromic repeats interference) has emerged as a powerful tool for creating synthetic gene circuits, both in prokaryotes and in eukaryotes; yet, its lack of cooperativity has been pointed out as a potential obstacle for dynamic or multistable synthetic circuit construction. Here we use CRISPRi to build a synthetic oscillator (“CRISPRlator”), bistable network (toggle switch) and stripe pattern-forming incoherent feed-forward loop (IFFL). Our circuit designs, conceived to feature high predictability and orthogonality, as well as low metabolic burden and context-dependency, allow us to achieve robust circuit behaviors in Escherichia coli populations. Mathematical modeling suggests that unspecific binding in CRISPRi is essential to establish multistability. Our work demonstrates the wide applicability of CRISPRi in synthetic circuits and paves the way for future efforts towards engineering more complex synthetic networks, boosted by the advantages of CRISPR technology. Synthetic circuits based on CRISPRi have not achieved multistable and dynamic behaviors. Here the authors build an oscillator, a toggle switch and an incoherent feed-forward loop using CRISPRi, and provide a mathematical model suggesting that unspecific binding in CRISPRi enables multistability.
Collapse
|
40
|
|
41
|
Specht DA, Xu Y, Lambert G. Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. Proc Natl Acad Sci U S A 2020; 117:11274-11282. [PMID: 32376630 PMCID: PMC7260945 DOI: 10.1073/pnas.1918685117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has led to diverse applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most CRISPR-Cas systems, however, suffer from off-target effects and unpredictable nonspecific binding that negatively impact their reliability and broader applicability. To better evaluate the impact of mismatches on DNA target recognition and binding, we develop a massively parallel CRISPR interference (CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA) and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding dynamics, our results unravel a comprehensive map of the energetic landscape of nuclease-dead Cas12a (dCas12a) from Francisella novicida as it inspects and binds to its DNA target. Our results reveal concealed thermodynamic factors affecting dCas12a DNA binding, which should guide the design and optimization of crRNA that limits off-target effects, including the crucial role of an extended protospacer adjacent motif (PAM) sequence and the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach should also provide a mechanistic understanding of target recognition and DNA binding when applied to other CRISPR-Cas systems.
Collapse
Affiliation(s)
- David A Specht
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Yasu Xu
- Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
42
|
Jaiswal S, Shukla P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front Microbiol 2020; 11:808. [PMID: 32508759 PMCID: PMC7249858 DOI: 10.3389/fmicb.2020.00808] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.
Collapse
|
43
|
Wei W, Shang Y, Zhang P, Liu Y, You D, Yin B, Ye B. Engineering Prokaryotic Transcriptional Activator XylR as a Xylose-Inducible Biosensor for Transcription Activation in Yeast. ACS Synth Biol 2020; 9:1022-1029. [PMID: 32268060 DOI: 10.1021/acssynbio.0c00122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosensors regulated by specific substrates are needed to develop genetic tools to meet the needs of engineering microbial cell factories. Here, a xylose-inducible biosensor (xylbiosensor), comprising the Escherichia coli activation factor XylR, fusion activation domain (AD) VPRH, and a hybrid promoter with operator xylO, was established in Yarrowia lipolytica. The addition of xylose to an engineered Y. lipolytica strain harboring the xylbiosensor could trigger significant transcriptional activation of target genes, such as mcherry and the xylose utilization gene. Furthermore, a novel promoter Pleu-Pxo-Ptef was developed to construct a bidirectional expression system. The xylbiosensor showed good portability in Saccharomyces cerevisiae, suggesting its potential value in other eukaryotic cells. This study is the first to construct a "turn-on" xylbiosensor induced by xylose addition based on a prokaryotic activator XylR and eukaryotic universal AD. The xylbiosensor exhibits potential in pathway engineering for xylose utilization and xylose-derived product biosynthesis in yeast.
Collapse
Affiliation(s)
- Wenping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bincheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bangce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
44
|
Liu Y, Wang B. A Novel Eukaryote-Like CRISPR Activation Tool in Bacteria: Features and Capabilities. Bioessays 2020; 42:e1900252. [PMID: 32310310 DOI: 10.1002/bies.201900252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Indexed: 11/09/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) activation (CRISPRa) in bacteria is an attractive method for programmable gene activation. Recently, a eukaryote-like, σ54 -dependent CRISPRa system has been reported. It exhibits high dynamic ranges and permits flexible target site selection. Here, an overview of the existing strategies of CRISPRa in bacteria is presented, and the characteristics and design principles of the CRISPRa system are introduced. Possible scenarios for applying the eukaryote-like CRISPRa system is discussed with corresponding suggestions for performance optimization and future functional expansion. The authors envision the new eukaryote-like CRISPRa system enabling novel designs in multiplexed gene regulation and promoting research in the σ54 -dependent gene regulatory networks among a variety of biotechnology relevant or disease-associated bacterial species.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
45
|
Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, Zhang G, Sun J, Zhou X. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS NANO 2020; 14:2497-2508. [PMID: 32045522 DOI: 10.1021/acsnano.0c00022] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The lateral flow assay is one of the most convenient analytical techniques for analyzing the immune response, but its applicability to precise genetic analyses is limited by the false-positive signal and tedious and inefficient hybridization steps. Here, we introduce the CRISPR (clustered regularly interspaced short palindromic repeats) /Cas system into the lateral flow assay, termed CRISPR/Cas9-mediated lateral flow nucleic acid assay (CASLFA), to address such issues. In this study, CASLFA is utilized to identify Listeria monocytogenes, genetically modified organisms (GMOs), and African swine fever virus (ASFV) at a detection limit of hundreds of copies of genome samples with high specificity within 1 h. We further evaluated the performance of CASLFA in a nonlaboratory environment and successfully confirmed 27 ASFV-infected samples from 110 suspected swine serum samples, with an accuracy of 100% when compared to real-time PCR (RT-PCR) assay. CASLFA satisfies some of the characteristics of a next-generation molecular diagnostics tool due to its rapidity and accuracy, allowing for point-of-care use without the need for technical expertise and complex ancillary equipment. This method has great potential for gene analysis in resource-poor or nonlaboratory environments.
Collapse
Affiliation(s)
- Xusheng Wang
- College of Biophotonics & School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Erhu Xiong
- College of Biophotonics & School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Tian Tian
- College of Biophotonics & School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Meng Cheng
- College of Biophotonics & School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Wei Lin
- College of Biophotonics & School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Heng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou 510642 , China
- Research Center for African Swine Fever Prevention and Control , South China Agricultural University , Guangzhou 510642 , China
| | - Guihong Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou 510642 , China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria , South China Agricultural University , Guangzhou 510642 , China
- Research Center for African Swine Fever Prevention and Control , South China Agricultural University , Guangzhou 510642 , China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou 510642 , China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria , South China Agricultural University , Guangzhou 510642 , China
- Research Center for African Swine Fever Prevention and Control , South China Agricultural University , Guangzhou 510642 , China
| | - Xiaoming Zhou
- College of Biophotonics & School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
46
|
Mukhopadhyay S, Sarkar K, Srivastava R, Pal A, Bagh S. Processing two environmental chemical signals with a synthetic genetic IMPLY gate, a 2‐input‐2‐output integrated logic circuit, and a process pipeline to optimize its systems chemistry in
Escherichia coli. Biotechnol Bioeng 2020; 117:1502-1512. [DOI: 10.1002/bit.27286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sayak Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear PhysicsHomi Bhabha National Institute (HBNI)Kolkata India
| | - Kathakali Sarkar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear PhysicsHomi Bhabha National Institute (HBNI)Kolkata India
| | - Rajkamal Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear PhysicsHomi Bhabha National Institute (HBNI)Kolkata India
| | - Arijit Pal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear PhysicsHomi Bhabha National Institute (HBNI)Kolkata India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear PhysicsHomi Bhabha National Institute (HBNI)Kolkata India
| |
Collapse
|
47
|
Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020; 22:143-150. [PMID: 32015437 PMCID: PMC8008746 DOI: 10.1038/s41556-019-0454-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Deployment of RNA-guided DNA endonuclease CRISPR-Cas technology has led to radical advances in biology. As the functional diversity of CRISPR-Cas and parallel systems is further explored, RNA manipulation is emerging as a powerful mode of CRISPR-based engineering. In this Perspective, we chart progress in the RNA-targeting CRISPR-Cas (RCas) field and illustrate how continuing evolution in scientific discovery translates into applications for RNA biology and insights into mysteries, obstacles, and alternative technologies that lie ahead.
Collapse
Affiliation(s)
- Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yilan J Shi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Neves D, Vos S, Blank LM, Ebert BE. Pseudomonas mRNA 2.0: Boosting Gene Expression Through Enhanced mRNA Stability and Translational Efficiency. Front Bioeng Biotechnol 2020; 7:458. [PMID: 32039175 PMCID: PMC6993053 DOI: 10.3389/fbioe.2019.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 11/14/2022] Open
Abstract
High gene expression of enzymes partaking in recombinant production pathways is a desirable trait among cell factories belonging to all different kingdoms of life. High enzyme abundance is generally aimed for by utilizing strong promoters, which ramp up gene transcription and mRNA levels. Increased protein abundance can alternatively be achieved by optimizing the expression on the post-transcriptional level. Here, we evaluated protein synthesis with a previously proposed optimized gene expression architecture, in which mRNA stability and translation initiation are modulated by genetic parts such as self-cleaving ribozymes and a bicistronic design, which have initially been described to support the standardization of gene expression. The optimized gene expression architecture was tested in Pseudomonas taiwanensis VLB120, a promising, novel microbial cell factory. The expression cassette was employed on a plasmid basis and after single genomic integration. We used three constitutive and two inducible promoters to drive the expression of two fluorescent reporter proteins and a short acetoin biosynthesis pathway. The performance was confronted with that of a traditional expression cassette harboring the same promoter and gene of interest but lacking the genetic parts for increased expression efficiency. The optimized expression cassette granted higher protein abundance independently of the expression basis or promoter used proving its value for applications requiring high protein abundance.
Collapse
Affiliation(s)
- Dário Neves
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Stefan Vos
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Birgitta E Ebert
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| |
Collapse
|
49
|
Hazelbaker DZ, Beccard A, Angelini G, Mazzucato P, Messana A, Lam D, Eggan K, Barrett LE. A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells. Sci Rep 2020; 10:635. [PMID: 31959800 PMCID: PMC6971260 DOI: 10.1038/s41598-020-57500-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas9-mediated gene interference (CRISPRi) and activation (CRISPRa) approaches hold promise for functional gene studies and genome-wide screens in human pluripotent stem cells (hPSCs). However, in contrast to CRISPR-Cas9 nuclease approaches, the efficiency of CRISPRi/a depends on continued expression of the dead Cas9 (dCas9) effector and guide RNA (gRNA), which can vary substantially depending on transgene design and delivery. Here, we design and generate new fluorescently labeled piggyBac (PB) vectors to deliver uniform and sustained expression of multiplexed gRNAs. In addition, we generate hPSC lines harboring AAVS1-integrated, inducible and fluorescent dCas9-KRAB and dCas9-VPR transgenes to allow for accurate quantification and tracking of cells that express both the dCas9 effectors and gRNAs. We then employ these systems to target the TCF4 gene in hPSCs and assess expression levels of the dCas9 effectors, individual gRNAs and targeted gene. We also assess the performance of our PB system for single gRNA delivery, confirming its utility for library format applications. Collectively, our results provide proof-of-principle application of a stable, multiplexed PB gRNA delivery system that can be widely exploited to further enable genome engineering studies in hPSCs. Paired with diverse CRISPR tools including our dual fluorescence CRISPRi/a cell lines, this system can facilitate functional dissection of individual genes and pathways as well as larger-scale screens for studies of development and disease.
Collapse
Affiliation(s)
- Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Gabriella Angelini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
50
|
Tosco A, Villella VR, Raia V, Kroemer G, Maiuri L. Cystic Fibrosis: New Insights into Therapeutic Approaches. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190702151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the identification of Cystic Fibrosis (CF) as a disease in 1938 until 2012, only
therapies to treat symptoms rather than etiological therapies have been used to treat the disease. Over
the last few years, new technologies have been developed, and gene editing strategies are now
moving toward a one-time cure. This review will summarize recent advances in etiological therapies
that target the basic defect in the CF Transmembrane Receptor (CFTR), the protein that is mutated in
CF. We will discuss how newly identified compounds can directly target mutated CFTR to improve
its function. Moreover, we will discuss how proteostasis regulators can modify the environment in
which the mutant CFTR protein is synthesized and decayed, thus restoring CFTR function. The
future of CF therapies lies in combinatory therapies that may be personalized for each CF patient.
Collapse
Affiliation(s)
- Antonella Tosco
- Department of Translational Medical Sciences, Pediatric Unit, Regional Cystic Fibrosis Center, Federico II University, Naples 80131, Italy
| | - Valeria R. Villella
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Raia
- Department of Translational Medical Sciences, Pediatric Unit, Regional Cystic Fibrosis Center, Federico II University, Naples 80131, Italy
| | - Guido Kroemer
- Equipe11 labellisee Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Luigi Maiuri
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|