1
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Tyczewska A, Twardowski T, Woźniak-Gientka E. Agricultural biotechnology for sustainable food security. Trends Biotechnol 2023; 41:331-341. [PMID: 36710131 PMCID: PMC9881846 DOI: 10.1016/j.tibtech.2022.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 01/30/2023]
Abstract
Of late, global food security has been under threat by the coronavirus disease 2019 (COVID-19) pandemic and the recent military conflict in Eastern Europe. This article presents the objectives of the Sustainable Development Goals and the European Green Deal related to achieving food security and sustainable development in European Union (EU) agriculture, taking the aforementioned threats into account. In addition, it discusses the future of plant agricultural biotechnology and artificial intelligence (AI) systems, considering their potential for reaching the goal of food security. Paradoxically, the present challenging situation may allow politicians and stakeholders of the EU to realize opportunities and use the potential of the biotechnology sector.
Collapse
Affiliation(s)
- Agata Tyczewska
- Laboratory of Animal Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Tomasz Twardowski
- Bioeconomy and Sustainable Development Team, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ewa Woźniak-Gientka
- Bioeconomy and Sustainable Development Team, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
3
|
Ewa WG, Agata T, Milica P, Anna B, Dennis E, Nick V, Godelieve G, Selim C, Naghmeh A, Tomasz T. Public perception of plant gene technologies worldwide in the light of food security. GM CROPS & FOOD 2022; 13:218-241. [PMID: 35996854 PMCID: PMC9415543 DOI: 10.1080/21645698.2022.2111946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
Achieving global food security is becoming increasingly challenging and many stakeholders around the world are searching for new ways to reach this demanding goal. Here we demonstrate examples of genetically modified and genome edited plants introduced to the market in different world regions. Transgenic crops are regulated based on the characteristics of the product in many countries including the United States and Canada, while the European Union, India, China and others regulate process-based i.e. on how the product was made. We also present the public perception of state-of-the-art plant gene technologies in different regions of the world in the past 20 years. The results of literature analysis show that the public in Europe and North America is more familiar with the notion of genome editing and genetically modified organisms than the public in other world regions.
Collapse
Affiliation(s)
| | - Tyczewska Agata
- Laboratory of Animal Model Organisms, Institute of Biorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Beniermann Anna
- Biology Education, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eriksson Dennis
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Biotechnology, INN University, 2318 Hamar, Norway
| | - Vangheluwe Nick
- Euroseeds, 1000 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), Ghent, Belgium
| | | | - Cetiner Selim
- The Faculty of Arts and Social Sciences, Sabanci University, Turkey
| | - Abiri Naghmeh
- The Faculty of Arts and Social Sciences, Sabanci University, Turkey
| | | |
Collapse
|
4
|
Zhu Y, Begho T. Towards responsible production, consumption and food security in China: A review of the role of novel alternatives to meat protein. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Sharma KK, Palakolanu SR, Bhattacharya J, Shankhapal AR, Bhatnagar-Mathur P. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Front Genet 2022; 13:999207. [PMID: 36276961 PMCID: PMC9582247 DOI: 10.3389/fgene.2022.999207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
Technologies and innovations are critical for addressing the future food system needs where genetic resources are an essential component of the change process. Advanced breeding tools like "genome editing" are vital for modernizing crop breeding to provide game-changing solutions to some of the "must needed" traits in agriculture. CRISPR/Cas-based tools have been rapidly repurposed for editing applications based on their improved efficiency, specificity and reduced off-target effects. Additionally, precise gene-editing tools such as base editing, prime editing, and multiplexing provide precision in stacking of multiple traits in an elite variety, and facilitating specific and targeted crop improvement. This has helped in advancing research and delivery of products in a short time span, thereby enhancing the rate of genetic gains. A special focus has been on food security in the drylands through crops including millets, teff, fonio, quinoa, Bambara groundnut, pigeonpea and cassava. While these crops contribute significantly to the agricultural economy and resilience of the dryland, improvement of several traits including increased stress tolerance, nutritional value, and yields are urgently required. Although CRISPR has potential to deliver disruptive innovations, prioritization of traits should consider breeding product profiles and market segments for designing and accelerating delivery of locally adapted and preferred crop varieties for the drylands. In this context, the scope of regulatory environment has been stated, implying the dire impacts of unreasonable scrutiny of genome-edited plants on the evolution and progress of much-needed technological advances.
Collapse
Affiliation(s)
- Kiran K. Sharma
- Sustainable Agriculture Programme, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R. Shankhapal
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- International Maize and Wheat Improvement Center (CIMMYT), México, United Kingdom
| |
Collapse
|
6
|
Climate Change and Seed System Interventions Impact on Food Security and Incomes in East Africa. SUSTAINABILITY 2022. [DOI: 10.3390/su14116519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Climate change is challenging agricultural productivity, especially in Africa. Adoption of improved or diverse seed varieties is a promising strategy to achieve increased yields, support food security and reduce poverty under climate change in East Africa. However, rigorous impact evaluations linking the contributions of improved seeds to the welfare of households have been limited. This paper evaluates the impact of diversified seed systems on farm household production, sales, income, consumption and seed storage in Kenya and Uganda. It applies four-cell analysis to explore the intra-specific diversity of crops within farming systems, using primary data obtained from a random sampling of 207 treatment households and 87 control households. Propensity score matching was used to investigate the relationship between adoption of improved seeds and changes in production, sales, income, consumption, seed storage and food security. Econometric results indicate that treatment households using improved seeds saw a significant positive impact on income from bean seed sales, sorghum and millet consumption, bean livestock feed and maize and millet seed stored. We conclude that increasing seed diversity helps farmers cope with climate change and increases productivity, food availability, incomes and food security. Partnerships among seed improvement stakeholders need to be enhanced to ensure a continued supply of appropriate seeds to farmers.
Collapse
|
7
|
Levi S. Living standards shape individual attitudes on genetically modified food around the world. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2021.104371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
De B, Goswami TK. Feeding the Future—Challenges and Limitations. Food Chem 2021. [DOI: 10.1002/9781119792130.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021; 22:11753. [PMID: 34769204 PMCID: PMC8583973 DOI: 10.3390/ijms222111753] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan 60000, Pakistan;
| | - Alaa T. Qusmani
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia;
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Muhammad Zubair Ghouri
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sabin Aslam
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Muhammad Salman Mubarik
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Ahmad Munir
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Qaiser Sultan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Sameer H. Qari
- Molecular Biology Central Laboratory (GMCL), Department of Biology/Genetics, Aljumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia
| |
Collapse
|
10
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms222111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
11
|
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
12
|
Miculan M, Nelissen H, Ben Hassen M, Marroni F, Inzé D, Pè ME, Dell’Acqua M. A forward genetics approach integrating genome-wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (Zea mays). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1056-1071. [PMID: 34087008 PMCID: PMC8519057 DOI: 10.1111/tpj.15364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/31/2021] [Indexed: 05/13/2023]
Abstract
The characterization of the genetic basis of maize (Zea mays) leaf development may support breeding efforts to obtain plants with higher vigor and productivity. In this study, a mapping panel of 197 biparental and multiparental maize recombinant inbred lines (RILs) was analyzed for multiple leaf traits at the seedling stage. RNA sequencing was used to estimate the transcription levels of 29 573 gene models in RILs and to derive 373 769 single nucleotide polymorphisms (SNPs), and a forward genetics approach combining these data was used to pinpoint candidate genes involved in leaf development. First, leaf traits were correlated with gene expression levels to identify transcript-trait correlations. Then, leaf traits were associated with SNPs in a genome-wide association (GWA) study. An expression quantitative trait locus mapping approach was followed to associate SNPs with gene expression levels, prioritizing candidate genes identified based on transcript-trait correlations and GWAs. Finally, a network analysis was conducted to cluster all transcripts in 38 co-expression modules. By integrating forward genetics approaches, we identified 25 candidate genes highly enriched for specific functional categories, providing evidence supporting the role of vacuolar proton pumps, cell wall effectors, and vesicular traffic controllers in leaf growth. These results tackle the complexity of leaf trait determination and may support precision breeding in maize.
Collapse
Affiliation(s)
- Mara Miculan
- Institute of Life SciencesScuola Superiore Sant’AnnaPisa56127Italy
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Manel Ben Hassen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Fabio Marroni
- IGA Technology ServicesUdine33100Italy
- Department of Agricultural, FoodAT, Environmental and Animal Sciences (DI4A)University of UdineUdine33100Italy
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Mario Enrico Pè
- Institute of Life SciencesScuola Superiore Sant’AnnaPisa56127Italy
| | | |
Collapse
|
13
|
Mau M, Liiving T, Fomenko L, Goertzen R, Paczesniak D, Böttner L, Sharbel TF. The spread of infectious asexuality through haploid pollen. THE NEW PHYTOLOGIST 2021; 230:804-820. [PMID: 33421128 DOI: 10.1111/nph.17174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/26/2020] [Indexed: 05/16/2023]
Abstract
The mechanisms of initiation and transmission of apomixis (asexual reproduction through seeds) in natural plant populations are important for understanding the evolution of reproductive variation. Here, we used the phylogenetic diversity of the genus Boechera (Brassicaceae), together with natural diversity in pollen types produced by apomictic lines, to test whether hybridization triggers the transition to asexuality, and whether a 'triploid bridge' is required for the formation of polyploid apomicts. We performed crosses between diploid sexual recipient and diploid apomictic donor lines and tested whether the mating system (interspecific hybridization vs intraspecific outcrossing) or pollen type (haploid vs diploid) influenced the transmission of apomixis from diploid apomictic donors into sexual recipients. We used genetic markers and flow cytometric analyses of embryo and endosperm in seeds to infer the reproductive mode. Within a single generation, initiation of both diploid and polyploid apomixis in sexual Boechera can occur. Diploid apomixis is transmitted through haploid pollen (infectious asexuality) and polyploids can form through multiple pathways. The three functional elements of apomixis occasionally segregate. Variation in pollen ploidy and the segregation of apomixis elements drive reproductive diversity of hybrids and outcrosses and can be utilized for apomixis initiation in crop breeding programs.
Collapse
Affiliation(s)
- Martin Mau
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
- Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N5C2, Canada
| | - Tiina Liiving
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
- Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N5C2, Canada
| | - Liza Fomenko
- Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N5C2, Canada
| | - Richard Goertzen
- Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N5C2, Canada
| | - Dorota Paczesniak
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
- Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N5C2, Canada
| | - Laura Böttner
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
| | - Timothy F Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
- Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N5C2, Canada
| |
Collapse
|
14
|
Jordan N, Gutknecht J, Bybee‐Finley KA, Hunter M, Krupnik TJ, Pittelkow CM, Prasad PVV, Snapp S. To meet grand challenges, agricultural scientists must engage in the politics of constructive collective action. CROP SCIENCE 2021; 61:24-31. [PMID: 33664524 PMCID: PMC7894515 DOI: 10.1002/csc2.20318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Agriculture now faces grand challenges, with crucial implications for the global future. These include the need to increase production of nutrient-dense food, to improve agriculture's effects on soil, water, wildlife, and climate, and to enhance equity and justice in food and agricultural systems. We argue that certain politics of constructive collective action-and integral involvement of agricultural scientists in these politics-are essential for meeting grand challenges and other complex problems facing agriculture in the 21st century. To spur reflection and deliberation about the role of politics in the work of agricultural scientists, we outline these politics of constructive collective action. These serve to organize forceful responses to grand challenges through coordinated and cooperative action taken by multiple sectors of society. In essence, these politics entail (1) building bonds of affinity within a heterogenous network, (2) developing a shared roadmap for collective action, and (3) taking sustained action together. These emerging politics differ markedly from more commonly discussed forms of political activity by scientists, e.g., policy advisory, policy advocacy, and protest. We present key premises for our thesis, and then describe and discuss a politics of constructive collective action, the necessary roles of agricultural scientists, and an agenda for exploring and expanding their engagement in these politics.
Collapse
Affiliation(s)
- N. Jordan
- University of Minnesota1991 Upper Buford CircleSt. PaulMN55108USA
| | - J. Gutknecht
- University of Minnesota1529 Gortner AvenueSt. PaulMN55108USA
| | | | - M. Hunter
- American Farmland Trust1991 Upper Buford CircleSt. PaulMN55108USA
| | - T. J. Krupnik
- International Maize and Wheat Improvement Center (CIMMYT)House 10/B. Road 53. Gulshan‐2Dhaka1213Bangladesh
| | - C. M. Pittelkow
- University of California, DavisOne Shields AvenueDavisCA95616USA
| | - P. V. V. Prasad
- Kansas State University108 Waters Hall, 1603 Old Claflin PlaceManhattanKS66506USA
| | - S. Snapp
- Michigan State UniversityPlant and Soil Sciences Building, 1066 Bogue St., Room 490East LansingMI48824USA
| |
Collapse
|
15
|
Chávez‐Dulanto PN, Thiry AAA, Glorio‐Paulet P, Vögler O, Carvalho FP. Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur 2020. [DOI: 10.1002/fes3.259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Perla N. Chávez‐Dulanto
- Department of Plant Sciences Faculty of Agronomy Universidad Nacional Agraria La Molina Lima Peru
| | - Arnauld A. A. Thiry
- The Lancaster Environment Centre Lancaster University Bailrigg Lancaster United Kingdom
| | - Patricia Glorio‐Paulet
- Department of Food Engineering Faculty of Food Industry Universidad Nacional Agraria La Molina Lima Peru
| | - Oliver Vögler
- Group of Clinical and Translational Research Research Institute of Health Sciences (IUNICS‐IdISBa) Department of Biology University of the Balearic Islands Palma de Mallorca Spain
| | - Fernando P. Carvalho
- Laboratório de Protecção e Segurança Radiológica Instituto Superior Técnico—Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
16
|
A Shift Towards Biotechnology: Social Opinion in the EU. Trends Biotechnol 2020; 39:214-218. [PMID: 32896439 DOI: 10.1016/j.tibtech.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
Consumers' attitude to genetic engineering provides information to stakeholders who are interested in its adoption, which is essential considering the emerging growth of new breeding techniques. This short article analyses, compares, and describes the knowledge, doubts, and concerns of Europeans about biotechnology and genetic engineering over the past 20 years.
Collapse
|
17
|
CRISPR-Cas9 System for Plant Genome Editing: Current Approaches and Emerging Developments. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071033] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted genome editing using CRISPR-Cas9 has been widely adopted as a genetic engineering tool in various biological systems. This editing technology has been in the limelight due to its simplicity and versatility compared to other previously known genome editing platforms. Several modifications of this editing system have been established for adoption in a variety of plants, as well as for its improved efficiency and portability, bringing new opportunities for the development of transgene-free improved varieties of economically important crops. This review presents an overview of CRISPR-Cas9 and its application in plant genome editing. A catalog of the current and emerging approaches for the implementation of the system in plants is also presented with details on the existing gaps and limitations. Strategies for the establishment of the CRISPR-Cas9 molecular construct such as the selection of sgRNAs, PAM compatibility, choice of promoters, vector architecture, and multiplexing approaches are emphasized. Progress in the delivery and transgene detection methods, together with optimization approaches for improved on-target efficiency are also detailed in this review. The information laid out here will provide options useful for the effective and efficient exploitation of the system for plant genome editing and will serve as a baseline for further developments of the system. Future combinations and fine-tuning of the known parameters or factors that contribute to the editing efficiency, fidelity, and portability of CRISPR-Cas9 will indeed open avenues for new technological advancements of the system for targeted gene editing in plants.
Collapse
|
18
|
Abstract
The food industry faces a 2050 deadline for the advancement and expansion of the food supply chain to support the world's growing population. Improvements are needed across crops, livestock, and microbes to achieve this goal. Since 2005, researchers have been attempting to make the necessary strides to reach this milestone, but attempts have fallen short. With the introduction of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, the food production field is now able to achieve some of its most exciting advancements since the Green Revolution. This review introduces the concept of applying CRISPR-Cas technology as a genome-editing tool for use in the food supply chain, focusing on its implementation to date in crop, livestock, and microbe production, advancement of products to market, and regulatory and societal hurdles that need to be overcome.
Collapse
Affiliation(s)
- Katelyn Brandt
- Genomic Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA; .,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Rodolphe Barrangou
- Genomic Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA; .,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
19
|
Socioeconomic Impact of Genome Editing on Agricultural Value Chains: The Case of Fungal-Resistant and Coeliac-Safe Wheat. SUSTAINABILITY 2019. [DOI: 10.3390/su11226421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome editing (GE) is gaining increasing importance in plant breeding, since it provides opportunities to develop improved crops with high precision and speed. However, little is known about the socioeconomic impact of genome editing on agricultural value chains. This qualitative study analyzes how genome-edited crops could affect agriculture value chains. Based on the hypothetical case of producing and processing fungal-resistant and coeliac-safe wheat in Germany, we conducted semi-structured, in-depth interviews with associations and companies operating in the value chains of wheat. A value chain analysis and qualitative content analysis were combined to assess the costs and benefits of the crops studied along the value chains of wheat. The results show that the use of fungal-resistant and coeliac-safe wheat can provide benefits at each step of the value chains. Fungal-resistant wheat benefits actors by reducing the problems and costs resulting from fungal-diseases and mycotoxins. Coeliac-safe wheat benefits actors by producing high value-added products, which can be safely consumed by patients suffering from coeliac disease. However, the results also show that low acceptance of GE by society and food retailers poses a significant barrier for the use of genome-edited crops in agricultural value chains.
Collapse
|
20
|
Hou G, Yun Y, Wang M, Wang Y, Chen H, Zhang L, Wang F, Xia Q, Liu Y, Lu Z, Bao SJ. A coaxial nanocable textured by a cerium oxide shell and carbon core for sensing nitric oxide. Mikrochim Acta 2019; 186:789. [PMID: 31732798 DOI: 10.1007/s00604-019-3839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
Abstract
A corn-like CeO2/C coaxial cable textured by a cerium oxide shell and a carbon core was designed to sense NO. The carbon core possesses high electrical conductivity, and the CeO2 surface delivers excellent electrocatalytic activity. The sensor, typically operated at 0.8 V (vs. Ag/AgCl), exhibits a detection limit of 1.7 nM, which is 4-times lower than that of CeO2 nanotubes based one (at S/N = 3). It also displays wide linear response (up to 83 μM), a sensitivity of 0.81 μA μM-1 cm-2, and fast response (2 s). These values are highly competitive to that of a CeO2 tube (0.92 μA μM-1 cm-2 and 2 s). The sensor was used to quantify NO that is released by Aspergillus flavus. Graphical abstractSchematic representation of corn-like CeO2/C which can more sensitively and effectively detect NO released from A. flavus than when using CeO2 nanotubes, benefitting from its unique coaxial cable structure.
Collapse
Affiliation(s)
- Guorong Hou
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yanjing Yun
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Minqiang Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ying Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Chen
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Longcheng Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, People's Republic of China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, No.1 Nongda South Road, Xibeiwang, Haidian District, 100193, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Shu-Juan Bao
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
21
|
New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv 2019; 37:107371. [PMID: 30890361 DOI: 10.1016/j.biotechadv.2019.03.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
Increasing agricultural productivity is critical to feed the ever-growing human population. Being linked intimately to plant health, growth and productivity, harnessing the plant microbiome is considered a potentially viable approach for the next green revolution, in an environmentally sustainable way. In recent years, our understanding of drivers, roles, mechanisms, along with knowledge to manipulate the plant microbiome, have significantly advanced. Yet, translating this knowledge to expand farm productivity and sustainability requires the development of solutions for a number of technological and logistic challenges. In this article, we propose new and emerging strategies to improve the survival and activity of microbial inoculants, including using selected indigenous microbes and optimising microbial delivery methods, as well as modern gene editing tools to engineer microbial inoculants. In addition, we identify multiple biochemical and molecular mechanisms and/approaches which can be exploited for microbiome engineering in situ to optimise plant-microbiome interactions for improved farm yields. These novel biotechnological approaches can provide effective tools to attract and maintain activities of crop beneficial microbiota that increase crop performance in terms of nutrient acquisition, and resistance to biotic and abiotic stresses, resulting in an increased agricultural productivity and sustainability.
Collapse
|
22
|
Hamburger DJS. Normative Criteria and Their Inclusion in a Regulatory Framework for New Plant Varieties Derived From Genome Editing. Front Bioeng Biotechnol 2018; 6:176. [PMID: 30619841 PMCID: PMC6305715 DOI: 10.3389/fbioe.2018.00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Any legal regulation has to take into account fundamental interests and concerns, whether of private or public nature. This applies in particular to the politically and socially sensitive question of regulating plant biotechnology. With the advent of new breeding techniques, such as genome editing, new challenges are arising for legislators around the world. However, in coping with them not only the technical particularities of the new breeding techniques must be taken into account but also the diverse and sometimes conflicting interests of the various stakeholders. In order to be able to draft a suitable regulatory regime for these new techniques, the different interests and concerns at play are identified. Subsequently, a determination is made on how these interests relate to each other, before regulatory concepts to reconcile the conflicting demands are presented. The examined normative criteria, which can have an impact on regulatory decisions regarding genome edited plants and products derived from them, include: industry interests, farmer interests, public opinion, consumer rights and interests, human health and food safety, food security, environmental protection, consistency, and coherence of the regulatory framework and ethical or religious convictions. Since those interests differ from country to country depending on the respective political, economic, and social circumstances, the respective legislator has the task of identifying these normative criteria and must find a suitable balance between them. To this end, a concept is developed on how the different interests can be related to each other and how to deal with conflicting and irreconcilable demands. Additionally, a legislator may have recourse to a number of further analyzed regulatory measures. An approval or notification procedure can be used for a risk assessment or a socio-economic evaluation. Coexistence measures and labeling provisions are able to reconcile interests that are at odds with each other and the precautionary principle can justify certain safeguard measures. As a result, the individual country-specific regulatory outcomes regarding genome edited plants are likely to be as manifold as the interests and regulatory measures at hand.
Collapse
Affiliation(s)
- David J. S. Hamburger
- Faculty of Law, Chair of Constitutional and Administrative Law, Public International Law, European and International Economic Law, University of Passau, Passau, Germany
| |
Collapse
|
23
|
Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, Truernit E, Hochmuth A, Zurkirchen I, Zeeman SC, Gruissem W, Vanderschuren H. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. SCIENCE ADVANCES 2018; 4:eaat6086. [PMID: 30191180 PMCID: PMC6124905 DOI: 10.1126/sciadv.aat6086] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 05/12/2023]
Abstract
Crop diversification required to meet demands for food security and industrial use is often challenged by breeding time and amenability of varieties to genome modification. Cassava is one such crop. Grown for its large starch-rich storage roots, it serves as a staple food and a commodity in the multibillion-dollar starch industry. Starch is composed of the glucose polymers amylopectin and amylose, with the latter strongly influencing the physicochemical properties of starch during cooking and processing. We demonstrate that CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated targeted mutagenesis of two genes involved in amylose biosynthesis, PROTEIN TARGETING TO STARCH (PTST1) or GRANULE BOUND STARCH SYNTHASE (GBSS), can reduce or eliminate amylose content in root starch. Integration of the Arabidopsis FLOWERING LOCUS T gene in the genome-editing cassette allowed us to accelerate flowering-an event seldom seen under glasshouse conditions. Germinated seeds yielded S1, a transgene-free progeny that inherited edited genes. This attractive new plant breeding technique for modified cassava could be extended to other crops to provide a suite of novel varieties with useful traits for food and industrial applications.
Collapse
Affiliation(s)
- Simon E. Bull
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
- Corresponding author. (S.E.B.); (H.V.)
| | - David Seung
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Christelle Chanez
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Devang Mehta
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Joel-Elias Kuon
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Elisabeth Truernit
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anton Hochmuth
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Irene Zurkirchen
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Samuel C. Zeeman
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Corresponding author. (S.E.B.); (H.V.)
| |
Collapse
|
24
|
Hameed A, Zaidi SSEA, Shakir S, Mansoor S. Applications of New Breeding Technologies for Potato Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:925. [PMID: 30008733 PMCID: PMC6034203 DOI: 10.3389/fpls.2018.00925] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/11/2018] [Indexed: 05/17/2023]
Abstract
The first decade of genetic engineering primarily focused on quantitative crop improvement. With the advances in technology, the focus of agricultural biotechnology has shifted toward both quantitative and qualitative crop improvement, to deal with the challenges of food security and nutrition. Potato (Solanum tuberosum L.) is a solanaceous food crop having potential to feed the populating world. It can provide more carbohydrates, proteins, minerals, and vitamins per unit area of land as compared to other potential food crops, and is the major staple food in many developing countries. These aspects have driven the scientific attention to engineer potato for nutrition improvement, keeping the yield unaffected. Several studies have shown the improved nutritional value of potato tubers, for example by enhancing Amaranth Albumin-1 seed protein content, vitamin C content, β-carotene level, triacylglycerol, tuber methionine content, and amylose content, etc. Removal of anti-nutritional compounds like steroidal glycoalkaloids, acrylamide and food toxins is another research priority for scientists and breeders to improve potato tuber quality. Trait improvement using genetic engineering mostly involved the generation of transgenic products. The commercialization of these engineered products has been a challenge due to consumer preference and regulatory/ethical restrictions. In this context, new breeding technolgies like TALEN (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated 9) have been employed to generate transgene-free products in a more precise, prompt and effective way. Moreover, the availability of potato genome sequence and efficient potato transformation systems have remarkably facilitated potato genetic engineering. Here we summarize the potato trait improvement and potential application of new breeding technologies (NBTs) to genetically improve the overall agronomic profile of potato.
Collapse
Affiliation(s)
- Amir Hameed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Sara Shakir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
25
|
Garcia Ruiz MT, Knapp AN, Garcia-Ruiz H. Profile of genetically modified plants authorized in Mexico. GM CROPS & FOOD 2018; 9:152-168. [PMID: 30388927 PMCID: PMC6277063 DOI: 10.1080/21645698.2018.1507601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 11/03/2022]
Abstract
Mexico is a center of origin for several economically important plants including maize, cotton, and cocoa. Maize represents more than a food crop, has been declared a biological, cultural, agricultural and economic patrimony, and is linked to the national identity of Mexicans. In this review, we describe the historic and current use of genetically modified plants in Mexico and factors that contributed to the development of the biosafety regulation. We developed a database containing all permit applications received by the government to release genetically modified plants. A temporal and geographical analysis identified the plant species that have been authorized for experimental purposes, pilot programs, or commercial production, the geographic areas where they have been released, and the traits that have been introduced. Results show that Mexico has faced a dual challenge: accepting the benefits of genetically modified plants and their products, while protecting native plant biodiversity.
Collapse
Affiliation(s)
| | - Aaron N. Knapp
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, NE, USA
| |
Collapse
|