1
|
Peng JM, Liu H, Ying ZM. Rapid one-pot isothermal amplification reassembled of fluorescent RNA aptamer for SARS-CoV-2 detection. Talanta 2024; 276:126264. [PMID: 38761661 DOI: 10.1016/j.talanta.2024.126264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The outbreak of SARS-CoV-2 poses a serious threat to human life and health. A rapid nucleic acid tests can effectively curb the spread of the disease. With the advantages of fluorescent RNA aptamers, low background and high sensitivity. A variety of fluorescent RNA aptamer sensors have been developed for the detection of nucleic acid. Here, we report a hypersensitive detection platform in which SARS-CoV-2 initiates RTF-EXPAR to amplify trigger fragments. This activation leads to the reassembled of the SRB2 fluorescent RNA aptamer, restoring its secondary structure for SR-DN binding and turn-on fluorescence. The platform completes the assay in 30 min and all reactions occur in one tube. The detection limit is as low as 116 aM. Significantly, the platform's quantitative analyses were almost identical to qPCR results in simulated tests of positive samples. In conclusion, the platform is sensitive, accurate and provides a new protocol for point-of-care testing of viruses.
Collapse
Affiliation(s)
- Jia-Min Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Hao Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
2
|
Liu Q, Zhang Q, Yao Z, Yi G, Kang Y, Qiu Y, Yang Y, Yuan H, Fu R, Sheng W, Cheng L, Wang W, Wang H, Peng C. Pushing Forward the DNA Walkers in Connection with Tumor-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:6231-6252. [PMID: 38915916 PMCID: PMC11194468 DOI: 10.2147/ijn.s464895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gangqiang Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yeonseok Kang
- College of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lidong Cheng
- Hunan Yirentang Chinese Herbal Pieces Co., Ltd, Changde, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Institute of Innovation and Applied Research in Chinese Medicine Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Chen J, Zhang J, Xie Q, Chu Z, Lu Y, Zhang F, Wang Q. Isothermal strand displacement polymerase reaction (ISDPR)-assisted microchip electrophoresis for highly sensitive detection of cancer associated microRNAs. Anal Chim Acta 2024; 1300:342469. [PMID: 38521570 DOI: 10.1016/j.aca.2024.342469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
More and more studies have found that microRNAs (miRNAs) are markers of cancer, and detection of miRNAs is beneficial for early diagnosis and prognosis of cancer. In this paper, the isothermal strand displacement polymerase reaction (ISDPR), which is an enzyme-assisted nucleic acid amplification method, was studied to combine with microchip electrophoresis (MCE) for a simultaneously detection of two cancer related miRNAs named microRNA-21 (miR-21) and microRNA-221 (miR-221). In the ISDPR amplification, two different DNA hairpins (HPs) were specifically designed, so that miR-21 and miR-221 could respectively bind to HPs and started ISDPR amplification to generate two different products which were ultimately detected by MCE. The optimal conditions of ISDPR were carefully investigated, and the limits of detection (LOD) of miR-21 and miR-221 were as low as 0.35 fM and 0.25 fM (S/N = 3) respectively under these conditions. The human lung tumor cells and serum samples were analyzed by this ISDPR-MCE method and satisfactory results were obtained, which means that this method is of high sensitivity, high efficiency, low reagent consumption and simple operation in miRNAs detection.
Collapse
Affiliation(s)
- Jingyi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jingzi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qihui Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
4
|
Bagheri N, Chamorro A, Idili A, Porchetta A. PAM-Engineered Toehold Switches as Input-Responsive Activators of CRISPR-Cas12a for Sensing Applications. Angew Chem Int Ed Engl 2024; 63:e202319677. [PMID: 38284432 DOI: 10.1002/anie.202319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The RNA-programmed CRISPR effector protein Cas12a has emerged as a powerful tool for gene editing and molecular diagnostics. However, additional bio-engineering strategies are required to achieve control over Cas12a activity. Here, we show that Toehold Switch DNA hairpins, presenting a rationally designed locked protospacer adjacent motif (PAM) in the loop, can be used to control Cas12a in response to molecular inputs. Reconfiguring the Toehold Switch DNA from a hairpin to a duplex conformation through a strand displacement reaction provides an effective means to modulate the accessibility of the PAM, thereby controlling the binding and cleavage activities of Cas12a. Through this approach, we showcase the potential to trigger downstream Cas12a activity by leveraging proximity-based strand displacement reactions in response to target binding. By utilizing the trans-cleavage activity of Cas12a as a signal transduction method, we demonstrate the versatility of our approach for sensing applications. Our system enables rapid, one-pot detection of IgG antibodies and small molecules with high sensitivity and specificity even within complex matrices. Besides the bioanalytical applications, the switchable PAM-engineered Toehold Switches serve as programmable tools capable of regulating Cas12a-based targeting and DNA processing in response to molecular inputs and hold promise for a wide array of biotechnological applications.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alejandro Chamorro
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Andrea Idili
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Sciences and Chemical Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
5
|
D'Agata R, Bellassai N, Spoto G. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review. Talanta 2024; 266:125033. [PMID: 37562226 DOI: 10.1016/j.talanta.2023.125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface Plasmon Resonance based-sensors are promising tools for precision diagnostics as they can provide tests useful for early and, whenever possible, non-invasive disease detection and monitoring. The design of novel, robust and effective interfaces enabling the sensing of a variety of molecular interactions in a highly selective and sensitive manner is a necessary step to obtain both accurate and reliable detection by SPR. This review covers the recent research efforts in this area, specifically emphasizing well-designed interfaces and applications in real-life samples. In particular, after a short introduction which identifies some of the critical challenges, the emerging strategies for the integration of the linker, the metal substrate and the recognition element on the sensing interface will be explored and discussed in three sections, as well as the opportunities for building SPR biosensors, easy to use, and with excellent sensitivities. Finally, a summary of some of the more promising and latest diagnostic applications will be provided, presenting a new window into the near-future perspectives.
Collapse
Affiliation(s)
- Roberta D'Agata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy.
| | - Noemi Bellassai
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| |
Collapse
|
6
|
Sun W, Zhang N, Ren X, Wu D, Jia Y, Wei Q, Ju H. Nano-matrixes propped self-enhanced electrochemiluminescence biosensor for microRNA detection. Biosens Bioelectron 2023; 242:115750. [PMID: 37844387 DOI: 10.1016/j.bios.2023.115750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
MicroRNAs (miRNA) are the potential biomarker for breast cancer, a biosensor for detecting miRNA-21 was successfully prepared by covalently linking carbohydrazide (CON4H6) and tris (4,4 '- dicarboxylic acid-2,2' - bipyridyl) ruthenium dichloride (Ru (dcbpy)32+) as a self-enhanced emitter (Ru-CON4H6). The biosensor was prepared by coating the electrode with mesoporous silica encapsulated Ru-CON4H6 as luminophores (RMSNs) to covalently link a couple of DNA strands (Q1-H2). The RMSNs coated electrode exhibited strong ECL emission due to the intramolecular electron transfer between the electrochemically oxidized Ru (dcbpy)32+ and co-reactant CON4H6. In the presence of target miRNA-21 and an assistant hairpin H1, H2 could be released from the surface through a strand displacement reaction (SDR), and the reserved Q1 could form G-quadruplex upon the addition of K+. The formed G-quadruplex then interacted with Q2-Fc in the presence of Mg2+ to form a DNA complex on the biosensor surface, which quenched the nano-matrixes propped self-enhanced ECL emission through the electron exchange between Fc and electrode or oxidized ECL intermediates. Under optimal conditions, the ECL decrease showed a correlation with target concentration, leading to a biosensing method for sensitive detection of miRNA-21. The proposed ECL method demonstrated a detectable concentration range from 0.1 fM to 1 nM along with a detection limit of 0.03 fM, good accuracy, and acceptable reproducibility, showing that the self-enhanced ECL biosensing strategy supported by nano-matrix provided a new way for the ultrasensitive detection of miRNA, and promoted the development of breast cancer diagnosis.
Collapse
Affiliation(s)
- Weijia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wang S, Jiang W, Jin X, Qi Q, Liang Q. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering. Crit Rev Biotechnol 2023; 43:1211-1225. [PMID: 36130803 DOI: 10.1080/07388551.2022.2103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
To date, many metabolic engineering tools and strategies have been developed, including tools for cofactor engineering, which is a common strategy for bioproduct synthesis. Cofactor engineering is used for the regulation of pyridine nucleotides, including NADH/NAD+ and NADPH/NADP+, and adenosine triphosphate/adenosine diphosphate (ATP/ADP), which is crucial for maintaining redox and energy balance. However, the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP cannot be monitored in real time using traditional methods. Recently, many biosensors for detecting, monitoring, and regulating the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP have been developed. Although cofactor biosensors have been mainly developed for use in mammalian cells, the potential application of cofactor biosensors in metabolic engineering in bacterial and yeast cells has received recent attention. Coupling cofactor biosensors with genetic circuits is a promising strategy in metabolic engineering for optimizing the production of biochemicals. In this review, we focus on the development of biosensors for NADH/NAD+, NADPH/NADP+, and ATP/ADP and the potential application of these biosensors in metabolic engineering. We also provide critical perspectives, identify current research challenges, and provide guidance for future research in this promising field.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Nixon SR, Phukan IK, Armijo BJ, Ebrahimi SB, Samanta D. Proximity-Driven DNA Nanosensors. ECS SENSORS PLUS 2023; 2:030601. [PMID: 37424706 PMCID: PMC10323711 DOI: 10.1149/2754-2726/ace068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
In proximity-driven sensing, interactions between a probe and an analyte produce a detectable signal by causing a change in distance of two probe components or signaling moieties. By interfacing such systems with DNA-based nanostructures, platforms that are highly sensitive, specific, and programmable can be designed. In this Perspective, we delineate the advantages of using DNA building blocks in proximity-driven nanosensors and provide an overview of recent progress in the field, from sensors that rapidly detect pesticides in food to probes that identify rare cancer cells in blood. We also discuss current challenges and identify key areas that need further development.
Collapse
Affiliation(s)
- Sara R. Nixon
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Imon Kanta Phukan
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Brian J. Armijo
- Department of Chemistry, Southwestern University, Georgetown, TX 78626, United States of America
| | - Sasha B. Ebrahimi
- Drug Product Development—Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States of America
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
9
|
Hu W, Jing H, Fu W, Wang Z, Zhou J, Zhang N. Conversion to Trimolecular G-Quadruplex by Spontaneous Hoogsteen Pairing-Based Strand Displacement Reaction between Bimolecular G-Quadruplex and Double G-Rich Probes. J Am Chem Soc 2023; 145:18578-18590. [PMID: 37553999 DOI: 10.1021/jacs.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bimolecular or tetramolecular G-quadruplexes (GQs) are predominantly self-assembled by the same sequence-identical G-rich oligonucleotides and usually remain inert to the strand displacement reaction (SDR) with other short G-rich invading fragments of DNA or RNA. Appealingly, in this study, we demonstrate that a parallel homomeric bimolecular GQ target of Tub10 d(CAGGGAGGGT) as the starting reactant, although completely folded in K+ solution and sufficiently stable (melting temperature of 57.7 °C), can still spontaneously accept strand invasion by a pair of short G-rich invading probes of P1 d(TGGGA) near room temperature. The final SDR product is a novel parallel heteromeric trimolecular GQ (tri-GQ) of Tub10/2P1 reassembled between one Tub10 strand and two P1 strands. Here we present, to the best of our knowledge, the first NMR solution structure of such a discrete heteromeric tri-GQ and unveil a unique mode of two probes vs one target in mutual recognition among G-rich canonical DNA oligomers. As a model system, the short invading probe P1 can spontaneously trap G-rich target Tub10 from a Watson-Crick duplex completely hybridized between Tub10 and its fully complementary strand d(ACCCTCCCTG). The Tub10 sequence of d(CAGGGAGGGT) is a fragment from the G-rich promoter region of the human β2-tubulin gene. Our findings provide new insights into the Hoogsteen pairing-based SDR between a GQ target and double invading probes of short G-rich DNA fragments and are expected to grant access to increasingly complex architectures in GQ-based DNA nanotechnology.
Collapse
Affiliation(s)
- Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zengrong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
10
|
Makela M, Lin Z, Lin PT. Rapid Detection of SARS-CoV-2 Genetic Targets Using Nanoporous Waveguide Based Competitive Displacement Assay. GIANT (OXFORD, ENGLAND) 2023:100173. [PMID: 37360824 PMCID: PMC10279466 DOI: 10.1016/j.giant.2023.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Rapid detection of unlabeled SARS-CoV-2 genetic target was demonstrated using a competitive displacement hybridization assay made by a nanostructured anodized alumina oxide (AAO) membrane. The assay applied the toehold-mediated strand displacement reaction. The nanoporous surface of the membrane was functionalized with a complementary pair consisting of Cy3-labeled probe and quencher-labeled nucleic acids through a chemical immobilization process. In the presence of the unlabeled SARS-CoV-2 target, the quencher-tagged strand of the immobilized probe-quencher duplex was separated from the Cy3-modifed strand. A stable probe-target duplex formed and regained a strong fluorescence signal, thus enabling real-time and label-free SARS-CoV-2 detection. Assay designs with different numbers of base pair (bp) matches were synthesized to compare their affinities. Because of the large surface of a free-standing nanoporous membrane, two orders enhancement of the fluorescence was observed, where the detection limit of the unlabeled concentration can be improved to 1 nM. The assay was miniaturized by integrating a nanoporous AAO layer onto an optical waveguide device. The detection mechanism and the sensitivity improvement of the AAO-waveguide device were illustrated from the finite difference method (FDM) simulation and the experimental results. Light-analyte interaction was further improved due to the presence of the AAO layer, which created an intermediate refractive index and enhanced the waveguide's evanescent field. Our competitive hybridization sensor is an accurate and label-free testing platform applicable to the deployment of compact and sensitive virus detection strategies.
Collapse
Affiliation(s)
- Megan Makela
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843
| | - Zhihai Lin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843
| | - Pao Tai Lin
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
11
|
Schaffter SW, Wintenberg ME, Murphy TM, Strychalski EA. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits. ACS Synth Biol 2023; 12:1546-1561. [PMID: 37134273 DOI: 10.1021/acssynbio.3c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cotranscriptionally encoded RNA strand displacement (ctRSD) circuits are an emerging tool for programmable molecular computation, with potential applications spanning in vitro diagnostics to continuous computation inside living cells. In ctRSD circuits, RNA strand displacement components are continuously produced together via transcription. These RNA components can be rationally programmed through base pairing interactions to execute logic and signaling cascades. However, the small number of ctRSD components characterized to date limits circuit size and capabilities. Here, we characterize over 200 ctRSD gate sequences, exploring different input, output, and toehold sequences and changes to other design parameters, including domain lengths, ribozyme sequences, and the order in which gate strands are transcribed. This characterization provides a library of sequence domains for engineering ctRSD components, i.e., a toolkit, enabling circuits with up to 4-fold more inputs than previously possible. We also identify specific failure modes and systematically develop design approaches that reduce the likelihood of failure across different gate sequences. Lastly, we show the ctRSD gate design is robust to changes in transcriptional encoding, opening a broad design space for applications in more complex environments. Together, these results deliver an expanded toolkit and design approaches for building ctRSD circuits that will dramatically extend capabilities and potential applications.
Collapse
Affiliation(s)
- Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Molly E Wintenberg
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Terence M Murphy
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
12
|
Hu M, Chu Z, Wang H, Zhao W, Wu T. Transformation of remote toehold-mediated strand displacement for expanding the regulatory toolbox. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Geng X, Chen J, Chu Z, Zhang J, Zhang F, Wang Q. Highly sensitive detection of MUC1 by microchip electrophoresis combining with target recycling amplification and strand displacement amplification. J Pharm Biomed Anal 2022; 219:114967. [PMID: 35914507 DOI: 10.1016/j.jpba.2022.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Mucin 1 (MUC1) is usually overexpressed in a variety of malignant tumors, and quantitative analysis of MUC1 plays an important role in the early diagnosis of cancer. In this work, a highly sensitive MUC1 assay was developed by integrating microchip electrophoresis (MCE) with target recycling amplification (TRA) and strand displacement amplification (SDA). Specifically, the presence of MUC1 can trigger the exposure of the designed hairpin probe (HP) to initiate SDA and an amplified amount of ssDNA is produced finally. The amount of these ssDNA can be detected by MCE, then the concentration of MUC1 can be obtained through the correlation between MUC1 concentration and ssDNA concentration. The experimental results show that the MCE signal had a good linear relationship with MUC1 concentration in the range of 1.0 pg/mL - 1.0 × 103 pg/mL with a low limit of detection of 0.23 pg/mL under the optimal conditions (S/N = 3). Additionally, the assay had been successfully applied to detect MUC1 in biological samples with satisfactory results, providing an alternative assay for the detection of other tumor markers owing to the high sensitivity, high selectivity, simple operation and low sample consumption.
Collapse
Affiliation(s)
- Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jingyi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jingzi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
14
|
Teng X, Dai Y, Li J. Module Assembly Strategy for Single‐Cell Nucleic Acid Imaging at the Sub‐Molecule Level. Chemistry 2022; 28:e202104628. [DOI: 10.1002/chem.202104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Xucong Teng
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| | - Yicong Dai
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| | - Jinghong Li
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| |
Collapse
|
15
|
Weng Z, Yu H, Luo W, Guo Y, Liu Q, Zhang L, Zhang Z, Wang T, Dai L, Zhou X, Han X, Wang L, Li J, Yang Y, Xie G. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement. ACS NANO 2022; 16:3135-3144. [PMID: 35113525 DOI: 10.1021/acsnano.1c10797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA strand displacement plays an essential role in the field of dynamic DNA nanotechnology. However, flexible regulation of strand displacement remains a significant challenge. Most previous regulatory tools focused on controllable activation of toehold and thus limited the design flexibility. Here, we introduce a regulatory tool termed cooperative branch migration (CBM), through which DNA strand displacement can be controlled by regulating the complementarity of branch migration domains. CBM shows perfect compatibility with the majority of existing regulatory tools, and when combined with forked toehold, it permits continuous fine-tuning of the strand displacement rate spanning 5 orders of magnitude. CBM manifests multifunctional regulation ability, including rate fine-tuning, continuous dynamic regulation, reaction resetting, and selective activation. To exemplify the powerful function, we also constructed a nested if-function signal processing system on the basis of cascading CBM reactions. We believe that the proposed regulatory strategy would effectively enrich the DNA strand displacement toolbox and ultimately promote the construction of DNA machines of higher complexity in nucleic acid research and biomedical applications.
Collapse
Affiliation(s)
- Zhi Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, PR China
| | - Qian Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ting Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ling Dai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
16
|
Jiang N, Li P, Sun S, Wei W. A ratiometric fluorescence sensor for 5-hydroxymethylfurfural detection based on strand displacement reaction. Talanta 2022; 238:123029. [PMID: 34857348 DOI: 10.1016/j.talanta.2021.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/15/2022]
Abstract
Since 5-hydroxymethylfurfural (HMF) becomes a neo-forming contaminant with latent harm to human health, development of new method for highly sensitive detection of HMF is extremely desirable. Herein, a novel ratiometric fluorescence sensor based on strand displacement reaction and magnetic separation was designed for sensitive and selective detection of HMF with the help of MnO2 nanosheets. The aldehyde-functionalized DNA (S0-CHO) and HMF competed for binding to amino-functionalized magnetic beads (NH2-MBs). Then, S0-CHO was collected from supernatant by magnetic separation. In the presence of HMF, the obtained S0-CHO induced the formation of T-shaped DNA by strand displacement reaction (SDR), lighting the fluorescence of FAM. In the absence of HMF, no S0-CHO was present to ignite T-shaped DNA. In this situation, fluorescence of Cy5 was turned on. Thus, a ratiometric fluorescence sensor for high-sensitive detection of HMF was developed. The sensor has a wide linear range from 5 nM to 5 μM. It also exhibited high selectivity against other potential interfering substances. It has been successfully applied to analyze HMF in food samples. The method has potential to be expanded to detect other molecules containing aldehyde groups and further be applied in food safety, environment and other fields.
Collapse
Affiliation(s)
- Nan Jiang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
17
|
Muraru S, Muraru S, Nitu FR, Ionita M. Recent Efforts and Milestones for Simulating Nucleic Acid FRET Experiments through Computational Methods. J Chem Inf Model 2022; 62:232-239. [PMID: 35014791 DOI: 10.1021/acs.jcim.1c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computational methods can greatly aid nucleic acid fluorescence experiments by either offering fully detailed atomic insights into the conformations and interactions present in the studied system or by providing accurate simulations of the fundamental parameters. Fluorescence-based optical biosensors show great potential for clinical diagnosis of life-altering diseases with a very high specificity. Many of the designs for such rely on the concept of Förster resonance energy transfer (FRET). Currently, the methods used experimentally make use of theoretical assumptions which fundamentally affect the results. Having a detailed atomistic overview or significant simulated parameters could improve the understanding of the calculations and provide much more accurate outcomes. However, there are many challenges that need to be addressed before standardized computational protocols can be employed. This review is meant to highlight the progress made for computational methods used to simulate FRET experiments for nucleic acid probes. Recent advances have been made in computational tools, such as force field parametrizations and improved protocols. Complementary simulations to experimental data are also comprised in the this review.
Collapse
Affiliation(s)
- Sorin Muraru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Sebastian Muraru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Florentin Romeo Nitu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania.,Advanced Polymer Materials Group, University Polithenica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| |
Collapse
|
18
|
Zhang Q, Yan HH, Ru C, Zhu F, Zou HY, Gao PF, Huang CZ, Wang J. Plasmonic biosensor for the highly sensitive detection of microRNA-21 via the chemical etching of gold nanorods under a dark-field microscope. Biosens Bioelectron 2021; 201:113942. [PMID: 34996004 DOI: 10.1016/j.bios.2021.113942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs involved in tumor-related tissues at abnormal expression level present tremendous potential in the early diagnosis of cancers. However, their intrinsic shortcomings, for instance, low abundance and high sequence homology, make it challengeable to quantify them with high sensitivity and selectivity. Herein, a highly sensitive platform with great specificity was developed for microRNA-21 based on the produced-I2 triggered chemical etching of gold nanorods to a smaller size, resulting in a significant blue shift and a great intensity decrease in the localized surface plasmon resonance (LSPR) scattering. The synergism of strand displacement and enzymatic reaction enabled the proposed strategy with a high sensitivity and selectivity toward microRNA-21 in a dynamic range from 0.1 to 10,000 pM and a low limit of detection of 71.22 fM (3σ/k) by dark-field microscope. Additionally, the remarkable discrimination of single nucleotide difference suggested the superior selectivity towards microRNA-21, which presented a satisfactory recovery in human serum samples. The proposed plasmon platform could also serve as a universal and sensitive detection of cancer biomarkers, presenting the amusing application prospects in the early diagnosis of various cancers by adapting the corresponding nucleic acid sequences.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Hong Hui Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Cheng Ru
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Fu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Hong Yan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Jian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, And Key Laboratory of Luminescent and Real-Time Anal. Chem. (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Zhang Y, Hu X, Wang Q, Zhang Y. Recent advances in microchip-based methods for the detection of pathogenic bacteria. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Gallup O, Ming H, Ellis T. Ten future challenges for synthetic biology. ENGINEERING BIOLOGY 2021; 5:51-59. [PMID: 36968258 PMCID: PMC9996719 DOI: 10.1049/enb2.12011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
After 2 decades of growth and success, synthetic biology has now become a mature field that is driving significant innovation in the bioeconomy and pushing the boundaries of the biomedical sciences and biotechnology. So what comes next? In this article, 10 technological advances are discussed that are expected and hoped to come from the next generation of research and investment in synthetic biology; from ambitious projects to make synthetic life, cell simulators and custom genomes, through to new methods of engineering biology that use automation, deep learning and control of evolution. The non-exhaustive list is meant to inspire those joining the field and looks forward to how synthetic biology may evolve over the coming decades.
Collapse
Affiliation(s)
- Olivia Gallup
- Department of BioengineeringImperial College LondonLondonUK
| | - Hia Ming
- Department of BioengineeringImperial College LondonLondonUK
| | - Tom Ellis
- Department of BioengineeringImperial College LondonLondonUK
- Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| |
Collapse
|
21
|
Zhang QL, Wang LL, Liu Y, Lin J, Xu L. A kinetically controlled platform for ligand-oligonucleotide transduction. Nat Commun 2021; 12:4654. [PMID: 34341342 PMCID: PMC8329073 DOI: 10.1038/s41467-021-24962-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Ligand-oligonucleotide transduction provides the critical pathway to integrate non-nucleic acid molecules into nucleic acid circuits and nanomachines for a variety of strand-displacement related applications. Herein, a general platform is constructed to convert the signals of ligands into desired oligonucleotides through a precise kinetic control. In this design, the ligand-aptamer binding sequence with an engineered duplex stem is introduced between the toehold and displacement domains of the invading strand to regulate the strand-displacement reaction. Employing this platform, we achieve efficient transduction of both small molecules and proteins orthogonally, and more importantly, establish logical and cascading operations between different ligands for versatile transduction. Besides, this platform is capable of being directly coupled with the signal amplification systems to further enhance the transduction performance. This kinetically controlled platform presents unique features with designing simplicity and flexibility, expandable complexity and system compatibility, which may pave a broad road towards nucleic acid-based developments of sophisticated transduction networks.
Collapse
Affiliation(s)
- Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
22
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
23
|
Wang LL, Zhang QL, Wang Y, Liu Y, Lin J, Xie F, Xu L. Controllable DNA strand displacement by independent metal-ligand complexation. Chem Sci 2021; 12:8698-8705. [PMID: 34257868 PMCID: PMC8246113 DOI: 10.1039/d1sc01041g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction of artificial metal-ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal-ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal-ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal-ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.
Collapse
Affiliation(s)
- Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
24
|
Qi X, Wang S, Jiang Y, Liu P, Hao W, Han J, Zhou Y, Huang X, Liang P. Additional polypyrrole as conductive medium in artificial electrochemically active biofilm (EAB) to increase the sensitivity of EAB based biosensor in water quality early-warning. Biosens Bioelectron 2021; 190:113453. [PMID: 34174528 DOI: 10.1016/j.bios.2021.113453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
Researchers believe that adding conductive mediums in electrochemically active biofilms (EABs) would improve the sensitivity of EAB-based biosensor for real-time water quality early-warning through facilitating the extracellular electron transfer (EET), which has been hardly evidenced mostly because naturally formed EABs employed in previous biosensor studies were recognized distinct and incapable of delivering comparable electrical signals. By preparing artificial EABs where Shewanella oneidensis MR-1 was encapsulated in sodium alginate (SA), this study solved how polypyrrole (PPy) as conductive medium would affect the sensitivity of EAB-based biosensor, as well as mass transfer of toxicant during this process. Different mass ratios (0.125:1, 0.25:1 and 1:1) of PPy over SA were tested, and the sensitivity promoted by 20%, 15% and 6%, respectively. Results indicated that a small amount of PPy addition (PPy: SA = 0.125: 1 in mass ratio) was more effective to increase the biosensor's sensitivity compared to larger amount of PPy employed in EAB. This was when improved conductivity introduced by PPy would dominate in affecting the sensitivity over contrarily weakened mass transfer in the meantime.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
25
|
Xiong E, Yao D, Ellington AD, Bhadra S. Minimizing Leakage in Stacked Strand Exchange Amplification Circuits. ACS Synth Biol 2021; 10:1277-1283. [PMID: 34006090 DOI: 10.1021/acssynbio.0c00615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signal amplification is ubiquitous in biology and engineering. Protein enzymes, such as DNA polymerases, can routinely achieve >106-fold signal increase, making them powerful tools for signal enhancement. Considerable signal amplification can also be achieved using nonenzymatic, cascaded nucleic acid strand exchange reactions. However, the practical application of such kinetically trapped circuits has so far proven difficult due to uncatalyzed leakage of the cascade. We now demonstrate that strategically positioned mismatches between circuit components can reduce unprogrammed hybridization reactions and therefore greatly diminish leakage. In consequence, we were able to synthesize a three-layer catalytic hairpin assembly cascade that could operate in a single tube and that yielded 3.7 × 104-fold signal amplification in only 4 h, a greatly improved performance relative to previous cascades. This advance should facilitate the implementation of nonenzymatic signal amplification in molecular diagnostics, as well as inform the design of a wide variety of increasingly intricate nucleic acid computation circuits.
Collapse
Affiliation(s)
- Erhu Xiong
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dongbao Yao
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sanchita Bhadra
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Qi X, Wang S, Jiang Y, Liu P, Li Q, Hao W, Han J, Zhou Y, Huang X, Liang P. Artificial electrochemically active biofilm for improved sensing performance and quickly devising of water quality early warning biosensors. WATER RESEARCH 2021; 198:117164. [PMID: 33915405 DOI: 10.1016/j.watres.2021.117164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A major challenge for devising an electrochemically active biofilm (EAB)-based biosensor for real-time water quality early-warning is the formation of EAB that requires several days to weeks. Besides the onerous and time-consuming preparation process, the naturally formed EABs are intensively concerned as they can hardly deliver repeatable electrical signals even at identical experimental conditions. To address these concerns, this study employed sodium alginate as immobilization agent to encapsulate Shewanella oneidensis MR-1 and prepared EAB for devising a biosensor in a short period of less than 1 h. The artificial EAB were found capable of delivering highly consistent electrical signals with each other when fed with the same samples. Morphology and bioelectrochemical properties of the artificial EAB were investigated to provide interpretations for these findings. Different concentrations of bacteria and alginate in forming the EAB were investigated for their effects on the biosensor's sensitivity. Results suggested that lower concentration of bacteria would be beneficial until it increased to 0.06 (OD660). Concentration of sodium alginate affected the sensitivity as well and 1% was found an optimum amount to serve in the formation of EAB. A long-term operation of the biosensor with artificial EAB for 110 h was performed. Clear warning signals for incoming toxicants were observed over random signal fluctuations. All results suggested that the artificial EAB electrode would support a rapid devised and highly sensitivity biosensor.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
27
|
Zhang Z, Mei M, Yao J, Ye T, Quan J, Liu J. An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin via non-enzymatic catalyst recycling amplification. Analyst 2021; 145:6868-6874. [PMID: 32820297 DOI: 10.1039/d0an01054e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article, we report a novel dual on/off thrombin fluorescence aptasensor by combining the energy driven target induced strand displacement reaction and a non-enzyme catalyst recycling DNA machine. Firstly, the specific binding of an aptamer strand and thrombin induce the release of a catalyst which was used as a DNA machine trigger. Subsequently, the catalyst as the trigger initiated the DNA machine through nucleic acid hybridization and branch migration of the DNA machine, resulting in the DNA substrate melting and re-hybridization. In such a working model, the DNA machine achieved cooperative control of the circular strand displacement reaction, realizing catalyst recycling and dual-amplification. The fluorescence signal change of FAM and ROX accumulation had a good linear relationship with the thrombin concentration in the range of 1 fM to 1 nM. On account of catalyst recycling and dual recognition, the detection limit for thrombin was determined to be as low as 0.45 fM (S/N = 3).This biosensor also showed good selectivity for thrombin without being affected by some other proteins, such as PSA, lysozyme etc. Moreover, this assay can be applied to the detection of thrombin in diluted human serum.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Wang Y, Guo Y, Chen H, Yu W, Zhang Z, Xie G. A comprehensive system for detecting rare single nucleotide variants based on competitive DNA probe and duplex-specific nuclease. Anal Chim Acta 2021; 1166:338545. [PMID: 34023002 DOI: 10.1016/j.aca.2021.338545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Single nucleotide variants (SNVs) have emerged as increasingly important biomarkers, particularly in the diagnosis and prognosis of cancers. However, most SNVs are rarely detected in blood samples from cancer patients as they are surrounded by abundant concomitant wild-type nucleic acids. Herein, we design a system that features a combination of competitive DNA probe system (CDPS) and duplex-specific nuclease (DSN) that we referred to as CAD. A theoretical model was established for the CAD system based on reaction networks. Guided by the theoretical model, we found that a minor loss in sensitivity significantly improved the specificity of the system, thus creating a theoretical discrimination factor (DF) > 100 for most conditions. This non-equivalent tradeoff between sensitivity and specificity provides a new concept for the analysis of rare DNA-sequence variants. As a demonstration of practicality, we applied as-proposed CAD system to identify low variant allele frequency (VAF) in a synthetic template (0.1% VAF) and human genomic DNA (1% VAF). This work promises complete guidance for the design of enzyme-based nucleic acid analysis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yufeng Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, PR China
| | - Huajian Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wen Yu
- Clinical Laboratory of Chongqing University Cancer Hospital, Chongqing, 400016, PR China
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
29
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
30
|
Zhao S, Yu L, Yang S, Tang X, Chang K, Chen M. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. NANOSCALE HORIZONS 2021; 6:298-310. [PMID: 33877218 DOI: 10.1039/d0nh00587h] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA computers are considered one of the most prominent next-generation molecular computers that perform Boolean logic using DNA elements. DNA-based Boolean logic gates, especially DNA strand displacement-based logic gates (SDLGs), have shown tremendous potential in biosensing since they can perform the logic analysis of multi-targets simultaneously. Moreover, SDLG biosensors generate a unique output in the form of YES/NO, which is contrary to the quantitative measurement used in common biosensors. In this review, the recent achievements of SDLG biosensing strategies are summarized. Initially, the development and mechanisms of Boolean logic gates, strand-displacement reaction, and SDLGs are introduced. Afterwards, the diversified input and output of SDLG biosensors are elaborated. Then, the state-of-the-art SDLG biosensors are reviewed in the classification of different signal-amplification methods, such as rolling circle amplification, catalytic hairpin assembly, strand-displacement amplification, DNA molecular machines, and DNAzymes. Most importantly, limitations and future trends are discussed. The technology reviewed here is a promising tool for multi-input analysis and lays a foundation for intelligent diagnostics.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| | | | | | | | | | | |
Collapse
|
31
|
Luo F, Lu Y, Geng X, Li Z, Dai G, Chu Z, Zhang J, Zhang F, He P, Wang Q. Study on Defective T Junction-Mediated Strand Displacement Amplification and Its Application in Microchip Electrophoretic Detection of Longer Bacterial 16S rDNA. Anal Chem 2021; 93:3551-3558. [PMID: 33570925 DOI: 10.1021/acs.analchem.0c04991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current strand displacement amplification (SDA)-based nucleic acid sensing methods generally rely on a ssDNA template that involves complementary bases to the endonuclease recognition sequence, which has the limitation of detecting only short nucleic acids. Herein, a new SDA method in which the defective T junction structure is first used to support SDA (dT-SDA) was proposed and applied in longer DNA detection. In dT-SDA, an auxiliary probe and a primer were designed to specifically identify the target gene, following the formation of a stable defective T junction structure through proximity hybridization, and the formation of defective T junctions could further trigger cascade SDA cycling to produce numerous ssDNA products. The quantity of these ssDNA products was detected through microchip electrophoresis (MCE) and could be transformed to the concentration of the target gene. Moreover, the applicability of this developed strategy in detecting long genomic DNA was verified by detecting bacterial 16S rDNA. This proposed dT-SDA strategy consumes less time and has satisfactory sensitivity, which has great potential for effective bacterial screening and infection diagnosis.
Collapse
Affiliation(s)
- Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jingwen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
32
|
Chen Y, Zhai LY, Zhang LM, Ma XS, Liu Z, Li MM, Chen JX, Duan WJ. Breast cancer plasma biopsy by in situ determination of exosomal microRNA-1246 with a molecular beacon. Analyst 2021; 146:2264-2276. [PMID: 33599630 DOI: 10.1039/d0an02224a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid biopsy is becoming an innovative tool in precision oncology owing to its noninvasive identification of biomarkers circulating in the body fluid at various time points for continuous and real-time analysis of disease progression. MicroRNAs in blood exosomes are identified as a new promising class of potential biomarkers for cancer diagnostics and prognostics. Conventional detection of blood exosomal microRNAs need multiple-step, complicated, costly, and time-consuming sample preparation of exosomes isolation and RNA extract, which affect the accuracy and reproducibility of analytical results. In this work, we set up an in situ quantitative analysis of human plasma exosomal miR-1246 by a probe of 2'-O-methyl and phosphorothioate modified molecular beacon. The probe has outstanding nuclease resistance in highly active RNase A/T1/I, which makes it stable for direct application in blood samples. With rapid rupture of exosomes membrane by Triton X-100, the probe can enter exosomes to specifically target miR-1246 exhibiting quantitative fluorescent signals. Using the output signals as a diagnostic marker, we differentiated 33 breast cancer patients from 37 healthy controls with 97.30% sensitivity and 93.94% specificity at the best cutoff. The blood biopsy is simple without extracting plasma exosomes and their nucleic acids content, time-saving in about 2 h of total analysis process, and microvolumes needed for plasma sample, suggesting its good potential to clinical application.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ultrasensitive microchip electrophoretic detection of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) based on isothermal strand-displacement polymerase reaction. Talanta 2021; 222:121686. [DOI: 10.1016/j.talanta.2020.121686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
|
34
|
Chircov C, Bîrcă AC, Grumezescu AM, Andronescu E. Biosensors-on-Chip: An Up-to-Date Review. Molecules 2020; 25:E6013. [PMID: 33353220 PMCID: PMC7765790 DOI: 10.3390/molecules25246013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, biosensors are designed to translate physical, chemical, or biological events into measurable signals, thus offering qualitative and/or quantitative information regarding the target analytes. While the biosensor field has received considerable scientific interest, integrating this technology with microfluidics could further bring significant improvements in terms of sensitivity and specificity, resolution, automation, throughput, reproducibility, reliability, and accuracy. In this manner, biosensors-on-chip (BoC) could represent the bridging gap between diagnostics in central laboratories and diagnostics at the patient bedside, bringing substantial advancements in point-of-care (PoC) diagnostic applications. In this context, the aim of this manuscript is to provide an up-to-date overview of BoC system development and their most recent application towards the diagnosis of cancer, infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| |
Collapse
|
35
|
Dai Y. Chemical Translational Biology-Guided Molecular Diagnostics: The Front Line To Mediate the Current SARS-CoV-2 Pandemic. Chembiochem 2020; 21:3492-3494. [PMID: 32959978 PMCID: PMC7537211 DOI: 10.1002/cbic.202000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 11/10/2022]
Abstract
The spread of severe respiratory syndrome coronavirus 2 (SARS-CoV-2) has disrupted our global society in unprecedented ways. The very front line in defense against this pandemic is molecular diagnosis, which is an exceptional representation of how chemical translational biology can benefit our lives. In this viewpoint, I emphasize the imperative demand for a simple and rapid point-of-care system in order to mediate the spread of COVID-19. I further describe how the interdisciplinary combination of chemistry and biology advances biosensing systems, which potentially lead to integrated and automated point-of-care systems capable of relieving the current pandemic.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical EngineeringDuke University101 Science DriveDurhamNC27705USA
| |
Collapse
|
36
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
37
|
Dai Y, Xu W, Somoza RA, Welter JF, Caplan AI, Liu CC. An Integrated Multi‐Function Heterogeneous Biochemical Circuit for High‐Resolution Electrochemistry‐Based Genetic Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yifan Dai
- Electronics Design Center Case Western Reserve University Cleveland OH 44106 USA
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Wei Xu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Rodrigo A. Somoza
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Jean F. Welter
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Arnold I. Caplan
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering Electronics Design Center Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
38
|
Dai Y, Xu W, Somoza RA, Welter JF, Caplan AI, Liu CC. An Integrated Multi-Function Heterogeneous Biochemical Circuit for High-Resolution Electrochemistry-Based Genetic Analysis. Angew Chem Int Ed Engl 2020; 59:20545-20551. [PMID: 32835412 PMCID: PMC9306392 DOI: 10.1002/anie.202010648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022]
Abstract
Modular construction of an autonomous and programmable multi-functional heterogeneous biochemical circuit that can identify, transform, translate, and amplify biological signals into physicochemical signals based on logic design principles can be a powerful means for the development of a variety of biotechnologies. To explore the conceptual validity, we design a CRISPR-array-mediated primer-exchange-reaction-based biochemical circuit cascade, which probes a specific biomolecular input, transform the input into a structurally accessible form for circuit wiring, translate the input information into an arbitrary sequence, and finally amplify the prescribed sequence through autonomous formation of a signaling concatemer. This upstream biochemical circuit is further wired with a downstream electrochemical interface, delivering an integrated bioanalytical platform. We program this platform to directly analyze the genome of SARS-CoV-2 in human cell lysate, demonstrating the capability and the utility of this unique integrated system.
Collapse
Affiliation(s)
- Yifan Dai
- Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Wei Xu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rodrigo A Somoza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jean F Welter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnold I Caplan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
39
|
Khajouei S, Ravan H, Ebrahimi A. Developing a colorimetric nucleic acid-responsive DNA hydrogel using DNA proximity circuit and catalytic hairpin assembly. Anal Chim Acta 2020; 1137:1-10. [PMID: 33153592 DOI: 10.1016/j.aca.2020.08.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
The development of powerful techniques for sensitive detection of nucleic acids has attracted much attention for fabricating accurate biosensors in various fields, such as genomics, clinical diagnostics, and forensic sciences. Up to now, different systems have been introduced, the majority of which are expensive, time-consuming, and relatively low selectivity/limit of detection. These limitations caught our attention to fabricate a nucleic acid responsive system by combining three layers of signal amplification strategy, namely a split proximity circuit (SPC), a catalytic hairpin assembly (CHA), and a DNA hydrogel. Herein, by SPC operation, two initiators and a target strand were assembled and activated the CHA reaction in the presence of three 5'-cytosine (C)-rich hairpins. Then, produced C-rich embedded three-way junction structures could form i-motif structures under acidic environment followed by a transition from sol to gel state. To acquire a quantitative and colorimetric measurement, gold nanoparticles (GNPs) were used that encapsulated and sediment by the gel formation. The resulting platform detected the target with a limit of detection of 1 pM and considerable selectivity.
Collapse
Affiliation(s)
- Sima Khajouei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Ebrahimi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
40
|
Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi DK. 2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. MICROMACHINES 2020; 11:E779. [PMID: 32824184 PMCID: PMC7463818 DOI: 10.3390/mi11080779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for sensing devices' fabrication. This paper summarizes the progress in the area of the 2D nanomaterial-based surface plasmon resonance (SPR) sensor during last decade. The paper also focuses on the structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field. The present paper provides a platform for researchers to work in the field of 2D nanomaterial-based SPR sensors.
Collapse
Affiliation(s)
- Sachin Singh
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| | - Pravin Kumar Singh
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia;
| | - Pooja Lohia
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India;
| | - Hasan Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia;
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - L. Castañeda
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico;
| | - D. K. Dwivedi
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| |
Collapse
|
41
|
Zhou C, Huang R, Zhou X, Xing D. Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification. Talanta 2020; 216:120954. [DOI: 10.1016/j.talanta.2020.120954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
|
42
|
Xu W, Jin T, Dai Y, Liu CC. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens Bioelectron 2020; 155:112100. [PMID: 32090878 DOI: 10.1016/j.bios.2020.112100] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
Abstract
Robust developments of personalized medicine for next-generation healthcare highlight the need for sensitive and accurate point-of-care platforms for quantification of disease biomarkers. Broad presentations of clustered regularly interspaced short palindromic repeats (CRISPR) as an accurate gene editing tool also indicate that the high-specificity and programmability of CRISPR system can be utilized for the development of biosensing systems. Herein, we present a CRISPR Cas system enhanced electrochemical DNA (E-DNA) sensor with unprecedented sensitivity and accuracy. The principle of the E-DNA sensor is the target induced conformational change of the surface signaling probe (containing an electrochemical tag), leading to the variation of the electron transfer rate of the electrochemical tag. With the introduction of CRISPR cleavage activity into the E-DNA sensor, a more apparent signal change between with and without the presence of the target can be achieved. We compared the performance of Cas9 and Cas12a enhanced E-DNA sensor and optimized the chemical environment of CRISPR, achieving a femto-molar detection limit without enzymatic amplification. Moreover, we correlated the CRISPR cleavage signal with the original E-DNA signal as a strategy to indicate potential mismatches in the target sequence. Comparing with classic DNA electrochemistry based mutation detection strategy, CRISPR enhanced E-DNA sensor can determine the presence of a single mutation at an unknown concentration condition. Overall, we believe that the CRISPR enhanced E-DNA sensing strategy will be of especially high utility for point-of-care systems owing to the programmability, modularity, high-sensitivity and high-accuracy.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tian Jin
- College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Yifan Dai
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
43
|
Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms. Trends Biotechnol 2020; 38:797-810. [PMID: 32359951 DOI: 10.1016/j.tibtech.2020.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/28/2022]
Abstract
Low yield and low titer of natural products are common issues in natural product biosynthesis through microbial cell factories. One effective way to resolve such bottlenecks is to design genetic biosensors to monitor and regulate the biosynthesis of target natural products. In this review, we evaluate the most recent advances in the design of genetic biosensors for natural product biosynthesis in microorganisms. In particular, we examine strategies for selection of genetic parts and construction principles for the design and evaluation of genetic biosensors. We also review the latest applications of transcription factor- and riboswitch-based genetic biosensors in natural product biosynthesis. Lastly, we discuss challenges and solutions in designing genetic biosensors for the biosynthesis of natural products in microorganisms.
Collapse
|