1
|
Wagner KT, Lu RXZ, Landau S, Shawky SA, Zhao Y, Bodenstein DF, Jiménez Vargas LF, Jiang R, Okhovatian S, Wang Y, Liu C, Vosoughi D, Gustafson D, Fish JE, Cummins CL, Radisic M. Endothelial extracellular vesicles enhance vascular self-assembly in engineered human cardiac tissues. Biofabrication 2024; 16:045037. [PMID: 39226913 PMCID: PMC11409464 DOI: 10.1088/1758-5090/ad76d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis, including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs, the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast, supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly, enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization, illustrating the use of this approach in the engineering of enhanced, perfusable, microfluidic models of the myocardium.
Collapse
Affiliation(s)
- Karl T Wagner
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Rick X Z Lu
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Sarah A Shawky
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - David F Bodenstein
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Luis Felipe Jiménez Vargas
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital,University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Zhang Y, Lu S, Zhuang J, Liang L. Advances in gut-brain organ chips. Cell Prolif 2024; 57:e13724. [PMID: 39086147 PMCID: PMC11503250 DOI: 10.1111/cpr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain and gut are sensory organs responsible for sensing, transmitting, integrating, and responding to signals from the internal and external environment. In-depth analysis of brain-gut axis interactions is important for human health and disease prevention. Current research on the brain-gut axis primarily relies on animal models. However, animal models make it difficult to study disease mechanisms due to inherent species differences, and the reproducibility of experiments is poor because of individual animal variations, which leads to a significant limitation of real-time sensory responses. Organ-on-a-chip platforms provide an innovative approach for disease treatment and personalized research by replicating brain and gut ecosystems in vitro. This enables a precise understanding of their biological functions and physiological responses. In this article, we examine the history and most current developments in brain, gut, and gut-brain chips. The importance of these systems for understanding pathophysiology and developing new drugs is emphasized throughout the review. This article also addresses future directions and present issues with the advancement and application of gut-brain-on-a-chip technologies.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Si‐Ming Lu
- Department of Laboratory Medicine, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory of Clinical In Vitro Diagnostic TechniquesHangzhouChina
- Institute of Laboratory MedicineZhejiang UniversityHangzhouChina
| | - Jian‐Jian Zhuang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Li‐Guo Liang
- Centre for Clinical LaboratoryThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Wu Q, Rafatian N, Wagner KT, Blamer J, Smith J, Okhovatian S, Aggarwal P, Wang EY, Banerjee A, Zhao Y, Nash TR, Lu RXZ, Portillo-Esquivel LE, Li CY, Kuzmanov U, Mandla S, Virlee E, Landau S, Lai BF, Gramolini AO, Liu C, Fleischer S, Veres T, Vunjak-Novakovic G, Zhang B, Mossman K, Broeckel U, Radisic M. SARS-CoV-2 pathogenesis in an angiotensin II-induced heart-on-a-chip disease model and extracellular vesicle screening. Proc Natl Acad Sci U S A 2024; 121:e2403581121. [PMID: 38968108 PMCID: PMC11253010 DOI: 10.1073/pnas.2403581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.
Collapse
Affiliation(s)
- Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Jacob Blamer
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Jacob Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Erika Yan Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Arinjay Banerjee
- Department of Medicine, McMaster University, Toronto, ONL8S 4L8, Canada
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKS7N 5E3, Canada
| | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Trevor R. Nash
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | | | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Uros Kuzmanov
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Serena Mandla
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Elizabeth Virlee
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Anthony O. Gramolini
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ONM5S 3E1, Canada
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Teodor Veres
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ONM5S 3G8, Canada
- Medical Devices Research Center, Life Sciences Division, National Research Council Canada, Montreal, QCH4P 2R2, Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Department of Medicine, Columbia University, New York, NY10032
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ONL8S 4L8, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Toronto, ONL8S 4L8, Canada
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ONM5S 3E1, Canada
| |
Collapse
|
5
|
Shimizu Y, Ntege EH, Inoue Y, Matsuura N, Sunami H, Sowa Y. Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety. Regen Ther 2024; 26:260-274. [PMID: 38978963 PMCID: PMC11228664 DOI: 10.1016/j.reth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| |
Collapse
|
6
|
Rizzuto AS, Gelpi G, Mangini A, Carugo S, Ruscica M, Macchi C. Exploring the role of epicardial adipose-tissue-derived extracellular vesicles in cardiovascular diseases. iScience 2024; 27:109359. [PMID: 38510143 PMCID: PMC10951984 DOI: 10.1016/j.isci.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat depot located between the myocardium and the visceral layer of the epicardium, which, owing to its location, can influence surrounding tissues and can act as a local transducer of systemic inflammation. The mechanisms upon which such influence depends on are however unclear. Given the role EAT undoubtedly has in the scheme of cardiovascular diseases (CVDs), understanding the impact of its cellular components is of upmost importance. Extracellular vesicles (EVs) constitute promising candidates to fill the gap in the knowledge concerning the unexplored mechanisms through which EAT promotes onset and progression of CVDs. Owing to their ability of transporting active biomolecules, EAT-derived EVs have been reported to be actively involved in the pathogenesis of ischemia/reperfusion injury, coronary atherosclerosis, heart failure, and atrial fibrillation. Exploring the precise functions EVs exert in this context may aid in connecting the dots between EAT and CVDs.
Collapse
Affiliation(s)
| | - Guido Gelpi
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Mangini
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
8
|
Gil-Cabrerizo P, Scaccheti I, Garbayo E, Blanco-Prieto MJ. Cardiac tissue engineering for myocardial infarction treatment. Eur J Pharm Sci 2023; 185:106439. [PMID: 37003408 DOI: 10.1016/j.ejps.2023.106439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Myocardial infarction is one of the major causes of morbidity and mortality worldwide. Current treatments can relieve the symptoms of myocardial ischemia but cannot repair the necrotic myocardial tissue. Novel therapeutic strategies based on cellular therapy, extracellular vesicles, non-coding RNAs and growth factors have been designed to restore cardiac function while inducing cardiomyocyte cycle re-entry, ensuring angiogenesis and cardioprotection, and preventing ventricular remodeling. However, they face low stability, cell engraftment issues or enzymatic degradation in vivo, and it is thus essential to combine them with biomaterial-based delivery systems. Microcarriers, nanocarriers, cardiac patches and injectable hydrogels have yielded promising results in preclinical studies, some of which are currently being tested in clinical trials. In this review, we cover the recent advances made in cellular and acellular therapies used for cardiac repair after MI. We present current trends in cardiac tissue engineering related to the use of microcarriers, nanocarriers, cardiac patches and injectable hydrogels as biomaterial-based delivery systems for biologics. Finally, we discuss some of the most crucial aspects that should be addressed in order to advance towards the clinical translation of cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ilaria Scaccheti
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| |
Collapse
|
9
|
Scafa Udriște A, Niculescu AG, Iliuță L, Bajeu T, Georgescu A, Grumezescu AM, Bădilă E. Progress in Biomaterials for Cardiac Tissue Engineering and Regeneration. Polymers (Basel) 2023; 15:polym15051177. [PMID: 36904419 PMCID: PMC10007484 DOI: 10.3390/polym15051177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiovascular diseases are one of the leading global causes of morbidity and mortality, posing considerable health and economic burden on patients and medical systems worldwide. This phenomenon is attributed to two main motives: poor regeneration capacity of adult cardiac tissues and insufficient therapeutic options. Thus, the context calls for upgrading treatments to deliver better outcomes. In this respect, recent research has approached the topic from an interdisciplinary perspective. Combining the advances encountered in chemistry, biology, material science, medicine, and nanotechnology, performant biomaterial-based structures have been created to carry different cells and bioactive molecules for repairing and restoring heart tissues. In this regard, this paper aims to present the advantages of biomaterial-based approaches for cardiac tissue engineering and regeneration, focusing on four main strategies: cardiac patches, injectable hydrogels, extracellular vesicles, and scaffolds and reviewing the most recent developments in these fields.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Luminița Iliuță
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodor Bajeu
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Elisabeta Bădilă
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
10
|
Li X, Zhong Y, Zhou W, Song Y, Li W, Jin Q, Gao T, Zhang L, Xie M. Low-intensity pulsed ultrasound (LIPUS) enhances the anti-inflammatory effects of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles. Cell Mol Biol Lett 2023; 28:9. [PMID: 36717768 PMCID: PMC9885645 DOI: 10.1186/s11658-023-00422-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) have shown potent anti-inflammatory function in various pathological conditions, such as osteoarthritis and neurodegenerative diseases. Since the number of EVs naturally secreted by cells is finite and they usually bear specific repertoires of bioactive molecules to perform manifold cell-cell communication, but not one particular therapeutic function as expected, their practical application is still limited. Strategies are needed to increase the production of EVs and enhance their therapeutic function. Recent studies have suggested that low-intensity pulsed ultrasound (LIPUS) is a promising non-invasive method to increase the secretion of EVs and promote their anti-inflammatory effects. However, the effect of LIPUS stimulation of BMSCs on EVs derived from the cells remains unclear. The objective of this study was to investigate whether LIPUS stimulation on BMSCs could increase the secretion of EVs and enhance their anti-inflammatory effects. METHODS BMSCs were exposed to LIPUS (300 mW/cm2) for 15 min and EVs were isolated by ultracentrifugation. Anti-inflammatory effects of EVs were investigated on RAW264.7 cells in vitro and in the allogeneic skin transplantation model. Small RNA-seq was utilized to identify components difference in EVs with/without LIPUS irradiation. RESULTS In this study, we found that LIPUS stimulation could lead to a 3.66-fold increase in the EVs release from BMSCs. Moreover, both in vitro and in vivo experimental results suggested that EVs secreted from LIPUS-treated BMSCs (LIPUS-EVs) possessed stronger anti-inflammatory function than EVs secreted from BMSCs without LIPUS stimulation (C-EVs). RNA-seq analysis revealed that miR-328-5p and miR-487b-3p were significantly up-regulated in LIPUS-EVs compare with C-EVs. The suppression of MAPK signaling pathway by these two up-regulated miRNAs could be the potential mechanism of strengthened anti-inflammatory effects of LIPUS-EVs. CONCLUSION LIPUS stimulation on BMSCs could significantly increase the secretion of EVs. Moreover, EVs generated from LIPUS-treated BMSCs possessed much stronger anti-inflammatory function than C-EVs. Therefore, LIPUS could be a promising non-invasive strategy to promote the production of EVs from BMSCs and augment their anti-inflammatory effects.
Collapse
Affiliation(s)
- Xueke Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
11
|
Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani NAA, Witwer KW, Law JX. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics 2022; 12:6455-6508. [PMID: 36185607 PMCID: PMC9516230 DOI: 10.7150/thno.73436] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022] Open
Abstract
Small extracellular vesicles (sEVs) have been proposed as a possible solution to the current lack of therapeutic interventions for endogenous skin regeneration. We conducted a systematic review of the available evidence to assess sEV therapeutic efficacy and safety in wound healing and skin regeneration in animal models. 68 studies were identified in Web of Science, Scopus, and PubMed that satisfied a set of prespecified inclusion criteria. We critically analyzed the quality of studies that satisfied our inclusion criteria, with an emphasis on methodology, reporting, and adherence to relevant guidelines (including MISEV2018 and ISCT criteria). Overall, our systematic review and meta-analysis indicated that sEV interventions promoted skin regeneration in diabetic and non-diabetic animal models and influenced various facets of the healing process regardless of cell source, production protocol and disease model. The EV source, isolation methods, dosing regimen, and wound size varied among the studies. Modification of sEVs was achieved mainly by manipulating source cells via preconditioning, nanoparticle loading, genetic manipulation, and biomaterial incorporation to enhance sEV therapeutic potential. Evaluation of potential adverse effects received only minimal attention, although none of the studies reported harmful events. Risk of bias as assessed by the SYRCLE's ROB tool was uncertain for most studies due to insufficient reporting, and adherence to guidelines was limited. In summary, sEV therapy has enormous potential for wound healing and skin regeneration. However, reproducibility and comprehensive evaluation of evidence are challenged by a general lack of transparency in reporting and adherence to guidelines. Methodological rigor, standardization, and risk analysis at all stages of research are needed to promote translation to clinical practice.
Collapse
Affiliation(s)
- Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | | | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Revatyambigai Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
13
|
Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, Azami M. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomed Pharmacother 2021; 146:112584. [PMID: 34968921 DOI: 10.1016/j.biopha.2021.112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Heart muscle injury and an elevated troponin level signify myocardial infarction (MI), which may result in defective and uncoordinated segments, reduced cardiac output, and ultimately, death. Physicians apply thrombolytic therapy, coronary artery bypass graft (CABG) surgery, or percutaneous coronary intervention (PCI) to recanalize and restore blood flow to the coronary arteries, albeit they were not convincingly able to solve the heart problems. Thus, researchers aim to introduce novel substitutional therapies for regenerating and functionalizing damaged cardiac tissue based on engineering concepts. Cell-based engineering approaches, utilizing biomaterials, gene, drug, growth factor delivery systems, and tissue engineering are the most leading studies in the field of heart regeneration. Also, understanding the primary cause of MI and thus selecting the most efficient treatment method can be enhanced by preparing microdevices so-called heart-on-a-chip. In this regard, microfluidic approaches can be used as diagnostic platforms or drug screening in cardiac disease treatment. Additionally, bioprinting technique with whole organ 3D printing of human heart with major vessels, cardiomyocytes and endothelial cells can be an ideal goal for cardiac tissue engineering and remarkable achievement in near future. Consequently, this review discusses the different aspects, advancements, and challenges of the mentioned methods with presenting the advantages and disadvantages, chronological indications, and application prospects of various novel therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
| | - Hanif Goran Orimi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Roya Ramzgouyan
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nemati
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
14
|
Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. Int J Mol Sci 2021; 22:ijms222413513. [PMID: 34948310 PMCID: PMC8707342 DOI: 10.3390/ijms222413513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a group of membrane vesicles that play important roles in cell-to-cell and interspecies/interkingdom communications by modulating the pathophysiological conditions of recipient cells. Recent evidence has implied their potential roles in the gut–brain axis (GBA), which is a complex bidirectional communication system between the gut environment and brain pathophysiology. Despite the evidence, the roles of EVs in the gut microenvironment in the GBA are less highlighted. Moreover, there are critical challenges in the current GBA models and analyzing techniques for EVs, which may hinder the research. Currently, advances in organ-on-a-chip (OOC) technologies have provided a promising solution. Here, we review the potential effects of EVs occurring in the gut environment on brain physiology and behavior and discuss how to apply OOCs to research the GBA mediated by EVs in the gut microenvironment.
Collapse
|
15
|
Davidson MD, Prendergast ME, Ban E, Xu KL, Mickel G, Mensah P, Dhand A, Janmey PA, Shenoy VB, Burdick JA. Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. SCIENCE ADVANCES 2021; 7:eabi8157. [PMID: 34757787 PMCID: PMC8580309 DOI: 10.1126/sciadv.abi8157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/20/2021] [Indexed: 05/17/2023]
Abstract
The natural extracellular matrix (ECM) within tissues is physically contracted and remodeled by cells, allowing the collective shaping of functional tissue architectures. Synthetic materials that facilitate self-assembly similar to natural ECM are needed for cell culture, tissue engineering, and in vitro models of development and disease. To address this need, we develop fibrous hydrogel assemblies that are stabilized with photocrosslinking and display fiber density–dependent strain-responsive properties (strain stiffening and alignment). Encapsulated mesenchymal stromal cells locally contract low fiber density assemblies, resulting in macroscopic volumetric changes with increased cell densities and moduli. Because of properties such as shear-thinning and self-healing, assemblies can be processed into microtissues with aligned ECM deposition or through extrusion bioprinting and photopatterning to fabricate constructs with programmed shape changes due to cell contraction. These materials provide a synthetic approach to mimic features of natural ECM, which can now be processed for applications in biofabrication and tissue engineering.
Collapse
Affiliation(s)
- Matthew D. Davidson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ehsan Ban
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen L. Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriel Mickel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia Mensah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abhishek Dhand
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B. Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Wagner KT, Radisic M. A New Role for Extracellular Vesicles in Cardiac Tissue Engineering and Regenerative Medicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100047. [PMID: 34927167 PMCID: PMC8680295 DOI: 10.1002/anbr.202100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Discovering new therapies to treat heart disease requires improved understanding of cardiac physiology at a cellular level. Extracellular vesicles (EVs) are plasma membrane-bound nano- and microparticles secreted by cells and known to play key roles in intercellular communication, often through transfer of biomolecular cargo. Advances in EV research have established techniques for EV isolation from tissue culture media or biofluids, as well as standards for quantitation and biomolecular characterization. EVs released by cardiac cells are known to be involved in regulating cardiac physiology as well as in the progression of myocardial diseases. Due to difficulty accessing the heart in vivo, advanced in vitro cardiac 'tissues-on-a-chip' have become a recent focus for studying EVs in the heart. These physiologically relevant models are producing new insight into the role of EVs in cardiac physiology and disease while providing a useful platform for screening novel EV-based therapeutics for cardiac tissue regeneration post-injury. Numerous hurdles have stalled the clinical translation of EV therapeutics for heart patients, but tissue-on-a-chip models are playing an important role in bridging the translational gap, improving mechanistic understanding of EV signalling in cardiac physiology, disease, and repair.
Collapse
Affiliation(s)
- Karl T Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
17
|
Lock R, Al Asafen H, Fleischer S, Tamargo M, Zhao Y, Radisic M, Vunjak-Novakovic G. A framework for developing sex-specific engineered heart models. NATURE REVIEWS. MATERIALS 2021; 7:295-313. [PMID: 34691764 PMCID: PMC8527305 DOI: 10.1038/s41578-021-00381-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 05/02/2023]
Abstract
The convergence of tissue engineering and patient-specific stem cell biology has enabled the engineering of in vitro tissue models that allow the study of patient-tailored treatment modalities. However, sex-related disparities in health and disease, from systemic hormonal influences to cellular-level differences, are often overlooked in stem cell biology, tissue engineering and preclinical screening. The cardiovascular system, in particular, shows considerable sex-related differences, which need to be considered in cardiac tissue engineering. In this Review, we analyse sex-related properties of the heart muscle in the context of health and disease, and discuss a framework for including sex-based differences in human cardiac tissue engineering. We highlight how sex-based features can be implemented at the cellular and tissue levels, and how sex-specific cardiac models could advance the study of cardiovascular diseases. Finally, we define design criteria for sex-specific cardiac tissue engineering and provide an outlook to future research possibilities beyond the cardiovascular system.
Collapse
Affiliation(s)
- Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Hadel Al Asafen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario Canada
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Medicine, Columbia University, New York, NY USA
| |
Collapse
|
18
|
Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lihua Lou
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Kazue Orikasa Lopez
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Pranjal Nautiyal
- Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
| | - Arvind Agarwal
- Plasma Forming Laboratory Advanced Materials Engineering Research Institute (AMERI) Mechanical and Materials Engineering College of Engineering and Computing Florida International University Miami FL 33174 USA
| |
Collapse
|
19
|
Tavakol DN, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 2021; 28:993-1015. [PMID: 34087161 DOI: 10.1016/j.stem.2021.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue engineering has markedly matured since its early beginnings in the 1980s. In addition to the original goal to regenerate damaged organs, the field has started to explore modeling of human physiology "in a dish." Induced pluripotent stem cell (iPSC) technologies now enable studies of organ regeneration and disease modeling in a patient-specific context. We discuss the potential of "organ-on-a-chip" systems to study regenerative therapies with focus on three distinct organ systems: cardiac, respiratory, and hematopoietic. We propose that the combinatorial studies of human tissues at these two scales would help realize the translational potential of tissue engineering.
Collapse
Affiliation(s)
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Medicine, Columbia University, New York, NY.
| |
Collapse
|
20
|
Visualizing Extracellular Vesicles and Their Function in 3D Tumor Microenvironment Models. Int J Mol Sci 2021; 22:ijms22094784. [PMID: 33946403 PMCID: PMC8125158 DOI: 10.3390/ijms22094784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.
Collapse
|