1
|
Di Caprio N, Hughes AJ, Burdick JA. Programmed shape transformations in cell-laden granular composites. SCIENCE ADVANCES 2025; 11:eadq5011. [PMID: 39823334 PMCID: PMC11740954 DOI: 10.1126/sciadv.adq5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time. Mixed microgel populations of varying stability provide a further handle to alter compaction, and the level of compaction guides the uniformity and level of ECM deposition within tissues. Last, spatially patterned granular composites of varying compaction enable shape transformations (i.e., bending/curvature) that are stable with culture and are predicted by finite element models.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA 19104
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Dawson JE, Bryant A, Walton B, Bhikot S, Macon S, Ajamu-Johnson A, Jordan T, Langridge PD, Malmi-Kakkada AN. Contact area and tissue growth dynamics shape synthetic juxtacrine signaling patterns. Biophys J 2025; 124:93-106. [PMID: 39548676 PMCID: PMC11739929 DOI: 10.1016/j.bpj.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here, we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns. We find that the area of contact between cells largely determines the extent of synNotch activation, leading to the prediction that the shape of the interface between signal-sending and signal-receiving cells will impact the magnitude of the synNotch response. Notably, synNotch outputs form a graded spatial profile that extends several cell diameters from the signal source, providing evidence that the response to juxtacrine signals can persist in cells as they proliferate away from source cells, or that cells remain able to communicate directly over several cell diameters. Our model suggests that the former mechanism may be sufficient, since it predicts graded outputs without diffusion or long-range cell-cell communication. Overall, we identify that cell-cell contact area together with output synthesis and decay rates likely govern the pattern of synNotch outputs in both space and time during tissue growth, insights that may have broader implications for juxtacrine signaling in general.
Collapse
Affiliation(s)
- Jonathan E Dawson
- Department of Physics and Biophysics, Augusta University, Augusta, Georgia; Department of Engineering and Physics, Whitworth University, Spokane, Washington
| | - Abby Bryant
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Breana Walton
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Simran Bhikot
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Shawn Macon
- Department of Physics and Biophysics, Augusta University, Augusta, Georgia
| | | | - Trevor Jordan
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Paul D Langridge
- Department of Biological Sciences, Augusta University, Augusta, Georgia.
| | | |
Collapse
|
3
|
Zhang S, Yu M, Li M, He M, Xie L, Huo F, Tian W. Notch Signaling Hydrogels Enable Rapid Vascularization and Promote Dental Pulp Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310285. [PMID: 39013081 PMCID: PMC11425206 DOI: 10.1002/advs.202310285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Indexed: 07/18/2024]
Abstract
Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue. This hydrogel displays favorable mechanical properties and biocompatibility. Cultivating dental pulp stem cells (DPSCs) and endothelial cells (ECs) on this hydrogel significantly upregulate Notch target genes and key proangiogenic markers expression. Three-dimensional (3D) culture assays demonstrate Notch signaling hydrogels improve effectiveness by facilitating encapsulated cell differentiation, enhancing their paracrine functions, and promoting capillary lumen formation. Furthermore, it effectively communicates with the Wnt signaling pathway, creating an odontoinductive microenvironment for pulp-dentin complex formation. In vivo studies show that short-term transplantation of the Notch signaling hydrogel accelerates angiogenesis, stabilizes capillary-like structures, and improves cell survival. Long-term transplantation further confirms its capability to promote the formation of pulp-like tissues rich in blood vessels and peripheral nerve-like structures. In conclusion, this study introduces a feasible and effective hydrogel tailored to specifically regulate the JAG1/Notch signaling pathway, showing potential in advancing regenerative strategies for dental pulp tissue.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Min He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
4
|
Sun Y, Lu Y, Li X, He Y, Yong TK, Keng CS, Yahaya B, Liu Y, Lin J. Intelligent drugs based on notch protein remodeling: a defensive targeting strategy for tumor therapy. Cell Death Dis 2024; 15:632. [PMID: 39198434 PMCID: PMC11358381 DOI: 10.1038/s41419-024-07008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
In the process of tumor treatment, systemic drug administration is hindered by biological barriers, leading to the retention of a large number of drug molecules in healthy tissues and causing unavoidable side effects. The precise deployment of drugs at the tumor site is expected to alleviate this phenomenon. Here, we take endostatin and Her2 (+) tumors as examples and develop an intelligent drug with simple "wisdom" by endowing mesenchymal stem cells (MSCs) with an intelligent response program (iMSCEndostatin). It can autonomously perceive and distinguish tumor cells from non-tumor cells, establishing a logical connection between tumor signals and drug release. Enable it to selectively deploy drugs at the tumor site, thereby locking the toxicity of drugs at the tumor site. Unlike traditional aggressive targeting strategies that aim to increase drug concentration at the lesion, intelligent drugs are more inclined to be defensive strategies that prevent the presence of drugs in healthy tissues.
Collapse
Affiliation(s)
- Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinze Li
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Then Kong Yong
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Cheong Soon Keng
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia.
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Tuftee C, Alsberg E, Ozbolat IT, Rizwan M. Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs. Trends Biotechnol 2024; 42:339-352. [PMID: 37852853 PMCID: PMC10939978 DOI: 10.1016/j.tibtech.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Advancements in 3D bioprinting have been hindered by the trade-off between printability and biological functionality. Existing bioinks struggle to meet both requirements simultaneously. However, new types of bioinks composed of densely packed microgels promise to address this challenge. These bioinks possess intrinsic porosity, allowing for cell growth, oxygen and nutrient transport, and better immunomodulatory properties, leading to superior biological functions. In this review, we highlight key trends in the development of these granular bioinks. Using examples, we demonstrate how granular bioinks overcome the trade-off between printability and cell function. Granular bioinks show promise in 3D bioprinting, yet understanding their unique structure-property-function relationships is crucial to fully leverage the transformative capabilities of these new types of bioinks in bioprinting.
Collapse
Affiliation(s)
- Cody Tuftee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Eben Alsberg
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, Chicago, IL 60612, USA
| | - Ibrahim Tarik Ozbolat
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA; Neurosurgery Department, Penn State University; Hershey, PA 17033, USA; Medical Oncology Department, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
6
|
van Asten JGM, Latorre M, Karakaya C, Baaijens FPT, Sahlgren CM, Ristori T, Humphrey JD, Loerakker S. A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomech Model Mechanobiol 2023; 22:1569-1588. [PMID: 37024602 PMCID: PMC10511605 DOI: 10.1007/s10237-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Hagelaars MJ, Rijns L, Dankers PYW, Loerakker S, Bouten CVC. Engineering Strategies to Move from Understanding to Steering Renal Tubulogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:203-216. [PMID: 36173101 DOI: 10.1089/ten.teb.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rebuilding the kidney in the context of tissue engineering offers a major challenge as the organ is structurally complex and has a high variety of specific functions. Recreation of kidney function is inherently connected to the formation of tubules since the functional subunit of the kidney, the nephron, is based on tubular structures. In vivo, tubulogenesis culminates in a perfectly shaped, patterned, and functional renal tubule via different morphogenic processes that depend on delicately orchestrated chemical, physical, and mechanical interactions between cells and between cells and their microenvironment. This review summarizes the current understanding of the role of the microenvironment in the morphogenic processes involved in in vivo renal tubulogenesis. We highlight the current state-of-the-art of renal tubular engineering and provide a view on the design elements that can be extracted from these studies. Next, we discuss how computational modeling can aid in specifying and identifying design parameters and provide directions on how these design parameters can be incorporated in biomaterials for the purpose of engineering renal tubulogenesis. Finally, we propose that a step-by-step reciprocal interaction between understanding and engineering is necessary to effectively guide renal tubulogenesis. Impact statement Tubular tissue engineering lies at the foundation of regenerating kidney tissue function, as the functional subunit of the kidney, the nephron, is based on tubular structures. Guiding renal tubulogenesis toward functional renal tubules requires in-depth knowledge of the developmental processes that lead to the formation of native tubules as well as engineering approaches to steer these processes. In this study, we review the role of the microenvironment in the developmental processes that lead to functional renal tubules and give directions how this knowledge can be harnessed for biomaterial-based tubular engineering using computational models.
Collapse
Affiliation(s)
- Maria J Hagelaars
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Laura Rijns
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| |
Collapse
|
8
|
Kim HJ, Kim G, Chi KY, Kim H, Jang YJ, Jo S, Lee J, Lee Y, Woo DH, Han C, Kim SK, Park HJ, Kim JH. Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Res Ther 2023; 14:19. [PMID: 36737811 PMCID: PMC9898924 DOI: 10.1186/s13287-023-03235-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The generation of liver organoids recapitulating parenchymal and non-parenchymal cell interplay is essential for the precise in vitro modeling of liver diseases. Although different types of multilineage liver organoids (mLOs) have been generated from human pluripotent stem cells (hPSCs), the assembly and concurrent differentiation of multiple cell types in individual mLOs remain a major challenge. Particularly, most studies focused on the vascularization of mLOs in host tissue after transplantation in vivo. However, relatively little information is available on the in vitro formation of luminal vasculature in mLOs themselves. METHODS The mLOs with luminal blood vessels and bile ducts were generated by assembling hepatic endoderm, hepatic stellate cell-like cells (HscLCs), and endothelial cells derived entirely from hPSCs using 96-well ultra-low attachment plates. We analyzed the effect of HscLC incorporation and Notch signaling modulation on the formation of both bile ducts and vasculature in mLOs using immunofluorescence staining, qRT-PCR, ELISA, and live-perfusion imaging. The potential use of the mLOs in fibrosis modeling was evaluated by histological and gene expression analyses after treatment with pro-fibrotic cytokines. RESULTS We found that hPSC-derived HscLCs are crucial for generating functional microvasculature in mLOs. HscLC incorporation and subsequent vascularization substantially reduced apoptotic cell death and promoted the survival and growth of mLOs with microvessels. In particular, precise modulation of Notch signaling during a specific time window in organoid differentiation was critical for generating both bile ducts and vasculature. Live-cell imaging, a series of confocal scans, and electron microscopy demonstrated that blood vessels were well distributed inside mLOs and had perfusable lumens in vitro. In addition, exposure of mLOs to pro-fibrotic cytokines induced early fibrosis-associated events, including upregulation of genes associated with fibrotic induction and endothelial cell activation (i.e., collagen I, α-SMA, and ICAM) together with destruction of tissue architecture and organoid shrinkage. CONCLUSION Our results demonstrate that mLOs can reproduce parenchymal and non-parenchymal cell interactions and suggest that their application can advance the precise modeling of liver diseases in vitro.
Collapse
Affiliation(s)
- Hyo Jin Kim
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Gyeongmin Kim
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Kyun Yoo Chi
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Hyemin Kim
- grid.418982.e0000 0004 5345 5340Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114 South Korea
| | - Yu Jin Jang
- grid.89336.370000 0004 1936 9924Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Seongyea Jo
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea ,grid.418982.e0000 0004 5345 5340Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114 South Korea
| | - Jihun Lee
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Youngseok Lee
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Dong-Hun Woo
- Department of Stem Cell Biology, NEXEL Co., Ltd, Seoul, 07802 South Korea
| | - Choongseong Han
- Department of Stem Cell Biology, NEXEL Co., Ltd, Seoul, 07802 South Korea
| | - Sang Kyum Kim
- grid.254230.20000 0001 0722 6377College of Pharmacy, Chungnam National University, Daejeon, 34134 South Korea
| | - Han-Jin Park
- grid.418982.e0000 0004 5345 5340Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114 South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
| |
Collapse
|
9
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|