1
|
Bleck D, Loacker-Schöch K, Classen T, Jose J, Schneider M, Pongratz G. Fibroblast-like synoviocytes preferentially induce terminal differentiation of IgD + memory B cells instead of naïve B cells. Immunology 2024; 173:520-535. [PMID: 39054787 DOI: 10.1111/imm.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease driven by highly active autoantibody-producing B cells. Activation of B cells is maintained within ectopic germinal centres found in affected joints. Fibroblast-like synoviocytes (FLS) present in inflamed joints support B-cell survival, activation, and differentiation. CD27+ memory B cells and naive B cells show very different responses to activation, particularly by CD40 ligand (CD40L). We show that FLS-dependent activation of human B cells is dependent on interleukin-6 (IL-6) and CD40L. FLS have been shown to activate both naive and memory B cells. Whether the activating potential of FLS is different for naive and memory B cells has not been investigated. Our results suggest that FLS-induced activation of B cells is dependent on IL-6 and CD40L. While FLS are able to induce plasma cell differentiation, isotype switching, and antibody production in memory B cells, the ability of FLS to activate naive B cells is significantly lower.
Collapse
Affiliation(s)
- Dennis Bleck
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Klara Loacker-Schöch
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tim Classen
- Clinic of Orthopedics/Orthopedic Rheumatology, St. Elisabeth-Hospital Meerbusch-Lank, Meerbusch, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Muenster, Germany
| | - Matthias Schneider
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Georg Pongratz
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Rheumatology, Barmherzige Brueder Hospital Regensburg, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Damerau A, Kirchner M, Mertins P, Buttgereit F, Gaber T. A point-of-research decision in synovial tissue engineering: Mesenchymal stromal cells, tissue derived fibroblast or CTGF-mediated mesenchymal-to-fibroblast transition. Eur J Cell Biol 2024; 103:151455. [PMID: 39293131 DOI: 10.1016/j.ejcb.2024.151455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are prevalent inflammatory joint diseases characterized by synovitis, cartilage, and bone destruction. Fibroblast-like synoviocytes (FLSs) of the synovial membrane are a decisive factor in arthritis, making them a target for future therapies. Developing novel strategies targeting FLSs requires advanced in vitro joint models that accurately replicate non-diseased joint tissue. This study aims to identify a cell source reflecting physiological synovial fibroblasts. Therefore, we newly compared the phenotype and metabolism of "healthy" knee-derived FLSs from patients with ligament injuries (trauma-FLSs) to mesenchymal stromal cells (MSCs), their native precursors. We differentiated MSCs into fibroblasts using connective tissue growth factor (CTGF) and compared selected protein and gene expression patterns to those obtained from trauma-FLSs and OA-FLSs. Based on these findings, we explored the potential of an MSC-derived synovial tissue model to simulate a chronic inflammatory response akin to that seen in arthritis. We have identified MSCs as a suitable cell source for synovial tissue engineering because, despite metabolic differences, they closely resemble human trauma-derived FLSs. CTGF-mediated differentiation of MSCs increased HAS2 expression, essential for hyaluronan synthesis. It showed protein expression patterns akin to OA-FLSs, including markers of ECM components and fibrosis, and enzymes leading to a shift in metabolism towards increased fatty acid oxidation. In general, cytokine stimulation of MSCs in a synovial tissue model induced pro-inflammatory and pro-angiogenic gene expression, hyperproliferation, and increased glucose consumption, reflecting cellular response in human arthritis. We conclude that MSCs can serve as a proxy to study physiological synovial processes and inflammatory responses. In addition, CTGF-mediated mesenchymal-to-fibroblast transition resembles OA-FLSs. Thus, we emphasize MSCs as a valuable cell source for tools in preclinical drug screening and their application in tissue engineering.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Timo Gaber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
3
|
Miao MZ, Lee JS, Yamada KM, Loeser RF. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat Rev Rheumatol 2024; 20:492-509. [PMID: 39014254 DOI: 10.1038/s41584-024-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/18/2024]
Abstract
Integrins are key regulators of cell-matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.
Collapse
Affiliation(s)
- Michael Z Miao
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, Li ZA. 4D bioprinting of programmed dynamic tissues. Bioact Mater 2024; 37:348-377. [PMID: 38694766 PMCID: PMC11061618 DOI: 10.1016/j.bioactmat.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.
Collapse
Affiliation(s)
- Jiahui Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
5
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
6
|
An X, Yang J, Cui X, Zhao J, Jiang C, Tang M, Dong Y, Lin L, Li H, Wang F. Advances in local drug delivery technologies for improved rheumatoid arthritis therapy. Adv Drug Deliv Rev 2024; 209:115325. [PMID: 38670229 DOI: 10.1016/j.addr.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by an inflammatory microenvironment and cartilage erosion within the joint cavity. Currently, antirheumatic agents yield significant outcomes in RA treatment. However, their systemic administration is limited by inadequate drug retention in lesion areas and non-specific tissue distribution, reducing efficacy and increasing risks such as infection due to systemic immunosuppression. Development in local drug delivery technologies, such as nanostructure-based and scaffold-assisted delivery platforms, facilitate enhanced drug accumulation at the target site, controlled drug release, extended duration of the drug action, reduced both dosage and administration frequency, and ultimately improve therapeutic outcomes with minimized damage to healthy tissues. In this review, we introduced pathogenesis and clinically used therapeutic agents for RA, comprehensively summarized locally administered nanostructure-based and scaffold-assisted drug delivery systems, aiming at improving the therapeutic efficiency of RA by alleviating the inflammatory response, preventing bone erosion and promoting cartilage regeneration. In addition, the challenges and future prospects of local delivery for clinical translation in RA are discussed.
Collapse
Affiliation(s)
- Xiaoran An
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaolin Cui
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiaxuan Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chenwei Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Minglu Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, PR China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
7
|
Ning RX, Liu CY, Wang SQ, Li WK, Kong X, He ZW. Application status and optimization suggestions of tumor organoids and CAR-T cell co-culture models. Cancer Cell Int 2024; 24:98. [PMID: 38443969 PMCID: PMC10916304 DOI: 10.1186/s12935-024-03272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Tumor organoids, especially patient-derived organoids (PDOs) exhibit marked similarities in histopathological morphology, genomic alterations, and specific marker expression profiles to those of primary tumour tissues. They are applied in various fields including drug screening, gene editing, and identification of oncogenes. However, CAR-T therapy in the treatment of solid tumours is still at an exploratory stage. Tumour organoids offer unique advantages over other preclinical models commonly used for CAR-T therapy research, which the preservation of the biological characteristics of primary tumour tissue is critical for the study of early-stage solid tumour CAR-T therapies. Although some investigators have used this co-culture model to validate newly targeted CAR-T cells, optimise existing CAR-T cells and explore combination therapy strategies, there is still untapped potential in the co-culture models used today. This review introduces the current status of the application of tumour organoid and CAR-T cell co-culture models in recent years and commented on the limitations of the current co-cultivation model. Meanwhile, we compared the tumour organoid model with two pre-clinical models commonly used in CAR-T therapy research. Eventually, combined with the new progress of organoid technologies, optimization suggestions were proposed for the co-culture model from five perspectives: preserving or reconstructing the tumor microenvironment, systematization, vascularization, standardized culture procedures, and expanding the tumor organoids resource library, aimed at assisting related researchers to better utilize co-culture models.
Collapse
Affiliation(s)
- Rong-Xuan Ning
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, 523710, Guangdong Province, China
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Cun-Yu Liu
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Shi-Qi Wang
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wen-Kai Li
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Xia Kong
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Zhi-Wei He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, 523710, Guangdong Province, China.
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
8
|
Lipa KE, Makarcyzk MJ, Hines S, Lintz CE, Bunnell BA, Lin H. Bioreactor Culture to Create Adipose Tissue from Human Mesenchymal Stromal Cells. Methods Mol Biol 2024; 2783:287-300. [PMID: 38478241 PMCID: PMC11298051 DOI: 10.1007/978-1-0716-3762-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Adipose tissue is a complex and multifaceted endocrine organ located throughout the body. The dysfunction of adipose tissue is known to induce a wide variety of comorbidities that can negatively impact one's health and quality of life. In addition to behavioral changes, drugs that target dysfunctional adipose tissue to treat associated diseases are clinically needed. Regarding drug-testing platforms, animal models are the most popular models, limited by known differences from humans in genetics and physiology. Two-dimensional and static three-dimensional (3D) cell cultures are also used. Still, these in vitro models with static culture fail to recapitulate the phenotype and function of adipocytes seen in vivo. To combat this, our lab has developed an adipose tissue microphysiological system. A perfusion bioreactor with dual-flow chambers is 3D printed, which enables individualized top and bottom medium flows after adipose tissues are inserted as a barrier. Human progenitor cells, such as human mesenchymal stem cells, are embedded within a gelatin scaffold and in situ adipogenic differentiation within the bioreactor. Medium flow is established via a syringe pump system, allowing in vivo-like conditions to be maintained. The novel bioreactor-cultured adipose tissues represent a versatile disease modeling and drug-testing system. Here, we present the step-by-step methods to generate the bioreactors and adipose tissues. We also show the process of collecting and analyzing samples. In addition, we highlight the critical steps that require particular attention in notes.
Collapse
Affiliation(s)
- Katelyn E Lipa
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Meagan J Makarcyzk
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Celeste E Lintz
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Saleem U, Chauhdary Z, Bakhtawar Z, Alqahtani J, Farrukh M, Alsharif I, Baokbah TAS, Shah MA, Blundell R, Panichayupakaranant P. Curcuminoids-enriched extract and its cyclodextrin inclusion complexes ameliorates arthritis in complete Freund's adjuvant-induced arthritic mice via modulation of inflammatory biomarkers and suppression of oxidative stress markers. Inflammopharmacology 2023; 31:3047-3062. [PMID: 37955785 DOI: 10.1007/s10787-023-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Curcuma longa extract and its marker curcuminoids have potential use in inflammatory conditions. However, curcuminoids solubility and bioavailability are major hindrances to their bioactivity. The current study investigated green extraction-based curcuminoids-enriched extract (CRE) prepared from C. longa and its cyclodextrin inclusion complexes, i.e., binary inclusion complexes (BC) and ternary inclusion complexes (TC), in complete Freund's adjuvant (CFA)-induced mice for their comparative anti-arthritic efficacy. CRE, BC, and TC (2.5 and 5 mg/kg) with the standard drug diclofenac sodium (13.5 mg/kg) were orally administered to mice for 4 weeks. Variations in body weight, hematological and biochemical parameters, along with gene expression analysis of arthritis biomarkers, were studied in animals. The histopathological analysis and radiographic examination of joints were also performed. CRE, BC and TC treatment significantly restored the arthritic index, histopathology and body weight changes. The concentration of C-reactive protein, rheumatoid factor and other liver function parameters were significantly recovered by curcuminoids formulations. The pro-inflammatory cytokines (NF-κB, COX-2, IL-6, IL-1β, and TNF-α) gene expression was considerably (p < 0.001) downregulated, while on the other side, the anti-inflammatory genes IL-4 and IL-10 were upregulated by the use of CRE and its complexes. The concentration of antioxidant enzymes was considerably (P < 0.001) recovered by CRE, BC and TC with marked decrease in lipid peroxidation, erosion of bone, inflammation of joints and pannus formation in comparison to arthritic control animals. Therefore, it is concluded that green CRE and its cyclodextrin formulations with enhanced solubility could be considered as an applicable therapeutic choice to treat chronic polyarthritis.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Zunaira Bakhtawar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Jawaher Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Kingdom of Saudi Arabia, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Ajmal Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
- Phytomedicine and Pharmaceutical Biotechnology Excellence Centre, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| |
Collapse
|
10
|
Deng S, Li C, Cao J, Cui Z, Du J, Fu Z, Yang H, Chen P. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics 2023; 13:4526-4558. [PMID: 37649608 PMCID: PMC10465229 DOI: 10.7150/thno.87266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Drug evaluation has always been an important area of research in the pharmaceutical industry. However, animal welfare protection and other shortcomings of traditional drug development models pose obstacles and challenges to drug evaluation. Organ-on-a-chip (OoC) technology, which simulates human organs on a chip of the physiological environment and functionality, and with high fidelity reproduction organ-level of physiology or pathophysiology, exhibits great promise for innovating the drug development pipeline. Meanwhile, the advancement in artificial intelligence (AI) provides more improvements for the design and data processing of OoCs. Here, we review the current progress that has been made to generate OoC platforms, and how human single and multi-OoCs have been used in applications, including drug testing, disease modeling, and personalized medicine. Moreover, we discuss issues facing the field, such as large data processing and reproducibility, and point to the integration of OoCs and AI in data analysis and automation, which is of great benefit in future drug evaluation. Finally, we look forward to the opportunities and challenges faced by the coupling of OoCs and AI. In summary, advancements in OoCs development, and future combinations with AI, will eventually break the current state of drug evaluation.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang Du
- Yunnan Biovalley Pharmaceutical Co., Ltd, Kunming 650503, China
| | - Zheng Fu
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Yunnan Biovalley Pharmaceutical Co., Ltd, Kunming 650503, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing 100700, China
| |
Collapse
|
11
|
Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, Su J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater 2023; 25:29-41. [PMID: 37056252 PMCID: PMC10087111 DOI: 10.1016/j.bioactmat.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The necessity of disease models for bone/cartilage related disorders is well-recognized, but the barrier between ex-vivo cell culture, animal models and the real human body has been pending for decades. The organoid-on-a-chip technique showed opportunity to revolutionize basic research and drug screening for diseases like osteoporosis and arthritis. The bone/cartilage organoid on-chip (BCoC) system is a novel platform of multi-tissue which faithfully emulate the essential elements, biologic functions and pathophysiological response under real circumstances. In this review, we propose the concept of BCoC platform, summarize the basic modules and current efforts to orchestrate them on a single microfluidic system. Current disease models, unsolved problems and future challenging are also discussed, the aim should be a deeper understanding of diseases, and ultimate realization of generic ex-vivo tools for further therapeutic strategies of pathological conditions.
Collapse
|
12
|
Huang J, Zhang L, Lu A, Liang C. Organoids as Innovative Models for Bone and Joint Diseases. Cells 2023; 12:1590. [PMID: 37371060 DOI: 10.3390/cells12121590] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Bone is one of the key components of the musculoskeletal system. Bone and joint disease are the fourth most widespread disease, in addition to cardiovascular disease, cancer, and diabetes, which seriously affect people's quality of life. Bone organoids seem to be a great model by which to promote the research method, which further could improve the treatment of bone and joint disease in the future. Here, we introduce the various bone and joint diseases and their biology, and the conditions of organoid culture, comparing the in vitro models among 2D, 3D, and organoids. We summarize the differing potential methods for culturing bone-related organoids from pluripotent stem cells, adult stem cells, or progenitor cells, and discuss the current and promising bone disease organoids for drug screening and precision medicine. Lastly, we discuss the challenges and difficulties encountered in the application of bone organoids and look to the future in order to present potential methods via which bone organoids might advance organoid construction and application.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
13
|
Ong LJY, Fan X, Rujia Sun A, Mei L, Toh YC, Prasadam I. Controlling Microenvironments with Organs-on-Chips for Osteoarthritis Modelling. Cells 2023; 12:cells12040579. [PMID: 36831245 PMCID: PMC9954502 DOI: 10.3390/cells12040579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoarthritis (OA) remains a prevalent disease affecting more than 20% of the global population, resulting in morbidity and lower quality of life for patients. The study of OA pathophysiology remains predominantly in animal models due to the complexities of mimicking the physiological environment surrounding the joint tissue. Recent development in microfluidic organ-on-chip (OoC) systems have demonstrated various techniques to mimic and modulate tissue physiological environments. Adaptations of these techniques have demonstrated success in capturing a joint tissue's tissue physiology for studying the mechanism of OA. Adapting these techniques and strategies can help create human-specific in vitro models that recapitulate the cellular processes involved in OA. This review aims to comprehensively summarise various demonstrations of microfluidic platforms in mimicking joint microenvironments for future platform design iterations.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Correspondence: (L.J.Y.O.); (I.P.)
| | - Xiwei Fan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Antonia Rujia Sun
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Lin Mei
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Centre for Microbiome Research, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Indira Prasadam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Correspondence: (L.J.Y.O.); (I.P.)
| |
Collapse
|
14
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
15
|
Tuan RS, Zhang Y, Chen L, Guo Q, Yung PSH, Jiang Q, Lai Y, Yu J, Luo J, Xia J, Xu C, Lei G, Su J, Luo X, Zou W, Qu J, Song B, Zhao X, Ouyang H, Li G, Ding C, Wan C, Chan BP, Yang L, Xiao G, Shi D, Xu J, Cheung LWH, Bai X, Xie H, Xu R, Li ZA, Chen D, Qin L. Current progress and trends in musculoskeletal research: Highlights of NSFC-CUHK academic symposium on bone and joint degeneration and regeneration. J Orthop Translat 2022; 37:175-184. [PMID: 36605329 PMCID: PMC9791426 DOI: 10.1016/j.jot.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rocky S. Tuan
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Lin Chen
- Daping Hospital, The Third Military (Army) Medical University, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Chinese PLA Medical School, China
| | - Patrick SH. Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing Jiang
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Yuxiao Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jiakuo Yu
- Peking University Third Hospital, China
| | - Jian Luo
- School of Medicine, Tongji University, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guanghua Lei
- Xiangya Hospital Central South University, China
| | - Jiacan Su
- Changhai Hospital, People's Liberation Army Naval Medical University, China
| | | | - Weiguo Zou
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
| | - Jing Qu
- Institute of Zoology, Chinese Academy of Sciences, China
| | - Bing Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changhai Ding
- Zhujiang Hospital of Southern Medical University, Menzies Institute of Medical Research, University of Tasmania, Australia
| | - Chao Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Barbara P. Chan
- Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Institute of Orthopaedics, Xijing Hospital, Air Force Medical University, China
| | - Guozhi Xiao
- Department of Biology, Southern University of Science and Technology, China
| | - Dongquan Shi
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Jiankun Xu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis WH. Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaochun Bai
- School of Basic Medical Sciences, Southern Medical University, China
| | - Hui Xie
- Xiangya Hospital Central South University, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Lim YY, Zaidi AMA, Miskon A. Composing On-Program Triggers and On-Demand Stimuli into Biosensor Drug Carriers in Drug Delivery Systems for Programmable Arthritis Therapy. Pharmaceuticals (Basel) 2022; 15:1330. [PMID: 36355502 PMCID: PMC9698912 DOI: 10.3390/ph15111330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 08/31/2023] Open
Abstract
Medication in arthritis therapies is complex because the inflammatory progression of rheumatoid arthritis (RA) and osteoarthritis (OA) is intertwined and influenced by one another. To address this problem, drug delivery systems (DDS) are composed of four independent exogenous triggers and four dependent endogenous stimuli that are controlled on program and induced on demand, respectively. However, the relationships between the mechanisms of endogenous stimuli and exogenous triggers with pathological alterations remain unclear, which results in a major obstacle in terms of clinical translation. Thus, the rationale for designing a guidance system for these mechanisms via their key irritant biosensors is in high demand. Many approaches have been applied, although successful clinical translations are still rare. Through this review, the status quo in historical development is highlighted in order to discuss the unsolved clinical difficulties such as infiltration, efficacy, drug clearance, and target localisation. Herein, we summarise and discuss the rational compositions of exogenous triggers and endogenous stimuli for programmable therapy. This advanced active pharmaceutical ingredient (API) implanted dose allows for several releases by remote controls for endogenous stimuli during lesion infections. This solves the multiple implantation and local toxic accumulation problems by using these flexible desired releases at the specified sites for arthritis therapies.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|