1
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Funari R, Chu KY, Shen AQ. Multiplexed Opto-Microfluidic Biosensing: Advanced Platform for Prostate Cancer Detection. ACS Sens 2024; 9:2596-2604. [PMID: 38683677 DOI: 10.1021/acssensors.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cancer stands as a prominent global cause of mortality, necessitating early detection to augment survival rates and alleviate economic burdens on healthcare systems. In particular, prostate cancer (PCa), impacting 1.41 million men globally in 2020, accentuates the demand for sensitive and cost-effective detection methods beyond traditional prostate-specific antigen (PSA) testing. While clinical techniques exhibit limitations, biosensors emerge as compact, user-friendly alternatives to traditional laboratory approaches. However, existing biosensors predominantly concentrate on PSA detection, prompting the necessity for advancing toward multiplex sensing platforms. This study introduces a compact opto-microfluidic sensor featuring a substrate of gold nanospikes, fabricated via electrodeposition, for enhanced sensitivity. Embedded within a microfluidic chip, this nanomaterial enables the precise and concurrent measurement of PSA, alongside two complementary PCa biomarkers, matrix metalloproteinase-2 (MMP-2) and anti-α-methylacyl-CoA racemase (anti-AMACR) in diluted human plasma, offering a comprehensive approach to PSA analysis. Taking advantage of the localized surface plasmon resonance principle, this biosensor offers robustness and sensitivity in real sample analysis without the need for labeling agents. With the limit of detection at 0.22, 0.37, and 0.18 ng/mL for PSA, MMP-2, and anti-AMACR, respectively, this biosensing platform holds promise for point-of-care analysis, underscoring its potential impact on medical diagnostics.
Collapse
Affiliation(s)
- Riccardo Funari
- Institute of Mechanical Intelligence, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, Pisa 56124, Italy
| | - Kang-Yu Chu
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|
4
|
Palakollu VN, Veera Manohara Reddy Y, Shekh MI, Vattikuti SVP, Shim J, Karpoormath R. Electrochemical immunosensing of tumor markers. Clin Chim Acta 2024; 557:117882. [PMID: 38521164 DOI: 10.1016/j.cca.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The rising incidence and mortality rates of cancer have led to a growing need for precise and prompt early diagnostic approaches to effectively combat this disease. However, traditional methods employed for detecting tumor cells, such as histopathological and immunological techniques, are often associated with complex procedures, high analytical expenses, elevated false positive rates, and a dependence on experienced personnel. Tracking tumor markers is recognized as one of the most effective approaches for early detection and prognosis of cancer. While onco-biomarkers can also be produced in normal circumstances, their concentration is significantly elevated when tumors are present. By monitoring the levels of these markers, healthcare professionals can obtain valuable insights into the presence, progression, and response to treatment of cancer, aiding in timely diagnosis and effective management. This review aims to provide researchers with a comprehensive overview of the recent advancements in tumor markers using electrochemical immunosensors. By highlighting the latest developments in this field, researchers can gain a general understanding of the progress made in the utilization of electrochemical immunosensors for detecting tumor markers. Furthermore, this review also discusses the current limitations associated with electrochemical immunosensors and offers insights into paving the way for further improvements and advancements in this area of research.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru 560064, India; Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Mehdihasan I Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
5
|
Bounoua N, Cetinkaya A, Piskin E, Kaya SI, Ozkan SA. The sensor applications for prostate and lung cancer biomarkers in terms of electrochemical analysis. Anal Bioanal Chem 2024; 416:2277-2300. [PMID: 38279011 DOI: 10.1007/s00216-024-05134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.
Collapse
Affiliation(s)
- Nadia Bounoua
- Department of Exact Sciences, Laboratory of the Innovation Sponsorship and the Emerging Institution for Graduates of Higher Education of Sustainable Development and Dealing with Emerging Conditions, Normal Higher School of Bechar, Bechar, Algeria
- Laboratory of Chemical and Environmental Science (LCSE), 8000, Bechar, Algeria
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ensar Piskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey.
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
6
|
Petrenko VA. Phage Display's Prospects for Early Diagnosis of Prostate Cancer. Viruses 2024; 16:277. [PMID: 38400052 PMCID: PMC10892688 DOI: 10.3390/v16020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is the second most diagnosed cancer among men. It was observed that early diagnosis of disease is highly beneficial for the survival of cancer patients. Therefore, the extension and increasing quality of life of PC patients can be achieved by broadening the cancer screening programs that are aimed at the identification of cancer manifestation in patients at earlier stages, before they demonstrate well-understood signs of the disease. Therefore, there is an urgent need for standard, sensitive, robust, and commonly available screening and diagnosis tools for the identification of early signs of cancer pathologies. In this respect, the "Holy Grail" of cancer researchers and bioengineers for decades has been molecular sensing probes that would allow for the diagnosis, prognosis, and monitoring of cancer diseases via their interaction with cell-secreted and cell-associated PC biomarkers, e.g., PSA and PSMA, respectively. At present, most PSA tests are performed at centralized laboratories using high-throughput total PSA immune analyzers, which are suitable for dedicated laboratories and are not readily available for broad health screenings. Therefore, the current trend in the detection of PC is the development of portable biosensors for mobile laboratories and individual use. Phage display, since its conception by George Smith in 1985, has emerged as a premier tool in molecular biology with widespread application. This review describes the role of the molecular evolution and phage display paradigm in revolutionizing the methods for the early diagnosis and monitoring of PC.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Dicle Y, Karamese M. Biosensors for the detection of pathogenic bacteria: current status and future perspectives. Future Microbiol 2024; 19:281-291. [PMID: 38305241 DOI: 10.2217/fmb-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pathogenic microorganisms pose significant threats to human health, food safety and environmental integrity. Rapid and accurate detection of these pathogens is essential to mitigate their impact. Fast, sensitive detection methods such as biosensors also play a critical role in preventing outbreaks and controlling their spread. In recent years, biosensors have emerged as a revolutionary technology for pathogen detection. This review aims to present the current developments in biosensor technology, investigate the methods by which these developments are used in the detection of pathogenic bacteria and highlight future perspectives on the subject.
Collapse
Affiliation(s)
- Yalcin Dicle
- Department of Medical Microbiology, Mardin Artuklu University, Faculty of Medicine, Mardin, 47200, Turkey
| | - Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| |
Collapse
|
8
|
Alwraikat A, Jaradat A, Marji SM, Bayan MF, Alomari E, Naser AY, Alyami MH. Development of a Novel, Ecologically Friendly Generation of pH-Responsive Alginate Nanosensors: Synthesis, Calibration, and Characterisation. SENSORS (BASEL, SWITZERLAND) 2023; 23:8453. [PMID: 37896546 PMCID: PMC10610811 DOI: 10.3390/s23208453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Measurement of the intracellular pH is particularly crucial for the detection of numerous diseases, such as carcinomas, that are characterised by a low intracellular pH. Therefore, pH-responsive nanosensors have been developed by many researchers due to their ability to non-invasively detect minor changes in the pH of many biological systems without causing significant biological damage. However, the existing pH-sensitive nanosensors, such as the polyacrylamide, silica, and quantum dots-based nanosensors, require large quantities of organic solvents that could cause detrimental damage to the ecosystem. As a result, this research is aimed at developing a new generation of pH-responsive nanosensors comprising alginate natural polymers and pH-sensitive fluorophores using an organic, solvent-free, and ecologically friendly method. Herein, we successfully synthesised different models of pH-responsive alginate nanoparticles by varying the method of fluorophore conjugation. The synthesised pH nanosensors demonstrated a low MHD with a relatively acceptable PDI when using the lowest concentration of the cross-linker Ca+2 (1.25 mM). All the pH nanosensors showed negative zeta potential values, attributed to the free carboxylate groups surrounding the nanoparticles' surfaces, which support the colloidal stability of the nanosensors. The synthesised models of pH nanosensors displayed a high pH-responsiveness with various correlations between the pH measurements and the nanosensors' fluorescence signal. In summation, pH-responsive alginate nanosensors produced using organic, solvent-free, green technology could be harnessed as potential diagnostics for the intracellular and extracellular pH measurements of various biological systems.
Collapse
Affiliation(s)
- Abdalaziz Alwraikat
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Abdolelah Jaradat
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Saeed M. Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (S.M.M.); (M.F.B.)
| | - Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (S.M.M.); (M.F.B.)
| | - Esra’a Alomari
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Abdallah Y. Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan; (A.A.); (A.J.); (E.A.); (A.Y.N.)
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| |
Collapse
|
9
|
Sarabi MR, Karagoz AA, Yetisen AK, Tasoglu S. 3D-Printed Microrobots: Translational Challenges. MICROMACHINES 2023; 14:1099. [PMID: 37374684 DOI: 10.3390/mi14061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023]
Abstract
The science of microrobots is accelerating towards the creation of new functionalities for biomedical applications such as targeted delivery of agents, surgical procedures, tracking and imaging, and sensing. Using magnetic properties to control the motion of microrobots for these applications is emerging. Here, 3D printing methods are introduced for the fabrication of microrobots and their future perspectives are discussed to elucidate the path for enabling their clinical translation.
Collapse
Affiliation(s)
| | - Ahmet Agah Karagoz
- School of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Türkiye
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul 34450, Türkiye
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Savas Tasoglu
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul 34450, Türkiye
- School of Mechanical Engineering, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
| |
Collapse
|