1
|
ISHIGURO Y, SASAKI M, YAMAGUCHI E, MATSUMOTO K, FUKUMOTO S, FURUOKA H, IMAI K, KITAMURA N. Seasonal changes of the prostate gland in the raccoon (Procyon lotor) inhabiting Hokkaido, Japan. J Vet Med Sci 2023; 85:214-225. [PMID: 36596557 PMCID: PMC10017286 DOI: 10.1292/jvms.22-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
In the prostate gland of the raccoon (Procyon lotor), the morphological appearance of the epithelial cells, such as basal and luminal cells, and the expressions of p63, androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) were examined histologically and immunohistochemically to clarify their seasonal dynamics throughout the year. In this study, the regression with luminal cell defluxion and the regeneration process of the prostatic glandular epithelium was revealed in the seasons with declined spermatogenesis (June to August). The expression of p63 was observed only in the basal cells. AR immunoreactivity in the luminal cells was shown in the developed and regenerating (close to developed) prostates, whereas the basal cells exhibited AR immunoreactivity all year round. PCNA expression was rare in epithelial cells of the developed prostate gland. In the regressed gland, the basal cells demonstrated proliferative ability, whereas PCNA of the luminal cells appeared for the first time in the regenerating phase. This study is the first to clarify the regression with luminal cell defluxion and restoration and the seasonal dynamics of AR expression and proliferative activity in the prostate gland of seasonal breeders.
Collapse
Affiliation(s)
- Yuki ISHIGURO
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Motoki SASAKI
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Emi YAMAGUCHI
- Division of Transboundary Animal Disease Research, National
Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki,
Japan
| | - Kotaro MATSUMOTO
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Shinya FUKUMOTO
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Hidefumi FURUOKA
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Kunitoshi IMAI
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Nobuo KITAMURA
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
2
|
Hamidatou Khati W, Souilem O, Al Mutery AF, Derbouz Rouibate A, Benhafri N, Issad SM. Advances in research on the biology of the desert rodent Gerbillus tarabuli: a review. Lab Anim 2022; 56:319-330. [PMID: 35216536 DOI: 10.1177/00236772211069775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Selection of the appropriate species and strain of laboratory animals are among the scientist's major concerns. Tarabul's gerbil (Gerbillus tarabuli) is a small, seasonally breeding, desert rodent native to Africa. Despite its unique biological features, which make it an ideal model candidate for biomedical research, only a few reports have used it in research. Hence, the present review aims to provide more data about this species, covering all aspects of its biology, such as taxonomy, morphology, anatomy, ecology, wildlife biology, molecular biology, physiology, neurobiology, genetics, reproduction, development, evolutionary biology, and conservation biology, and covers current progress in exploration of G. tarabuli, discussing its valuable characteristics, which are widely useful for research in various fields. This review paper is destined for biologists, scientists, mammologists, zoologists, academics, and students.
Collapse
Affiliation(s)
- Wissam Hamidatou Khati
- Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari Boumediene (USTHB), Algeria
| | - Ouajdi Souilem
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, University of Manouba, Tunisia
| | - Abdullah Fahad Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, United Arab Emirates
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, United Arab Emirates
- Molecular Genetics Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - Amina Derbouz Rouibate
- Laboratory of Organism's Biology and Physiology, Neurobiology Team, Biological Sciences Faculty, USTHB, Algeria
| | - Nadir Benhafri
- Laboratory of Organism's Biology and Physiology, Neurobiology Team, Biological Sciences Faculty, USTHB, Algeria
| | - Salem Mamoun Issad
- Laboratory of Organism's Biology and Physiology, Neurobiology Team, Biological Sciences Faculty, USTHB, Algeria
| |
Collapse
|
3
|
Zhang H, Chen P, Liu Y, Xie W, Fan S, Yao Y, Han Y, Yuan Z, Weng Q. Estrogen signaling regulates seasonal changes of the prostate in wild ground squirrels (Spermophilus dauricus). J Steroid Biochem Mol Biol 2022; 218:106058. [PMID: 35017044 DOI: 10.1016/j.jsbmb.2022.106058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 12/05/2022]
Abstract
Previous studies found that testosterone was converted to dihydrotestosterone under the catalysis of 5α-reductase in the prostate of the wild ground squirrels. As a result, this study explored further whether testosterone could be converted to estrogen to affect the prostate gland function in wild ground squirrels. Histological observation showed that the area of epithelial cells and the prostatic secretory lumen were enlarged significantly during the breeding period. Transcriptome analysis revealed that the differentially expressed genes in the prostate were concentrated in the estrogen signaling pathway. Immunohistochemical analysis showed that the immunoreactivities of P450arom were detected in the stromal cells during the breeding and non-breeding periods, indicating the possible conversion of androgen into estrogen locally. Moreover, the immunolocalizations of ERα and ERβ were detected mainly in the epithelial or stromal cells. Additionally, qPCR analysis displayed that the mRNA expression level of P450arom in the prostate was significantly higher during the breeding period than that in the non-breeding period. Consistently, the concentration of 17β-estradiol (E2) was higher in the prostate during the breeding period than the non-breeding period, which is positively correlated with the seasonal changes of prostatic weight. In conclusion, the present results indicated that estrogen produced by P450arom presented in stromal cells might regulate the growth and function of the prostate gland via the locally expressed estrogen receptors in wild ground squirrels. The results of this study were momentous for further uncovering the mechanism of the seasonal regulated by signal pathways in the prostate of wild ground squirrels.
Collapse
Affiliation(s)
- Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Pengyu Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuxin Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchen Yao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Yao W, Liu W, Deng K, Wang Z, Wang DH, Zhang XY. GnRH expression and cell proliferation are associated with seasonal breeding and food hoarding in Mongolian gerbils (Meriones unguiculatus). Horm Behav 2019; 112:42-53. [PMID: 30922890 DOI: 10.1016/j.yhbeh.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Seasonal brain plasticity contributes to a variety of physiological and behavioral processes. We hypothesized that variations in GnRH expression and cell proliferation facilitated seasonal breeding and food hoarding. Here, we reported seasonal changes in sexual and social behavior, GnRH expression and brain cell proliferation, and the role of photoperiod in inducing seasonal breeding and brain plasticity in Mongolian gerbils (Meriones unguiculatus). The gerbils captured in April and July had more mature sexual development, higher exploratory behavior, and preferred novelty much more than those captured in September. Male gerbils captured in April and July had consistently higher GnRH expression than those captured in September. GnRH expression was also found to be suppressed by food-induced hoarding behavior in the breeding season. Both subadult and adult gerbils from April and July had higher cell proliferation in SVZ, hypothalamus and amygdala compared to those in September. However, adult gerbils captured in September preferred familiar objects, and no seasonal differences were found in cell proliferation in hippocampal dentate gyrus among the three seasons. The laboratory study showed that photoperiod alone did not alter reproductive traits, behavior, cell proliferation or cell survival in the detected brain regions. These findings suggest that the structural variations in GnRH expression in hypothalamus and cell proliferation in hypothalamus, amygdala and hippocampus are associated with seasonal breeding and food hoarding in gerbils. It gives a new insight into the proximate physiological and neural basis for these seasonal life-history traits of breeding and food hoarding in small mammals.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zatra Y, Aknoun-Sail N, Kheddache A, Benmouloud A, Charallah S, Moudilou EN, Exbrayat JM, Khammar F, Amirat Z. Seasonal changes in plasma testosterone and cortisol suggest an androgen mediated regulation of the pituitary adrenal axis in the Tarabul's gerbil Gerbillus tarabuli (Thomas, 1902). Gen Comp Endocrinol 2018; 258:173-183. [PMID: 28811197 DOI: 10.1016/j.ygcen.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/23/2017] [Accepted: 08/11/2017] [Indexed: 12/05/2022]
Abstract
In the desert gerbil Gerbillus tarabuli (Thomas, 1902), cortisol is the main glucocorticosteroid produced by the adrenal glands. Plasma cortisol concentrations show highest values when testosterone is reduced and lowest values during the breeding season which occurs from early winter to late spring. In order to specify the implication of testicular androgens in these corticosteroid seasonal variations we investigated the effects induced by gonadectomy performed during the breeding season on the pituitary adrenal axis. The animals collected in winter were assessed into three groups: sham-operated (Controls; n=13), gonadectomised (GDX; n=13) and testosterone replaced gonadectomised (GDX+T; n=13). Physiological replacement of testosterone enanthate (75µg/100gb.w./twice daily) was applied during one week, while GDX group received the vehicle (40µL sesame oil) alone. The right adrenal glands removed from euthanized animals were fixed for histomorphometry and androgen receptors (ARs) immunohistochemistry and the left ones were frozen with plasma samples until hormonal assays. Gonadectomy induces the enlargement of the adrenal cortex essentially due to that of zonae fasciculata (ZF) and reticularis (ZR) and perimedullary connective tissue which is abundant in the gerbil adrenals. The ARs immunostaining present at both cytoplasmic and nucleus level, is enhanced intensely in the ZR and moderately in the ZF and zona glomerulosa (ZG) cells. GDX group shows reduced plasma ACTH concentration (p=0.0126) by 61% despite the increase in cortisol concentration occurring both in plasma (+216%; p=0.0436) and adrenal tissue (+117%; p=0.0348). Plasma aldosterone is also enhanced significantly (p=0.0147) by 189% but androstenedione synthesis increased in adrenal tissue (p=0.0459) by 65% instead a decrease at circulatory level (p=0.0355) by 58% due to lack of testicular origin. So, testosterone deprivation activates corticosteroidogenesis also evidenced by the adrenal structure changes and the gonadectomy-induced increase in the plasma cholesterol. All of the gonadectomy-induced responses are reversible after physiological testosterone replacement. We conclude that the assessment of circulating adrenocorticotropic hormone (ACTH) concentrations together with cortisol levels essentially, reflecting the hypothalamic-pituitary adrenal (HPA) axis feedback loop control during the annual endogenous changes of testosterone secretion, represents a well-adapted response of this desert species living in an extreme environment.
Collapse
Affiliation(s)
- Yamina Zatra
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| | - Naouel Aknoun-Sail
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| | - Arezki Kheddache
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| | - Abdelouafi Benmouloud
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| | - Salima Charallah
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| | - Elara N Moudilou
- Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon, Reproduction et Développement Comparé, EPHE, 10 place des archives, 69288 Lyon Cedex 02, France.
| | - Jean-Marie Exbrayat
- Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon, Reproduction et Développement Comparé, EPHE, 10 place des archives, 69288 Lyon Cedex 02, France.
| | - Farida Khammar
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| | - Zaina Amirat
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Laboratoire de recherche sur les zones arides (LRZA), Faculté des Sciences Biologiques, BP 32, El-Alia, 16111 ou BP 44, Alger Gare, 16000, DZ, Algeria.
| |
Collapse
|