1
|
Lin Z, Chen R, Wang J, Zheng Y, He Z, Yan Y, Zhang L, Huang X, Zhang H. Auranofin Suppresses the Growth of Canine Mammary Tumour Cells and Induces Apoptosis via the PI3K/AKT Pathway. Vet Comp Oncol 2024; 22:555-565. [PMID: 39221701 DOI: 10.1111/vco.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Canine mammary gland tumour (CMT) is the most common spontaneous tumour in intact female dogs and often exhibits metastases. Auranofin (AF) is a gold complex used for treating rheumatism. The excellent anti-tumour ability of AF has been demonstrated in various types of human and canine tumours. In this study, five CMT cell lines (CIPp, CMT-7364, CHMp, CIPm and CTBp) and three CMT primary cells (G7894, L1883 and L6783) were used to explore the anti-tumour effect of AF on CMT. Two CMT cell lines (CIPp and CMT-7364) were used to search the underlying mechanism of the effect of AF on CMT. The results showed that AF inhibited the growth, migration, invasion, and colony formation abilities of CMT cells. Additionally, the growth of CMT in a 3D cell culture model was effectively suppressed by AF. Furthermore, AF induced cell apoptosis of CMT cells via the PI3K/AKT pathway. In conclusion, AF effectively induces CMT apoptosis by regulating the PI3K/AKT pathway, indicating that AF should be explored as a potential CMT treatment in future studies.
Collapse
Affiliation(s)
- Zhaoyan Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiao Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixuan He
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linxi Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Jing Z, Feng J, Jin H. Epidemiological investigation and surgical treatment of canine mammary tumors in Dalian, China, from 2019 to 2023. PLoS One 2024; 19:e0314292. [PMID: 39576831 PMCID: PMC11584073 DOI: 10.1371/journal.pone.0314292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Objective of this study is to investigate the epidemiological characteristics, clinical features, and treatment outcomes of canine mammary tumors in Dalian, providing insights into prevention and management strategies. A retrospective analysis was conducted on 198 cases of canine mammary tumors diagnosed in outpatient departments across several veterinary hospitals in Dalian. Data on breed, age, sex, tumor location, and clinical staging were collected and correlated with treatment modalities and prognosis. Poodles, Chinese pastoral dogs, and Cocker Spaniels exhibited higher incidence rates. The majority of affected dogs were middle-aged and older females, with unneutered dogs and those with a history of false pregnancies being at the highest risk. Benign tumors were more common in younger dogs, while malignant tumors predominated in older dogs, accounting for 89.9% of the cases. Early surgical intervention significantly improved survival and quality of life. Early detection, prompt surgical treatment, and post-operative follow-up are essential for optimal outcomes in canine mammary tumor management. This study summarizes the impact of early sterilization on tumor development and suggests that preventive measures, such as total ovarian extraction prior to the first estrus, are effective in reducing the incidence of mammary tumors.
Collapse
Affiliation(s)
- Zheng Jing
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jiawang Feng
- Tibet Vocational Technical College, Lasa, Tibet, China
| | - Hongyan Jin
- Tibet Vocational Technical College, Lasa, Tibet, China
| |
Collapse
|
3
|
Kim MC, Borcherding N, Song WJ, Kolb R, Zhang W. Leveraging single-cell transcriptomic data to uncover immune suppressive cancer cell subsets in triple-negative canine breast cancers. Front Vet Sci 2024; 11:1434617. [PMID: 39376916 PMCID: PMC11457229 DOI: 10.3389/fvets.2024.1434617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Single-cell RNA sequencing (scRNA-seq) has become an essential tool for uncovering the complexities of various physiological and immunopathological conditions in veterinary medicine. However, there is currently limited information on immune-suppressive cancer subsets in canine breast cancers. In this study, we aimed to identify and characterize immune-suppressive subsets of triple-negative canine breast cancer (TNBC) by utilizing integrated scRNA-seq data from published datasets. Methods Published scRNA-seq datasets, including data from six groups of 30 dogs, were subjected to integrated bioinformatic analysis. Results Immune modulatory TNBC subsets were identified through functional enrichment analysis using immune-suppressive gene sets, including those associated with anti-inflammatory and M2-like macrophages. Key immune-suppressive signaling, such as viral infection, angiogenesis, and leukocyte chemotaxis, was found to play a role in enabling TNBC to evade immune surveillance. In addition, interactome analysis revealed significant interactions between distinct subsets of cancer cells and effector T cells, suggesting potential T-cell suppression. Discussion The present study demonstrates a versatile and scalable approach to integrating and analyzing scRNA-seq data, which successfully identified immune-modulatory subsets of canine TNBC. It also revealed potential mechanisms through which TNBC promotes immune evasion in dogs. These findings are crucial for advancing the understanding of the immune pathogenesis of canine TNBC and may aid in the development of new immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Veterinary Laboratory Medicine, Clinical Pathology, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Woo-Jin Song
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Ferreira T, Miranda M, Pinto-Leite R, Mano JF, Medeiros R, Oliveira PA, Gama A. Integrated Study of Canine Mammary Tumors Histopathology, Immunohistochemistry, and Cytogenetic Findings. Vet Sci 2024; 11:409. [PMID: 39330788 PMCID: PMC11435489 DOI: 10.3390/vetsci11090409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer is a complex pathological condition associated with substantial rates of mortality and morbidity in both humans and animals. Mammary gland tumors in intact female dogs are the most prevalent neoplasms. Surgical intervention remains the primary treatment choice. Alternative therapeutic options have emerged, with histopathological examination being fundamental to confirm the diagnosis and to decide the best therapy. This research focused on the clinicopathological, immunohistochemical, and cytogenetic aspects of canine mammary tumors (CMTs). Most of the animals were mixed-breed, with the majority being older than seven years, and only 16.7% had been spayed before surgery. Caudal abdominal and inguinal mammary glands were the most affected, with regional mastectomy being the predominant treatment (75.0%). Of all the tumors, 29.1% were benign, while 70.9% were malignant. Complex adenoma was the most common benign tumor, whereas tubulopapillary carcinoma was the most common malignant type. Grade III tumors (17.6%) were the least encountered, while grades I and II exhibited a similar prevalence (41.2%). All the carcinomas were classified as luminal, and cytogenetics analysis demonstrated a high chromosomal instability with significant aneuploidy observed in all cases and polyploidy detected in 62.5%. This study holds significance as canine and human breast cancers share similar characteristics, suggesting that dogs could be a valuable model for human breast cancer research. Further studies with larger sample sizes are needed to enhance our understanding of CMTs.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Miranda
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rosário Pinto-Leite
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E., 5000-508 Vila Real, Portugal
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Yeom J, Cho Y, Ahn S, Jeung S. Anticancer effects of alpelisib on PIK3CA-mutated canine mammary tumor cell lines. Front Vet Sci 2023; 10:1279535. [PMID: 38033642 PMCID: PMC10684731 DOI: 10.3389/fvets.2023.1279535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Canine mammary tumors (CMTs) are commonly observed in old and unspayed female dogs. Recently, dogs have been increasingly spaying at a young age to prevent mammary tumors. These CMTs require extensive local excision and exhibit a high probability of metastasis to the regional lymph nodes and lungs during malignancy. However, the molecular and biological mechanisms underlying CMT development have not been fully elucidated, and research in this area is limited. Therefore, in this study, we established new CMT cell lines by isolating cells from tumor tissues and investigated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), a target for human breast cancer. PIK3CA mutations were observed at a similar loci as in the human PIK3CA gene in half of all canine samples. Furthermore, we investigated whether alpelisib, a PIK3CA inhibitor approved by the U.S. Food and Drug Administration for human breast cancer treatment, along with fulvestrant, is effective for CMT treatment. Alpelisib exerted stronger anticancer effects on cell lines with PIK3CA mutations than on the wild-type cell lines. In conclusion, we established new CMT cell lines with PIK3CA mutations and confirmed the efficacy of alpelisib for CMT treatment in vitro.
Collapse
Affiliation(s)
- Jiah Yeom
- Research Institute, VIP Animal Medical Center, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Vazquez E, Lipovka Y, Cervantes-Arias A, Garibay-Escobar A, Haby MM, Queiroga FL, Velazquez C. Canine Mammary Cancer: State of the Art and Future Perspectives. Animals (Basel) 2023; 13:3147. [PMID: 37835752 PMCID: PMC10571550 DOI: 10.3390/ani13193147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mammary cancer is the most frequently diagnosed neoplasia in women and non-spayed female dogs and is one of the leading causes of death in both species. Canines develop spontaneous mammary tumors that share a significant number of biological, clinical, pathological and molecular characteristics with human breast cancers. This review provides a detailed description of the histological, molecular and clinical aspects of mammary cancer in canines; it discusses risk factors and currently available diagnostic and treatment options, as well as remaining challenges and unanswered questions. The incidence of mammary tumors is highly variable and is impacted by biological, pathological, cultural and socioeconomic factors, including hormonal status, breed, advanced age, obesity and diet. Diagnosis is mainly based on histopathology, although several efforts have been made to establish a molecular classification of canine mammary tumors to widen the spectrum of treatment options, which today rely heavily on surgical removal of tumors. Lastly, standardization of clinical study protocols, development of canine-specific biological tools, establishment of adequate dog-specific disease biomarkers and identification of targets for the development of new therapies that could improve survival and have less adverse effects than chemotherapy are among the remaining challenges.
Collapse
Affiliation(s)
- Eliza Vazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Alejandro Cervantes-Arias
- Department of Small Animal Medicine and Surgery, Small Animal Teaching Hospital, The National University of Mexico (UNAM), Ciudad Universitaria, Investigación Científica 3000, Coyoacán, Mexico City 04360, Mexico;
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Michelle M. Haby
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Felisbina Luisa Queiroga
- CECAV—Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| |
Collapse
|
7
|
Gu C, Su J, Wang J, Xie Q, Wu J, Xiao J, Liu W. Fusion protein and hemagglutinin of canine distemper virus co-induce apoptosis in canine mammary tumor cells. J Cancer Res Clin Oncol 2023; 149:9903-9918. [PMID: 37249647 DOI: 10.1007/s00432-023-04878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Canine distemper virus (CDV) has been shown to have oncolytic activity against primary canine tumors. Previous studies from this laboratory had confirmed that CDV induces apoptosis in canine mammary tumor (CMT) cells, although the molecular mechanism remains unknown. METHODS The CDV N, P, M, F, H, L, C, and V genes were identified in CDV-L and cloned separately. Mutants with deletions in the 5' region (pCMV-F L△60, pCMV-FL△107, and pCMV-FL△114) or with site-directed mutagenesis in the 3' region (pCMV-FLA602-610) of the F gene were generated. Late-stage apoptotic cells were detected by Hoechst 33342. Early-stage apoptotic cells were detected by AnnexinV-FITC/PI. Quantitative real-time PCR was performed to detect the mRNA levels of target genes of apoptotic and NF-κB pathway. Western blot analysis was performed to detect the expression or phosphorylation levels of target proteins of apoptotic or NF-κB pathway. Immunofluorescence assay was performed to detect the nuclear translocation of p65 protein. Recombinant viruses (rCDV-FL△60 and rCDV-FLA602-610) were rescued by a BHK-T7-based system. 5-week-old female BALB/c nude mice were used to detect the oncolytic activity of recombinant viruses. RESULTS In this study, it was first confirmed that none of the structural or non-structural proteins of CDV-L, a vaccine strain, was individually able to induce apoptosis in canine mammary tubular adenocarcinoma cells (CIPp) or intraductal papillary carcinoma cells (CMT-7364). However, when CIPp or CMT-7364 cells were co-transfected with glycoprotein fusion (F) and hemagglutinin (H) proteins of CDV-L, nuclear fragmentation was observed and a high proportion of early apoptotic cells were detected, as well as cleaved caspase-3, caspase-8 and poly (ATP ribose) polymerase (PARP). Cleaved caspase-3 and PARP were down-regulated by apoptosis broad-spectrum inhibitor Z-VAD-FMK and caspase-8 pathway inhibitor Z-IETD-FMK, confirming that the F and H proteins coinduced apoptosis in CMT cells via the caspase-8 and caspase-3 pathways. F and H proteins co-induced phosphorylation of p65 and IκBα and nuclear translocation of p65, confirming activation of the NF-κB pathway, inhibition of which down-regulated cleaved caspase-3 and cleaved PARP. Recombinant F protein with enhanced fusion activity and H protein co-induced more cleaved caspase-3 and PARP than parental F protein, while the corresponding recombinant virus exhibited the same properties both in CIPp cells and in a subcutaneous xenograft mouse model. CONCLUSIONS F and H proteins of CDV-L co-induce apoptosis in CMT cells, while the NF-κB pathway and fusion activity of F protein paly essential roles in the process.
Collapse
Affiliation(s)
- Chenchen Gu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Qianqian Xie
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jing Wu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China
| | - Jun Xiao
- Department of Geriatrics, The Eight Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing, China.
| |
Collapse
|
8
|
Zhou C, Lin Z, Li X, Zhang D, Song P. Establishment and characterization of a multi-drug resistant cell line for canine mammary tumors. Front Vet Sci 2023; 10:1129756. [PMID: 37077947 PMCID: PMC10108679 DOI: 10.3389/fvets.2023.1129756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Background and purposeCanine mammary tumors are the most common tumor disease of female dogs, and adjuvant chemotherapy often results in multi-drug resistance. Currently, the mechanisms underlying the development of tumor multi-drug resistance are unclear. The translation of research applications that can be used to effectively overcome tumor resistance is similarly hampered. Therefore, it is urgent to construct multi-drug resistance models of canine mammary tumors that can be used for research, to explore the mechanisms and means of overcoming resistance.Materials and methodsIn this study, the canine triple negative breast cancer cell line CMT-7364 was induced to develop multidrug resistance using doxorubicin by high-dose drug pulse method. The drug resistance and the expression of drug transport pumps of the cells was verified by CCK8 assay, immunoblotting, qPCR and immunofluorescence. Next, we used scratch assay and Transwell invasion assay to compare the migration and invasion abilities of the two cell lines and examined the expression of EMT-related proteins in both using immunoblotting. The differences of transcriptome between parental and drug-resistant cell lines were detected by RNA-seq sequencing. Finally, mouse xenograft models of drug-resistant and parental cell lines were constructed to evaluate the tumorigenic ability.ResultsAfter more than 50 generations of continuous passages stimulated by high-dose drug pulse method, the morphology of drug-resistant cell line CMT-7364/R tended to be mesenchymal-like and heterogeneous under light microscopy compared with the parental cell line CMT-7364/S, and developed resistance to doxorubicin and other commonly used chemotherapeutic drugs. In CMT-7364/R, BCRP was expressed at higher levels at both transcriptional and protein levels, while P-glycoprotein was not significantly different. Secondly, the migration and invasion ability of CMT-7364/R was significantly enhanced, with decreased expression of E-cadherin and increased expression of vimentin and mucin 1-N terminus. Finally, mouse xenograft models were constructed, while there was no significant difference in the volume of masses formed at 21 days.ConclusionIn summary, by using the canine mammary tumor cell line CMT-7364/S as the parental cell line, we successfully constructed a multidrug-resistant CMT-7364/R with high-dose drug pulse methods. Compared to its parental cell line, CMT-7364/R has decreased growth rate, overexpression of BCRP and increased migration and invasion ability due to EMT. The results of this study showed that CMT-7364/R might serve as a model for future studies on tumor drug resistance.
Collapse
|
9
|
The combination of hydroxychloroquine and 2-deoxyglucose enhances apoptosis in breast cancer cells by blocking protective autophagy and sustaining endoplasmic reticulum stress. Cell Death Dis 2022; 8:286. [PMID: 35690609 PMCID: PMC9188615 DOI: 10.1038/s41420-022-01074-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
2-Deoxyglucose (2-DG) can be used in antitumour research by inhibiting glycolysis and promoting the endoplasmic reticulum stress (ERS) pathway, but its clinical application is restricted due to dose-limiting side effects and survival chance for cancer cells by protective autophagy. Therefore, our research explored whether the combination of hydroxychloroquine (HCQ), an FDA-approved autophagy inhibiting drug, and 2-DG is a promising therapeutic strategy. Here, we report that HCQ combined with 2-DG can further inhibit the viability and migration and induce apoptosis of breast tumour cells compared with other individual drugs. The combination of 2-DG and HCQ can significantly reduce transplanted tumour size and tumour cell metastasis of the lung and liver in vivo. At the cellular level, HCQ suppressed autolysosome formation and terminated the autophagy process induced by 2-DG-mediated ERS, resulting in the continuous accumulation of misfolded proteins in the endoplasmic reticulum, which generated sustained ERS through the PERK-eIF2α-ATF-4-CHOP axis and triggered the transformation from a survival process to cell death. Our research reinforced the research interest of metabolic disruptors in triple-negative breast cancer and emphasized the potential of the combination of 2-DG and HCQ as an anticancerous treatment.
Collapse
|
10
|
Ou G, Jiang X, Gao A, Li X, Lin Z, Pei S. Celastrol Inhibits Canine Mammary Tumor Cells by Inducing Apoptosis via the Caspase Pathway. Front Vet Sci 2022; 8:801407. [PMID: 35187141 PMCID: PMC8854749 DOI: 10.3389/fvets.2021.801407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
Canine mammary tumor is a serious disease threatening the health of dogs and can be used as a research model for human breast cancer. The study of canine mammary tumor has a role in improving the welfare of dogs. Most common canine mammary tumor chemotherapy drugs have limited effects and drug resistance. Celastrol is an extract of Tripterygium wilfordii, which has a wide range of biological activities, including significant anti-tumor effects. At present, celastrol has not been used in the clinical treatment for canine mammary tumor. This study investigated the anti-tumor properties of celastrol through in vitro assay of cell proliferation inhibition, cell colony, cell migration, and invasion; flow cytometry, qPCR, and Western Blot methods were used to explore the anti-tumor mechanism of celastrol. The results showed that celastrol can inhibit the proliferation of canine mammary tumor cells in vitro, and decrease the migration and invasion ability of canine mammary tumor cells. We also found that celastrol can upregulate Cleaved Caspase-3 and Cleaved Caspase-9 protein expression levels to promote cell apoptosis, and can regulate cell cycle-related proteins to induce cell cycle arrest. In summary, celastrol may inhibit canine mammary tumor cells through the Caspase pathway, providing a new direction for anti-canine mammary tumor drugs, and is expected to become a new anti-cancer drug for canine mammary tumors.
Collapse
|
11
|
Lin Z, Lin Z, Zhao Y, Cheng N, Zhang D, Lin J, Zhang H, Lin D. Auranofin and ICG-001 Emerge Synergistic Anti-tumor Effect on Canine Breast Cancer by Inducing Apoptosis via Mitochondrial Pathway. Front Vet Sci 2021; 8:772687. [PMID: 34977210 PMCID: PMC8714754 DOI: 10.3389/fvets.2021.772687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Canine breast cancer (CBC) is the most common spontaneous tumor in intact female dogs, especially in developing countries. The effective anti-tumor agents or therapies for the clinical treatment of CBC are still in need. Auranofin (AF) is a gold complex that has been attested by FDA for treating human rheumatism, which has been found as a great anti-tumor agent in recent years. ICG-001 is a small molecule inhibitor of Wnt/β-catenin pathway. In the present study, we demonstrated that a combination of AF and ICG-001 could synergistically suppress the proliferation of CBC in vitro and in vivo. Moreover, the synergistical effect was related with apoptosis caused by mitochondrial damage and ROS production. In conclusion, combination of AF and ICG-001 could synergistically suppress the growth of CBC in vitro and in vivo by leading apoptosis via mitochondrial signaling pathway and might provide a novel potential choice for the clinical treatment of CBC.
Collapse
Affiliation(s)
- Zhaoyan Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zixiang Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Zhao
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Cheng
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahao Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Zhang
- College of Animal Science and Technology, Hainan University, Haikou, China
- *Correspondence: Hong Zhang
| | - Degui Lin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Degui Lin
| |
Collapse
|
12
|
Mei C, Xin L, Liu Y, Lin J, Xian H, Zhang X, Hu W, Xia Z, Wang H, Lyu Y. Establishment of a New Cell Line of Canine Mammary Tumor CMT-1026. Front Vet Sci 2021; 8:744032. [PMID: 34712723 PMCID: PMC8546253 DOI: 10.3389/fvets.2021.744032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023] Open
Abstract
Canine mammary tumors (CMTs) have histopathological, epidemiologic and clinical characteristics similar to those in humans and are known to be one of the best models for human breast cancer (HBC). This research aimed to describe a newly established canine cell line, CMT-1026. Tumor samples were collected from a female dog exhibiting clinical mammary neoplasm, and the adherent cells were cultured. Both the histology and immunohistochemistry (IHC) of tumor samples were estimated. Cell growth, ultrastructural, cytological and immunocytochemistry (ICC) features of CMT-1026 were examined. CMT-1026 cells were inoculated into 10 female BALB/c nude mice to evaluate oncogenicity and metastatic ability. Hematoxylin-eosin (H.E.) staining of the tumors revealed an epithelial morphology. Electron microscopy was used to detect histological and cytological of smears, and ultrathin sections showed that CMT-1026 cells were polygonal and characterized by atypia and high mitotic index in the tumor, with prominent nucleoli and multinucleated cells. IHC characterization of CMT-1026 indicated ER-, PR-, HER-2, p63+, CK5/6+, and α-SMA+ epithelial cells. ICC characterization of CMT-1026 showed high expression of Claudin-1, Delta-catenin, SOX-2, and KI-67. At 2 weeks after inoculation of the CMT-1026 cells, phyma was found in 100% of the mice. The xenograft cancers showed conservation of the original H.E. features of the female dog cancer. In conclusion, CMT-1026 may be a model of canine mammary cancer that can be used in research on the pathogenesis of both CMT and HBC.
Collapse
Affiliation(s)
- Chen Mei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Liang Xin
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Jiabao Lin
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Wei Hu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Zhaofei Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yanli Lyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Custódio PR, Colombo J, Ventura FV, Castro TB, Zuccari DAPC. Melatonin Treatment Combined with TGF-β Silencing Inhibits Epithelial- Mesenchymal Transition in CF41 Canine Mammary Cancer Cell Line. Anticancer Agents Med Chem 2021; 20:989-997. [PMID: 32264814 DOI: 10.2174/1871520620666200407122635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/27/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mammary cancer is the most prevalent type of cancer in female dogs. The main cause of mortality is the occurrence of metastasis. The metastatic process is complex and involves the Epithelial- Mesenchymal Transition (EMT), which can be activated by Transforming Growth Factor beta (TGF-β) and involves changes in cellular phenotype, as well as, in the expression of proteins such as E-cadherin, N-cadherin, vimentin and claudin-7. Melatonin is a hormone with oncostatic and anti-metastatic properties and appears to participate in the TGF-β pathway. Thus, the present work aimed to evaluate the expression of EMT markers, E-cadherin, N-cadherin, vimentin and claudin-7, as well as, the cell migration of the canine mammary cancer cell line, CF41, after treatment with melatonin and TGF-β silencing. METHODS Canine mammary cancer cell line, CF41, was cultured and characterized in relation to markers ER, PR and HER2. Cell line CF41 with reducing expression level of TGF-βwas performed according to Leonel et al. (2017). Expression of the protein E-caderin, N-cadherin, vimentin and claudin-7 was evaluated by immunocytochemistry and quantified by optical densitometry. The analysis of cell migration was performed in transwell chambers with 8μM pore size membrane. RESULTS CF41 cells present a triple negative phenotype, which is an aggressive phenotype. Immunocytochemistry staining showed increased expression of E-caderin and claudin-7 (P˂0.05) and decreased expression of N-cadherin and vimentin (P˂0.05) in CF41 cells after treatment with 1mM melatonin and TGF-β silencing. Moreover, treatment with melatonin and TGF-β silencing was able to reduce migration in cell line CF41 (P˂0.05). CONCLUSION Our data suggests that therapies combining TGF- β1 silencing and melatonin may be effective in suppressing the process of EMT, corroborating the hypothesis that melatonin acts on the TGF-β1 pathway and can reduce the metastatic potential of CF41 cells. This is so far the first study that reports melatonin treatment in CF41 cells with TGF-β1 silencing and its effect on EMT. Thus, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Paulo R Custódio
- PostGraduate Program in Health Sciences, Faculdade de Medicina de Sao Jose do Rio Preto, FAMERP, Av. Brigadeiro Faria Lima, 5416, 15090-000 - Sao Jose do Rio Preto, SP, Brazil
| | - Jucimara Colombo
- Laboratorio de Investigacao Molecular no Cancer (LIMC), Faculdade de Medicina de Sao Jose do Rio Preto/FAMERP, Av. Brigadeiro Faria Lima, 5416, 15090-000 - Sao Jose do Rio Preto, SP, Brazil
| | - Fabrício V Ventura
- Laboratorio de Investigacao Molecular no Cancer (LIMC), Faculdade de Medicina de Sao Jose do Rio Preto/FAMERP, Av. Brigadeiro Faria Lima, 5416, 15090-000 - Sao Jose do Rio Preto, SP, Brazil
| | - Tialfi B Castro
- PostGraduate Program in Health Sciences, Faculdade de Medicina de Sao Jose do Rio Preto, FAMERP, Av. Brigadeiro Faria Lima, 5416, 15090-000 - Sao Jose do Rio Preto, SP, Brazil
| | - Debora A P C Zuccari
- Laboratorio de Investigacao Molecular no Cancer (LIMC), Faculdade de Medicina de Sao Jose do Rio Preto/FAMERP, Av. Brigadeiro Faria Lima, 5416, 15090-000 - Sao Jose do Rio Preto, SP, Brazil
| |
Collapse
|
14
|
Li R, Wu H, Sun Y, Zhu J, Tang J, Kuang Y, Li G. A Novel Canine Mammary Cancer Cell Line: Preliminary Identification and Utilization for Drug Screening Studies. Front Vet Sci 2021; 8:665906. [PMID: 34124226 PMCID: PMC8191460 DOI: 10.3389/fvets.2021.665906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Canine malignant mammary tumor is a dangerously fatal neoplastic disease with poor survival in female dogs. The aim of this study was to preliminary characterize a novel canine mammary cancer cell line, B-CMT, from canine primary mammary gland tumor, and to utilize it as a cell model for in vitro screening of possible therapeutic drugs. The successfully established cell line, B-CMT, was cultured over 50 passages. B-CMT has a fast proliferation rate, and a population doubling time (PDT) of 33.6 h. The B-CMT cell line lacked human epidermal growth factor receptor-2 (HER-2), estrogen receptors (ER) and progesterone receptors (PR) expression by qRT-PCR. Compared with MDCK cells, CDH1 expression of CMT cell line was significantly decreased or even absent, but GATA3 expression dramatically increased, while TGF-β expression was at a similar level. Interestingly, the B-CMT cell line from canine primary tumor also showed positive hypoxia inducible factor-1α (HIF-1α) results in immunofluorescence (IF), western blot, and qRT-PCR analysis. Ten days post inoculation with EGFP-B-CMT (B-CMT cells stably expressing EGFP), the experimental mice developed palpable soft tissue masses which histologically resembled the canine primary tumor, and was approved to be derived from B-CMT cell line through detection of EGFP by immunohistochemical (IHC) analysis. Moreover, we investigated the cytotoxicity of five drugs to B-CMT cells, and the results showed that rapamycin and imatinib significantly inhibited the proliferation of the cells in vitro within a certain range of concentration. They also induced cell cycle arrest of B-CMT cells at G1 and G2 phase, respectively. In summary, the results of this report showed that B-CMT cell line might serve as a tool for future studies on tumor microenvironment and drug resistance.
Collapse
Affiliation(s)
- Rifei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoxian Wu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yue Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingru Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Kuang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Vitamin D receptor (VDR) expression in different molecular subtypes of canine mammary carcinoma. BMC Vet Res 2021; 17:197. [PMID: 34034728 PMCID: PMC8152340 DOI: 10.1186/s12917-021-02901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular-based classification of canine mammary carcinomas (CMCs) has been the focus of much current research. Both in canines and humans, the triple-negative (TN) molecular subtype of mammary cancer is defined by a lack of expression of progesterone receptor (PR), oestrogen receptor (ER) and HER2. It has a poor prognosis; no effective targeted therapy is available. Vitamin D displays anticarcinogenic properties, and the expression of its receptor (VDR) has been found in different molecular subtypes, being about 30-40 % of TN breast cancer (TNBC) positive to it. We assessed the VDR expression in the different molecular subtypes of 58 CMCs from 45 female dogs using an immunohistochemical panel for the molecular classification of included: PR, ER, HER2, cytokeratin (CK) 5, CK14, and Ki67. In addition, we studied the relationship among the molecular subtypes of CMCs and clinicopathologic parameters. RESULTS Investigation showed VDR positivity in 45.0 % of the triple-negative CMCs (TNCMCs), 27.3 % of luminal B and 19.0 % of luminal A. Luminal A was the most molecular subtype represented of the total tumours (36.2 %), followed of TNCMCs (34.5 %), luminal B (20.7 %) and HER2-overexpression (10.3 %). Both HER2-overexpression and TNCMC subtypes were positively related to lymphatic invasion (P = 0.028), simple histologic subtype (P = 0.007), a higher histological grade (P = 0.045) and a trend to higher proliferation index (P = 0.09). CONCLUSIONS The highest VDR expression was observed in TNCMC, being almost half of them (45 %) positive to this receptor. VDR expression was absent in HER2-overexpression tumours and low in luminal A and B molecular subtypes.
Collapse
|
16
|
Zhao Y, Lin Z, Lin Z, Zhou C, Liu G, Lin J, Zhang D, Lin D. Overexpression of Mucin 1 Suppresses the Therapeutical Efficacy of Disulfiram against Canine Mammary Tumor. Animals (Basel) 2020; 11:ani11010037. [PMID: 33375426 PMCID: PMC7823863 DOI: 10.3390/ani11010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Canine mammary tumor is one of the most prevalent canine tumor types in China. Clinical studies showed that the high expression of mucin 1 (MUC1) protein is significantly associated with the malignancy and poor prognosis of canine mammary tumor. Therefore, it is worthwhile to investigate the expression of mucin 1 in developing treatments against canine mammary tumors. In the present study, it is demonstrated that disulfiram, an approved medication in treating human alcoholism, also has inhibitory effects on the growth of canine mammary tumor cells both in vitro and in vivo. With the overexpression of MUC1, the inhibitory effects of disulfiram decrease accordingly. Moreover, disulfiram is shown to inhibit phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (Akt) signaling transduction, which is attenuated by MUC1 overexpression. Overall, these results indicate that the expression level of MUC1 is detrimental to determining the anti-tumor activity of disulfiram. Further consideration should be given when treating the canine mammary tumor with disulfiram or other PI3K/Akt inhibitors. Abstract Mucin 1 (MUC1), a transmembrane protein, is closely associated with the malignancy and metastasis of canine mammary tumors; however, the role of overexpressed MUC1 in the development of cancer cells and response to drug treatment remains unclear. To address this question, we developed a new canine mammary tumor cell line, CIPp-MUC1, with an elevated expression level of MUC1. In vitro studies showed that CIPp-MUC1 cells are superior in proliferation and migration than wild-type control, which was associated with the upregulation of PI3K, p-Akt, mTOR, Bcl-2. In addition, overexpression of MUC1 in CIPp-MUC1 cells inhibited the suppressing activity of disulfiram on the growth and metastasis of tumor cells, as well as inhibiting the pro-apoptotic effect of disulfiram. In vivo studies, on the other side, showed more rapid tumor growth and stronger resistance to disulfiram treatment in CIPp-MUC1 xenograft mice than in wild-type control. In conclusion, our study demonstrated the importance of MUC1 in affecting the therapeutical efficiency of disulfiram against canine mammary tumors, indicating that the expression level of MUC1 should be considered for clinical use of disulfiram or other drugs targeting PI3K/Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Di Zhang
- Correspondence: (D.Z.); (D.L.); Tel.: +86-1369-326-2510 (D.Z.); +86-1380-105-8458 (D.L.)
| | - Degui Lin
- Correspondence: (D.Z.); (D.L.); Tel.: +86-1369-326-2510 (D.Z.); +86-1380-105-8458 (D.L.)
| |
Collapse
|
17
|
Amirkhani Namagerdi A, d'Angelo D, Ciani F, Iannuzzi CA, Napolitano F, Avallone L, De Laurentiis M, Giordano A. Triple-Negative Breast Cancer Comparison With Canine Mammary Tumors From Light Microscopy to Molecular Pathology. Front Oncol 2020; 10:563779. [PMID: 33282730 PMCID: PMC7689249 DOI: 10.3389/fonc.2020.563779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Many similar characteristics in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression, and response to standard therapies have promoted the approval of this comparative model as an alternative to mice. Breast cancer represents the second most frequent neoplasm in humans after lung cancer. Triple-negative breast cancers (TNBC) constitute around 15% of all cases of breast cancer and do not express estrogen receptor (ER), progesterone receptor (PR), and do not overexpress human epidermal growth factor receptor 2 (HER2). As a result, they do not benefit from hormonal or trastuzumab-based therapy. Patients with TNBC have worse overall survival than patients with non-TNBC. Lehmann and collaborators described six different molecular subtypes of TNBC which further demonstrated its transcriptional heterogeneity. This six TNBC subtype classification has therapeutic implications. Breast cancer is the second most frequent neoplasm in sexually intact female dogs after skin cancer. Canine mammary tumors are a naturally occurring heterogeneous group of cancers that have several features in common with human breast cancer (HBC). These similarities include etiology, signaling pathway activation, and histological classification. Molecularly CMTs are more like TNBCs, and therefore dogs are powerful spontaneous models of cancer to test new therapeutic approaches, particularly for human TNBCs. More malignant tumors of the breast are more often ER and PR negative in both humans and dogs. Promising breast cancer biomarkers in both humans and canines are cancer-associated stroma (CAS), circulating tumor cells and tumor DNA (ctDNA), exosomes and miRNAs, and metabolites.
Collapse
Affiliation(s)
| | - Danila d'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,CCEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Michelino De Laurentiis
- Breast Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Antonio Giordano
- Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Cheng N, Diao H, Lin Z, Gao J, Zhao Y, Zhang W, Wang Q, Lin J, Zhang D, Jin Y, Bao Y, Lin D. Benzyl Isothiocyanate Induces Apoptosis and Inhibits Tumor Growth in Canine Mammary Carcinoma via Downregulation of the Cyclin B1/Cdk1 Pathway. Front Vet Sci 2020; 7:580530. [PMID: 33263014 PMCID: PMC7686582 DOI: 10.3389/fvets.2020.580530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 01/20/2023] Open
Abstract
Background: Canine mammary carcinoma is common in female dogs, and its poor prognosis remains a serious clinical challenge, especially in developing countries. Benzyl isothiocyanate (BITC) has attracted great interest because of its inhibitory effect against tumor activity. However, its effect and the underlying mechanisms of action in canine mammary cancer are not well-understood. Here, we show that BITC suppresses mammary tumor growth, both in vivo and in vitro, and reveal some of the potential mechanisms involved. Methods: The effect of BITC on canine mammary cancer was evaluated on CIPp and CMT-7364, canine mammary carcinoma lines. The cell lines were treated with BITC and then subjected to wound healing and invasion assays. Cell cycles and apoptosis were measured using flow cytometry; TUNEL assay; immunohistochemistry (IHC) for caspase 3, caspase 9, and cyclin D1; hematoxylin and eosin (H&E) staining; and/or quantitative polymerase chain reaction (qPCR). Results: BITC showed a strong suppressive effect in both CIPp and CMT-7364 cells by inhibiting cell growth in vitro; these effects were both dose- and time-dependent. BITC also inhibited migration and invasion of CIPp and CMT-7364 cells. BITC induced G2 arrest and apoptosis, decreasing tumor growth in nude mice by downregulation of cyclin B1 and Cdk1 expression. Conclusion: BITC suppressed both invasion and migration of CIPp and CMT-7364 cells and induced apoptosis. BITC inhibited canine mammary tumor growth by suppressing cyclinB1 and Cdk1 expression in nude mice.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongxiu Diao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaoyan Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Zhao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weijiao Zhang
- Faculty of Medicine and Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Qi Wang
- Faculty of Medicine and Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Jiahao Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongping Bao
- Faculty of Medicine and Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Degui Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
de Faria Lainetti P, Brandi A, Leis Filho AF, Prado MCM, Kobayashi PE, Laufer-Amorim R, Fonseca-Alves CE. Establishment and Characterization of Canine Mammary Gland Carcinoma Cell Lines With Vasculogenic Mimicry Ability in vitro and in vivo. Front Vet Sci 2020; 7:583874. [PMID: 33195606 PMCID: PMC7655132 DOI: 10.3389/fvets.2020.583874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mammary tumors affect intact and elderly female dogs, and almost 50% of these cases are malignant. Cell culture offers a promising preclinical model to study this disease and creates the opportunity to deposit cell lines at a cell bank to allow greater assay reproducibility and more reliable validation of the results. Another important aspect is the possibility of establishing models and improving our understanding of tumor characteristics, such as vasculogenic mimicry. Because of the importance of cancer cell lines in preclinical models, the present study established and characterized primary cell lines from canine mammary gland tumors. Cell cultures were evaluated for morphology, phenotype, vasculogenic mimicry (VM), and tumorigenicity abilities. We collected 17 primary mammary carcinoma and three metastases and obtained satisfactory results from 10 samples. The cells were transplanted to a xenograft model. All cell lines exhibited a spindle-shaped or polygonal morphology and expressed concomitant pancytokeratin and cytokeratin 8/18. Four cell lines had vasculogenic mimicry ability in vitro, and two cell lines showed in vivo tumorigenicity and VM in the xenotransplanted tumor. Cellular characterization will help create a database to increase our knowledge of mammary carcinomas in dogs, including studies of tumor behavior and the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | - Andressa Brandi
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | | | | | - Priscila Emiko Kobayashi
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Carlos Eduardo Fonseca-Alves
- School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil.,Institute of Health Sciences, Universidade Paulista-UNIP, Bauru, Brazil
| |
Collapse
|
21
|
Zhang T, Feng X, Zhou T, Zhou N, Shi X, Zhu X, Qiu J, Deng G, Qiu C. miR-497 induces apoptosis by the IRAK2/NF-κB axis in the canine mammary tumour. Vet Comp Oncol 2020; 19:69-78. [PMID: 32706167 DOI: 10.1111/vco.12626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
Since companion dogs have the same living environment as humans, they are a good animal model for the study of human diseases; this is especially true of canine spontaneous mammary tumours models. A better understanding of the natural history and molecular mechanisms of canine mammary tumour is of great significance in comparative medicine. Here, we collected canine mammary tumour cases and then assayed the clinical cases by pathological examination and classification by HE staining and IHC. miRNA-497 family members (miR-497, miR-16, miR-195 and miR-15) were positively correlated with the breast cancer marker genes p63 and PTEN. Modulation of the expression of miR-497 in the canine mammary tumour cell lines CMT1211 and CMT 7364 induced apoptosis and inhibited cell proliferation. Mechanistically, IRAK2 was shown to be a functional target of miR-497 that affects the characteristics of cancer cells by inhibiting the activity of the NF-κB pathway. Overall, our work reveals the miR-497/IRAK2/NF-κB axis as a vital mechanism of canine mammary tumour progression and suggests this axis as a target in breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiujuan Feng
- Nanjing Police Dog Research Institute of the Ministry of the Public Security, Nanjing, China
| | - Tianhong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xue Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxia Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Goto M, Hirata A, Murakami M, Sakai H. Trimer form of tumor necrosis factor-related apoptosis inducing ligand induces apoptosis in canine cell lines derived from mammary tumors. J Vet Med Sci 2019; 81:1791-1803. [PMID: 31597817 PMCID: PMC6943331 DOI: 10.1292/jvms.19-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We evaluated the cytotoxic effect of isoleucine-zipper tumor necrosis factor-related
apoptosis inducing ligand (izTRAIL) against cell lines, B101592, Cha, and C090115, derived
from canine mammary gland tumors. These cells were derived from three dogs diagnosed with
mammary adenoma or carcinoma. All three cells were positive for vimentin, while B101592
and C090115 were positive for cytokeratin (CK) AE1/AE3 and CK CAM5.2. Treatment with
izTRAIL decreased the viability of the three cell lines. The proportion of annexin
V+/propidium iodide- cells increased in all three cell lines after treatment with izTRAIL.
Additionally, cell cycle analysis revealed that izTRAIL treatment increased the number of
cells in sub-G1 phase. Moreover, izTRAIL treatment activated caspase-8 and caspase-3 and
enhanced the levels of cleaved poly (ADP-ribose) polymerase. The cytotoxic effect of
izTRAIL was mitigated upon co-treatment with caspase-8 or caspase-3 inhibitor. These
results indicated that izTRAIL induces apoptosis in cell lines derived from canine mammary
tumor, which was also previously reported in canine hemangiosarcoma cell lines. This
suggested that canine tumor cells have conserved TRAIL receptors. This study will provide
the basis for further studies on TRAIL receptors and TRAIL-related molecules.
Collapse
Affiliation(s)
- Minami Goto
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mami Murakami
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
23
|
Diao H, Cheng N, Zhao Y, Xu H, Dong H, Thamm DH, Zhang D, Lin D. Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling. BMC Vet Res 2019; 15:276. [PMID: 31375107 PMCID: PMC6679554 DOI: 10.1186/s12917-019-2026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/29/2019] [Indexed: 01/04/2023] Open
Abstract
Background Mammary gland tumor is the most common spontaneous tumor in intact female dogs, and its poor prognosis remains a clinical challenge. Ivermectin, a well-known anti-parasitic agent, has been implicated as a potential anticancer agent in various types of human cancer. However, there are no reports evaluating the antitumor effects of ivermectin in canine mammary tumor. Here, we investigated whether ivermectin was able to inhibit canine mammary tumor development and explored the related mechanisms. Results Ivermectin inhibited the growth of canine mammary tumor cell lines in a dose- and time-dependent manner. The antitumor effects induced by ivermectin were associated with cell cycle arrest at G1 phase via down-regulation of CDK4 and cyclin D1 expression, with no significant induction of apoptosis. Furthermore, significantly reduced β-catenin nuclear translocation was observed after treatment with ivermectin, resulting in the inactivation of WNT signaling. Consistent with the results in vitro, a significant suppression of tumor growth by ivermectin was observed in canine mammary tumor xenografts. Conclusion Ivermectin, as a promising anti-cancer agent, inhibits the growth of canine mammary tumor by regulating cell cycle progression and WNT signaling. Electronic supplementary material The online version of this article (10.1186/s12917-019-2026-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongxiu Diao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Cheng
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Zhao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huihao Xu
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haodi Dong
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Di Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Degui Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|