1
|
Jiang J, Soh PXY, Mutambirwa SBA, Bornman MSR, Haiman CA, Hayes VM, Jaratlerdsiri W. ANO7 African-ancestral genomic diversity and advanced prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:558-565. [PMID: 37749167 PMCID: PMC11319200 DOI: 10.1038/s41391-023-00722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a significant health burden for African men, with mortality rates more than double global averages. The prostate specific Anoctamin 7 (ANO7) gene linked with poor patient outcomes has recently been identified as the target for an African-specific protein-truncating PCa-risk allele. METHODS Here we determined the role of ANO7 in a study of 889 men from southern Africa, leveraging exomic genotyping array PCa case-control data (n = 780, 17 ANO7 alleles) and deep sequenced whole genome data for germline and tumour ANO7 interrogation (n = 109), while providing clinicopathologically matched European-derived sequence data comparative analyses (n = 57). Associated predicted deleterious variants (PDVs) were further assessed for impact using computational protein structure analysis. RESULTS Notably rare in European patients, we found the common African PDV p.Ile740Leu (rs74804606) to be associated with PCa risk in our case-control analysis (Wilcoxon rank-sum test, false discovery rate/FDR = 0.03), while sequencing revealed co-occurrence with the recently reported African-specific deleterious risk variant p.Ser914* (rs60985508). Additional findings included a novel protein-truncating African-specific frameshift variant p.Asp789Leu, African-relevant PDVs associated with altered protein structure at Ca2+ binding sites, early-onset PCa associated with PDVs and germline structural variants in Africans (Linear regression models, -6.42 years, 95% CI = -10.68 to -2.16, P-value = 0.003) and ANO7 as an inter-chromosomal PCa-related gene fusion partner in African derived tumours. CONCLUSIONS Here we provide not only validation for ANO7 as an African-relevant protein-altering PCa-risk locus, but additional evidence for a role of inherited and acquired ANO7 variance in the observed phenotypic heterogeneity and African-ancestral health disparity.
Collapse
Affiliation(s)
- Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Khosroshahi EM, Maghsoudloo M, Fahimi H, Mokhtari K, Entezari M, Peymani M, Hashemi M, Wan R. Determining expression changes of ANO7 and SLC38A4 membrane transporters in colorectal cancer. Heliyon 2024; 10:e34464. [PMID: 39114022 PMCID: PMC11305260 DOI: 10.1016/j.heliyon.2024.e34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Membrane transporters are proteins responsible for facilitating the movement of molecules within biological membranes. They play a vital role in maintaining cellular homeostasis by regulating the transport of nutrients, ions, and other molecules into and out of cells. Our aim is to identify biomarkers in colorectal cancer using membrane transporter proteins. We utilized COAD TCGA data for this purpose. Subsequently, we conducted differential gene analysis and feature selection using membrane transporter proteins. Furthermore, we identified two potential genes, including ANO7 and SLC38A4. To validate the expression profiles of ANO7 and SLC38A4, key genes in this context, RT-qPCR was employed on colorectal cancer samples and adjacent normal tissues. Additionally, utilizing GEPIA2, Kaplan-Meier survival analysis, and cBioPortal, we assessed the status of these genes in various cancers, examining their methylation and mutation patterns. In conclusion, we suggest that ANO7 and SLC38A4 serve as prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Kunzelmann K, Ousingsawat J, Schreiber R. VSI: The anoctamins: Structure and function: "Intracellular" anoctamins. Cell Calcium 2024; 120:102888. [PMID: 38657371 DOI: 10.1016/j.ceca.2024.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca2+-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca2+ signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| |
Collapse
|
4
|
Dibattista M, Pifferi S, Hernandez-Clavijo A, Menini A. The physiological roles of anoctamin2/TMEM16B and anoctamin1/TMEM16A in chemical senses. Cell Calcium 2024; 120:102889. [PMID: 38677213 DOI: 10.1016/j.ceca.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Chemical senses allow animals to detect and discriminate a vast array of molecules. The olfactory system is responsible of the detection of small volatile molecules, while water dissolved molecules are detected by taste buds in the oral cavity. Moreover, many animals respond to signaling molecules such as pheromones and other semiochemicals through the vomeronasal organ. The peripheral organs dedicated to chemical detection convert chemical signals into perceivable information through the employment of diverse receptor types and the activation of multiple ion channels. Two ion channels, TMEM16B, also known as anoctamin2 (ANO2) and TMEM16A, or anoctamin1 (ANO1), encoding for Ca2+-activated Cl¯ channels, have been recently described playing critical roles in various cell types. This review aims to discuss the main properties of TMEM16A and TMEM16B-mediated currents and their physiological roles in chemical senses. In olfactory sensory neurons, TMEM16B contributes to amplify the odorant response, to modulate firing, response kinetics and adaptation. TMEM16A and TMEM16B shape the pattern of action potentials in vomeronasal sensory neurons increasing the interspike interval. In type I taste bud cells, TMEM16A is activated during paracrine signaling mediated by ATP. This review aims to shed light on the regulation of diverse signaling mechanisms and neuronal excitability mediated by Ca-activated Cl¯ channels, hinting at potential new roles for TMEM16A and TMEM16B in the chemical senses.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| | - Andres Hernandez-Clavijo
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy.
| |
Collapse
|
5
|
Moran O, Tammaro P. Identification of determinants of lipid and ion transport in TMEM16/anoctamin proteins through a Bayesian statistical analysis. Biophys Chem 2024; 308:107194. [PMID: 38401241 DOI: 10.1016/j.bpc.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/26/2024]
Abstract
The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paolo Tammaro
- Department Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
6
|
Chen C, Aluksanasuwan S, Somsuan K. Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data. Genomics Inform 2023; 21:e46. [PMID: 38224713 PMCID: PMC10788358 DOI: 10.5808/gi.23071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Keerakarn Somsuan
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
7
|
Transcripts of the Prostate Cancer-Associated Gene ANO7 Are Retained in the Nuclei of Prostatic Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021052. [PMID: 36674564 PMCID: PMC9865797 DOI: 10.3390/ijms24021052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer affects millions of men globally. The prostate cancer-associated gene ANO7 is downregulated in advanced prostate cancer, whereas benign tissue and low-grade cancer display varying expression levels. In this study, we assess the spatial correlation between ANO7 mRNA and protein using fluorescent in situ hybridization and immunohistochemistry for the detection of mRNA and protein in parallel sections of tissue microarrays prepared from radical prostatectomy samples. We show that ANO7 mRNA and protein expression correlate in prostate tissue. Furthermore, we show that ANO7 mRNA is enriched in the nuclei of the luminal cells at 89% in benign ducts and low-grade cancer, and at 78% in high-grade cancer. The nuclear enrichment of ANO7 mRNA was validated in prostate cancer cell lines 22Rv1 and MDA PCa 2b using droplet digital polymerase chain reaction (ddPCR) on RNA isolated from nuclear and cytoplasmic fractions of the cells. The nuclear enrichment of ANO7 mRNA was compared to the nuclearly-enriched lncRNA MALAT1, confirming the surprisingly high nuclear retention of ANO7 mRNA. ANO7 has been suggested to be used as a diagnostic marker and a target for immunotherapy, but a full comprehension of its role in prostate cancer progression is currently lacking. Our results contribute to a better understanding of the dynamics of ANO7 expression in prostatic tissue.
Collapse
|
8
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
9
|
Wahlström G, Heron S, Knuuttila M, Kaikkonen E, Tulonen N, Metsälä O, Löf C, Ettala O, Boström PJ, Taimen P, Poutanen M, Schleutker J. The variant rs77559646 associated with aggressive prostate cancer disrupts ANO7 mRNA splicing and protein expression. Hum Mol Genet 2022; 31:2063-2077. [PMID: 35043958 PMCID: PMC9239746 DOI: 10.1093/hmg/ddac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 12/05/2022] Open
Abstract
Prostate cancer is among the most common cancers in men, with a large fraction of the individual risk attributable to heritable factors. A majority of the diagnosed cases does not lead to a lethal disease, and hence biological markers that can distinguish between indolent and fatal forms of the disease are of great importance for guiding treatment decisions. Although over 300 genetic variants are known to be associated with prostate cancer risk, few have been associated with the risk of an aggressive disease. One such variant is rs77559646 located in ANO7. This variant has a dual function. It constitutes a missense mutation in the short isoform of ANO7 and a splice region mutation in full-length ANO7. In this study, we have analyzed the impact of the variant allele of rs77559646 on ANO7 mRNA splicing using a minigene splicing assay and by performing splicing analysis with the tools IRFinder (intron retention finder), rMATS (replicate multivariate analysis of transcript splicing) and LeafCutter on RNA sequencing data from prostate tissue of six rs77559646 variant allele carriers and 43 non-carriers. The results revealed a severe disruption of ANO7 mRNA splicing in rs77559646 variant allele carriers. Immunohistochemical analysis of prostate samples from patients homozygous for the rs77559646 variant allele demonstrated a loss of apically localized ANO7 protein. Our study is the first to provide a mechanistic explanation for the impact of a prostate cancer risk SNP on ANO7 protein production. Furthermore, the rs77559646 variant is the first known germline loss-of-function mutation described for ANO7. We suggest that loss of ANO7 contributes to prostate cancer progression.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Samuel Heron
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Matias Knuuttila
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), University of Turku, 20520 Turku, Finland
| | - Elina Kaikkonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Nea Tulonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Olli Metsälä
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Christoffer Löf
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Otto Ettala
- Department of Urology, Turku University Hospital, 20520 Turku, Finland
| | - Peter J Boström
- Department of Urology, Turku University Hospital, 20520 Turku, Finland
| | - Pekka Taimen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), University of Turku, 20520 Turku, Finland
| | - Johanna Schleutker
- To whom correspondence should be addressed at: Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland. Tel: +358 294502726; Fax: +358 294505040;
| |
Collapse
|