1
|
Salimi M, Tang T, Nazari M, Mishra J, Afshar HT, Koloski MF, Ramanathan DS. Gamma frequency connectivity in frontostriatal networks associated with social preference is reduced with traumatic brain injury. Netw Neurosci 2024; 8:1634-1653. [PMID: 39735516 PMCID: PMC11675011 DOI: 10.1162/netn_a_00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/09/2024] [Indexed: 12/31/2024] Open
Abstract
Among the myriad of complications associated with traumatic brain injury (TBI), impairments in social behaviors and cognition have emerged as a significant area of concern. Animal models of social behavior are necessary to explore the underlying brain mechanisms contributing to chronic social impairments following brain injury. Here, we utilize large-scale brain recordings of local field potentials to identify neural signatures linked with social preference deficits following frontal brain injury. We used a controlled cortical impact model of TBI to create a severe bilateral injury centered on the prefrontal cortex. Behavior (social preference and locomotion) and brain activity (power and coherence) during a three-chamber social preference task were compared between sham and injured animals. Sham rats preferred to spend time with a social conspecific over an inanimate object. An analysis of local field oscillations showed that social preference was associated with a significant increase in coherence in gamma frequency band across widespread brain regions in these animals. Animals with a frontal TBI showed a significant reduction in this social preference, visiting an inanimate object more frequently and for more time. Reflecting these changes in social behavior, these animals also showed a significant reduction in gamma frequency (25-60 Hz) coherence associated with social preference.
Collapse
Affiliation(s)
- Morteza Salimi
- Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA
| | - Tianzhi Tang
- Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
- Center for Protein in Memory-PROMEMO, Danish National Research Foundation, Aarhus, Denmark
| | - Jyoti Mishra
- Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Houtan Totonchi Afshar
- Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA
| | - Miranda Francoeur Koloski
- Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Dhakshin S. Ramanathan
- Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
- Mental Health Care Line, VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| |
Collapse
|
2
|
Zhang Y, Chen H, Cao J, Gao L, Jing Y. Maternal separation alters peripheral immune responses associated with IFN-γ and OT in mice. Peptides 2024; 182:171318. [PMID: 39486747 DOI: 10.1016/j.peptides.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The co-evolution of social behavior and the immune system plays a critical role in individuals' adaptation to their environment. However, also need for further research on the key molecules that co-regulate social behavior and immunity. This study focused on neonatal mice that were separated from their mothers for 4 hours per day between the 6th and 16th day after birth. The results showed that these mice had lower plasma levels of IFN-γ and oxytocin, but higher levels of plasma glucocorticoids (GC), then impacting their social abilities. Additionally, maternal separation led to decreased levels of BDNF, IGF2, and CREB mRNAs in the hippocampus, while levels in the prefrontal cortex (PFC) remained unaffected. Maternal separation also resulted in increased levels of oxytocin and CRH mRNA in the hypothalamus, as well as an increase in CD45+ lymphocyte subsets in the meninges and choroid plexus (CP), with CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP showing an increase. In IFN-γ-/- mice, a decrease in social preference was observed alongside lower plasma oxytocin levels. Moreover, IFN-γ-/- mice exhibited reduced numbers of oxytocin neurons in the paraventricular nucleus of the paraventricular nucleus of hypothalamus (PVN), decreased BDNF levels in the PFC and hippocampus, and alterations in CD45+ lymphocytes in CP and meninges, with an increase in CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP. These findings highlight the immunological impact of social stress on IFN-γ regulation, suggesting that the immunomodulatory molecule IFN-γ may influence social behavior by affecting synaptic efficiency in brain regions such as the hippocampus and PFC, which are linked to oxytocin in the PVN.
Collapse
Affiliation(s)
- Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - HaiChao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - JiaXin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - LiPing Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - YuHong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
3
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2024; 76:101162. [PMID: 39561882 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
4
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Sofer Y, Zilkha N, Gimpel E, Wagner S, Chuartzman SG, Kimchi T. Sexually dimorphic oxytocin circuits drive intragroup social conflict and aggression in wild house mice. Nat Neurosci 2024; 27:1565-1573. [PMID: 38969756 DOI: 10.1038/s41593-024-01685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
In nature, both males and females engage in competitive aggressive interactions to resolve social conflicts, yet the behavioral principles guiding such interactions and their underlying neural mechanisms remain poorly understood. Through circuit manipulations in wild mice, we unveil oxytocin-expressing (OT+) neurons in the hypothalamic paraventricular nucleus (PVN) as a neural hub governing behavior in dyadic and intragroup social conflicts, influencing the degree of behavioral sexual dimorphism. We demonstrate that OT+ PVN neurons are essential and sufficient in promoting aggression and dominance hierarchies, predominantly in females. Furthermore, pharmacogenetic activation of these neurons induces a change in the 'personality' traits of the mice within groups, in a sex-dependent manner. Finally, we identify an innervation from these OT neurons to the ventral tegmental area that drives dyadic aggression, in a sex-specific manner. Our data suggest that competitive aggression in naturalistic settings is mediated by a sexually dimorphic OT network connected with reward-related circuitry.
Collapse
Affiliation(s)
- Yizhak Sofer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Gimpel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | | | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Kareklas K, Oliveira RF. Emotional contagion and prosocial behaviour in fish: An evolutionary and mechanistic approach. Neurosci Biobehav Rev 2024; 163:105780. [PMID: 38955311 DOI: 10.1016/j.neubiorev.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal; ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal.
| |
Collapse
|
7
|
Lee J, Kwak D, Lee GU, Kim CY, Kim J, Park SH, Choi JH, Lee SQ, Choe HK. Social context modulates multibrain broadband dynamics and functional brain-to-brain coupling in the group of mice. Sci Rep 2024; 14:11439. [PMID: 38769416 PMCID: PMC11106301 DOI: 10.1038/s41598-024-62070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure. The power of lower frequency bands-delta to alpha-were correlated with each other and anti-correlated with gamma power. The high-to-low-power ratio (HLR) provided a useful measure to understand LFP changes along the change of behavioural and locomotive states. The HLR during huddled conditions was lower than that during non-huddled conditions, dividing the social context into two. Multi-brain analyses of HLR indicated that the mice in the group displayed high cross-correlation. The mice in the group often showed unilateral precedence of HLR by Granger causality analysis, possibly comprising a hierarchical social structure. Overall, this study shows the importance of the social environment in brain dynamics and emphasises the simultaneous multi-brain recordings in social neuroscience.
Collapse
Affiliation(s)
- Jeongyoon Lee
- Brain Science Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42996, Republic of Korea
| | - Damhyeon Kwak
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Gwang Ung Lee
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Chan Yeong Kim
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Jihoon Kim
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42996, Republic of Korea
| | - Jee Hyun Choi
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Q Lee
- Electronics Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea.
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| | - Han Kyoung Choe
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42996, Republic of Korea.
- Korean Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
8
|
Zhao H, Xu Y, Li L, Liu J, Cui F. The neural mechanisms of identifiable victim effect in prosocial decision-making. Hum Brain Mapp 2024; 45:e26609. [PMID: 38339893 PMCID: PMC10836171 DOI: 10.1002/hbm.26609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The phenomenon known as the "identifiable victim effect" describes how individuals tend to offer more assistance to victims they can identify with than to those who are vague or abstract. The neural underpinnings of this effect, however, remain elusive. Our study utilized functional magnetic resonance imaging to delve into how the "identifiable victim effect" influences prosocial decision-making, considering different types of helping costs, across two distinct tasks. Participants were instructed to decide whether to help a victim with personal information shown (i.e., the identifiable victim) and an unidentifiable one by costing their money (task 1) or physical effort (task 2). Behaviorally, we observed a pronounced preference in both tasks for aiding identifiable victims over anonymous ones, highlighting a robust "identifiable victim effect." On a neural level, this effect was associated with heightened activity in brain areas like the bilateral temporoparietal junction (TPJ) when participants confronted anonymous victims, potentially indicating a more intensive mentalizing process for less concrete victims. Additionally, we noted that the TPJ's influence on value judgment processes is mediated through its functional connectivity with the medial prefrontal cortex. These insights contribute significantly to our understanding of the psychological and neural dynamics underlying the identifiable victim effect.
Collapse
Affiliation(s)
- Hailing Zhao
- School of PsychologyShenzhen UniversityShenzhenChina
| | - Yashi Xu
- School of PsychologyShenzhen UniversityShenzhenChina
| | - Lening Li
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Jie Liu
- School of PsychologyShenzhen UniversityShenzhenChina
- Center for Brain Disorders and Cognitive NeuroscienceShenzhen UniversityShenzhenChina
| | - Fang Cui
- School of PsychologyShenzhen UniversityShenzhenChina
- Center for Brain Disorders and Cognitive NeuroscienceShenzhen UniversityShenzhenChina
| |
Collapse
|
9
|
Labutina N, Polyakov S, Nemtyreva L, Shuldishova A, Gizatullina O. Neural Correlates of Social Decision-Making. IRANIAN JOURNAL OF PSYCHIATRY 2024; 19:148-154. [PMID: 38420275 PMCID: PMC10896758 DOI: 10.18502/ijps.v19i1.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 03/02/2024]
Abstract
Objective: Recent studies have utilized innovative techniques to investigate the neural mechanisms underlying social and individual decision-making, aiming to understand how individuals respond to the world. Method : In this review, we summarized current scientific evidence concerning the neural underpinnings of social decision-making and their impact on social behavior. Results: Critical brain regions involved in social cognition and decision-making are integral to the process of social decision-making. Notably, the medial prefrontal cortex (mPFC) and temporoparietal junction (TPJ) contribute to the comprehension of others' mental states. Similarly, the posterior superior temporal sulcus (pSTS) shows heightened activity when individuals observe faces and movements. On the lateral surface of the brain, the inferior frontal gyrus (IFG) and inferior parietal sulcus (IPS) play a role in social cognition. Furthermore, the medial surface of the brain, including the amygdala, anterior cingulate cortex (ACC), and anterior insula (AI), also participates in social cognition processes. Regarding decision-making, functional magnetic resonance imaging (fMRI) studies have illuminated the involvement of a network of brain regions, encompassing the ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and nucleus accumbens (NAcc). Conclusion: Dysfunction in specific subregions of the prefrontal cortex (PFC) has been linked to various psychiatric conditions. These subregions play pivotal roles in cognitive, emotional, and social processing, and their impairment can contribute to the development and manifestation of psychiatric symptoms. A comprehensive understanding of the unique contributions of these PFC subregions to psychiatric disorders has the potential to inform the development of targeted interventions and treatments for affected individuals.
Collapse
Affiliation(s)
| | | | | | - Alina Shuldishova
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Olga Gizatullina
- Financial University under the Government of the Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Wallace KJ, Dupeyron S, Li M, Kelly AM. Early life social complexity shapes adult neural processing in the communal spiny mouse Acomys cahirinus. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06513-5. [PMID: 38055059 DOI: 10.1007/s00213-023-06513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
RATIONALE Early life social rearing has profound consequences on offspring behavior and resilience. Yet, most studies examining early life development in rodents use species whose young are born immobile and do not produce complex social behavior until later in development. Furthermore, models of rearing under increased social complexity, rather than deprivation, are needed to provide alternative insight into the development of social neural circuitry. OBJECTIVES To understand precocial offspring social development, we manipulated early life social complexity in the communal spiny mouse Acomys cahirinus and assessed long-term consequences on offspring social behavior, exploration, and neural responses to novel social stimuli. METHODS Spiny mouse pups were raised in the presence or absence of a non-kin breeding group. Upon adulthood, subjects underwent social interaction tests, an open field test, and a novel object test. Subjects were then exposed to a novel conspecific and novel group and neural responses were quantified via immunohistochemical staining in brain regions associated with social behavior. RESULTS Early life social experience did not influence behavior in the test battery, but it did influence social processing. In animals exposed to non-kin during development, adult lateral septal neural responses toward a novel conspecific were weaker and hypothalamic neural responses toward a mixed-sex group were stronger. CONCLUSIONS Communal species may exhibit robust behavioral resilience to the early life social environment. But the early life environment can affect how novel social information is processed in the brain during adulthood, with long-term consequences that are likely to shape their behavioral trajectory.
Collapse
Affiliation(s)
| | | | - Mutian Li
- Department of Psychology, Emory University, Atlanta, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, USA
| |
Collapse
|
11
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. PLoS One 2023; 18:e0281794. [PMID: 37797037 PMCID: PMC10553809 DOI: 10.1371/journal.pone.0281794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Nathaniel S. Rieger
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Bridget H. Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Bridget N. Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Alexandra J. Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - John P. Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| |
Collapse
|
12
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
13
|
Zhou SF, Li SJ, Zhao TS, Liu Y, Li CQ, Cui YH, Li F. Female rats prefer to forage food from males, an effect that is not influenced by stress. Behav Brain Res 2023; 452:114597. [PMID: 37487838 DOI: 10.1016/j.bbr.2023.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
As social beings, animals and humans alike make real life decisions that are often influenced by other members. Most current research has focused on the influence of same-sex peers on individual decision-making, with potential opposite sex effect scarcely explored. Here, we developed a behavioral model to observe food foraging decision-making in female rats under various social situations. We found that female rats preferred to forage food from male over female rats or from the no-rat storage side. Female rats were more likely to forage food from familiar males than from unfamiliar. This opposite-sex preference was not altered by the lure of sweet food, or with estrous cycle, nor under stress conditions. These results suggest that the opposite sex influences food foraging decision-making in female rats. The behavioral model established could facilitate future investigation into the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Song-Ji Li
- The International-Joint Lab for Non-invasive Neural Modulation/Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
14
|
Guo M, Sun L. From rodents to humans: Rodent behavioral paradigms for social behavioral disorders. Brain Circ 2023; 9:154-161. [PMID: 38020957 PMCID: PMC10679632 DOI: 10.4103/bc.bc_48_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 12/01/2023] Open
Abstract
Social cognition guides social behavior. Subjects with proper social cognition should be able to: (1) have reasonable social motivation, (2) recognize other people and infer their intentions, and (3) weigh social hierarchies and other values. The choice of appropriate behavioral paradigms enables the use of rodents to study social behavior disorders in humans, thus enabling research to go deeper into neural mechanisms. This paper reviews commonly used rodent behavioral paradigms in studies of social behavior disorders. We focused specifically on sorting out ways to transfer the study of human social behavior to rodents through behavioral paradigms.
Collapse
Affiliation(s)
- Mingyue Guo
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| | - Le Sun
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wallace KJ, Chun EK, Manns JR, Ophir AG, Kelly AM. A test of the social behavior network reveals differential patterns of neural responses to social novelty in bonded, but not non-bonded, male prairie voles. Horm Behav 2023; 152:105362. [PMID: 37086574 PMCID: PMC10291480 DOI: 10.1016/j.yhbeh.2023.105362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/02/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
The social behavior network (SBN) has provided a framework for understanding the neural control of social behavior. The original SBN hypothesis proposed this network modulates social behavior and should exhibit distinct patterns of neural activity across nodes, which correspond to distinct social contexts. Despite its tremendous impact on the field of social neuroscience, no study has directly tested this hypothesis. Thus, we assessed Fos responses across the SBN of male prairie voles (Microtus ochrogaster). Virgin/non-bonded and pair bonded subjects were exposed to a sibling cagemate or pair bonded partner, novel female, novel male, novel meadow vole, novel object, or no stimulus. Inconsistent with the original SBN hypothesis, we did not find profoundly different patterns of neural responses across the SBN for different contexts, but instead found that the SBN generated significantly different patterns of activity in response to social novelty in pair bonded, but not non-bonded males. These findings suggest that non-bonded male prairie voles may perceive social novelty differently from pair bonded males or that SBN functionality undergoes substantial changes after pair bonding. This study reveals novel information about bond-dependent, context-specific neural responsivity in male prairie voles and suggests that the SBN may be particularly important for processing social salience. Further, our study suggests there is a need to reconceptualize the framework of how the SBN modulates social behavior.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Eileen K Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
17
|
Jiang Y, McDonald KR, Pearson JM, Platt ML. Neuronal mechanisms of dynamic strategic competition. RESEARCH SQUARE 2023:rs.3.rs-2524549. [PMID: 36993358 PMCID: PMC10055525 DOI: 10.21203/rs.3.rs-2524549/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Competitive social interactions, as in chess or poker, often involve multiple moves and countermoves deployed tactically within a broader strategic plan. Such maneuvers are supported by mentalizing or theory-of-mind-reasoning about the beliefs, plans, and goals of an opponent. The neuronal mechanisms underlying strategic competition remain largely unknown. To address this gap, we studied humans and monkeys playing a virtual soccer game featuring continuous competitive interactions. Humans and monkeys deployed similar tactics within broadly identical strategies, which featured unpredictable trajectories and precise timing for kickers, and responsiveness to opponents for goalies. We used Gaussian Process (GP) classification to decompose continuous gameplay into a series of discrete decisions predicated on the evolving states of self and opponent. We extracted relevant model parameters as regressors for neuronal activity in macaque mid-superior temporal sulcus (mSTS), the putative homolog of human temporo-parietal junction (TPJ), an area selectively engaged during strategic social interactions. We discovered two spatially-segregated populations of mSTS neurons that signaled actions of self and opponent, sensitivities to state changes, and previous and current trial outcomes. Inactivating mSTS reduced kicker unpredictability and impaired goalie responsiveness. These findings demonstrate mSTS neurons multiplex information about the current states of self and opponent as well as history of previous interactions to support ongoing strategic competition, consistent with hemodynamic activity found in human TPJ.
Collapse
Affiliation(s)
- Yaoguang Jiang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelsey R. McDonald
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA
| | - John M. Pearson
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Marketing Department, the Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526780. [PMID: 36778382 PMCID: PMC9915682 DOI: 10.1101/2023.02.02.526780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget N Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
19
|
Moeller S, Unakafov AM, Fischer J, Gail A, Treue S, Kagan I. Human and macaque pairs employ different coordination strategies in a transparent decision game. eLife 2023; 12:e81641. [PMID: 36633125 PMCID: PMC9937648 DOI: 10.7554/elife.81641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Many real-world decisions in social contexts are made while observing a partner's actions. To study dynamic interactions during such decisions, we developed a setup where two agents seated face-to-face to engage in game-theoretical tasks on a shared transparent touchscreen display ('transparent games'). We compared human and macaque pairs in a transparent version of the coordination game 'Bach-or-Stravinsky', which entails a conflict about which of two individually-preferred opposing options to choose to achieve coordination. Most human pairs developed coordinated behavior and adopted dynamic turn-taking to equalize the payoffs. All macaque pairs converged on simpler, static coordination. Remarkably, two animals learned to coordinate dynamically after training with a human confederate. This pair selected the faster agent's preferred option, exhibiting turn-taking behavior that was captured by modeling the visibility of the partner's action before one's own movement. Such competitive turn-taking was unlike the prosocial turn-taking in humans, who equally often initiated switches to and from their preferred option. Thus, the dynamic coordination is not restricted to humans but can occur on the background of different social attitudes and cognitive capacities in rhesus monkeys. Overall, our results illustrate how action visibility promotes the emergence and maintenance of coordination when agents can observe and time their mutual actions.
Collapse
Affiliation(s)
- Sebastian Moeller
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
| | - Anton M Unakafov
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Georg-Elias-Müller-Institute of Psychology, University of GottingenGöttingenGermany
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Campus Institute for Dynamics of Biological NetworksGottingenGermany
| | - Julia Fischer
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Cognitive Ethology Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Department of Primate Cognition, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of GottingenGöttingenGermany
| | - Alexander Gail
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Georg-Elias-Müller-Institute of Psychology, University of GottingenGöttingenGermany
- Bernstein Center for Computational NeuroscienceGöttingenGermany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Georg-Elias-Müller-Institute of Psychology, University of GottingenGöttingenGermany
- Bernstein Center for Computational NeuroscienceGöttingenGermany
| | - Igor Kagan
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
| |
Collapse
|
20
|
Zablocki-Thomas PB, Rogers FD, Bales KL. Neuroimaging of human and non-human animal emotion and affect in the context of social relationships. Front Behav Neurosci 2022; 16:994504. [PMID: 36338883 PMCID: PMC9633678 DOI: 10.3389/fnbeh.2022.994504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Long-term relationships are essential for the psychological wellbeing of humans and many animals. Positive emotions and affective experiences (e.g., romantic or platonic love) seem to be closely related to the creation and maintenance of social bonds. When relationships are threatened or terminated, other emotions generally considered to be negative can arise (e.g., jealousy or loneliness). Because humans and animals share (to varying degrees) common evolutionary histories, researchers have attempted to explain the evolution of affect and emotion through the comparative approach. Now brain imaging techniques allow the comparison of the neurobiological substrates of affective states and emotion in human and animal brains using a common methodology. Here, we review brain imaging studies that feature emotions characterized by the context of social bonding. We compare imaging findings associated with affective and emotional states elicited by similar social situations between humans and animal models. We also highlight the role of key neurohormones (i.e., oxytocin, vasopressin, and dopamine) that jointly support the occurrence of socially contextualized emotions and affect across species. In doing so, we seek to explore and clarify if and how humans and animals might similarly experience social emotion and affect in the context of social relationships.
Collapse
Affiliation(s)
| | - Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Psychology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Karen L. Bales
- California National Primate Research Center, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Castrellon JJ, Hakimi S, Parelman JM, Yin L, Law JR, Skene JAG, Ball DA, Malekpour A, Beskind DH, Vidmar N, Pearson JM, Carter RM, Skene JHP. Neural Support for Contributions of Utility and Narrative Processing of Evidence in Juror Decision Making. J Neurosci 2022; 42:7624-7633. [PMID: 36658459 PMCID: PMC9546442 DOI: 10.1523/jneurosci.2434-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 02/02/2023] Open
Abstract
Efforts to explain complex human decisions have focused on competing theories emphasizing utility and narrative mechanisms. These are difficult to distinguish using behavior alone. Both narrative and utility theories have been proposed to explain juror decisions, which are among the most consequential complex decisions made in a modern society. Here, we asked jury-eligible male and female subjects to rate the strength of a series of criminal cases while recording the resulting patterns of brain activation. We compared patterns of brain activation associated with evidence accumulation to patterns of brain activation derived from a large neuroimaging database to look for signatures of the cognitive processes associated with different models of juror decision-making. Evidence accumulation correlated with multiple narrative processes, including reading and recall. Of the cognitive processes traditionally viewed as components of utility, activation patterns associated with uncertainty, but not value, were more active with stronger evidence. Independent of utility and narrative, activations linked to reasoning and relational logic also correlated with increasing evidence. Hierarchical modeling of cognitive processes associated with evidence accumulation supported a more prominent role for narrative in weighing evidence in complex decisions. However, utility processes were also associated with evidence accumulation. These complementary findings support an emerging view that integrates utility and narrative processes in complex decisions.SIGNIFICANCE STATEMENT The last decade has seen a sharply increased interest in narrative as a central cognitive process in human decision-making and as an important factor in the evolution of human societies. However, the roles of narrative versus utility models of decision-making remain hotly debated. While available models frequently produce similar behavioral predictions, they rely on different cognitive processes and so their roles can be separated using the right neural tests. Here, we use brain imaging during mock juror decisions to show that cognitive processes associated with narrative, and to a lesser extent utility, were engaged while subjects evaluated evidence. These results are consistent with interactions between narrative and utility processes during complex decision-making.
Collapse
Affiliation(s)
- Jaime J Castrellon
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - Shabnam Hakimi
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309
| | - Jacob M Parelman
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lun Yin
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - Jonathan R Law
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - Jesse A G Skene
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - David A Ball
- Malekpour & Ball Consulting (JuryWatch, Inc.), Durham, North Carolina 27705
| | - Artemis Malekpour
- Malekpour & Ball Consulting (JuryWatch, Inc.), Durham, North Carolina 27705
| | | | - Neil Vidmar
- School of Law, Duke University, Durham, North Carolina 27708
| | - John M Pearson
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27708
- Department of Neurobiology, Duke University, Durham, North Carolina 27710
| | - R McKell Carter
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
- Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309
| | - J H Pate Skene
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309
- Department of Neurobiology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
22
|
Kaczanowska J, Ganglberger F, Chernomor O, Kargl D, Galik B, Hess A, Moodley Y, von Haeseler A, Bühler K, Haubensak W. Molecular archaeology of human cognitive traits. Cell Rep 2022; 40:111287. [PMID: 36044840 DOI: 10.1016/j.celrep.2022.111287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 01/06/2023] Open
Abstract
The brains and minds of our human ancestors remain inaccessible for experimental exploration. Therefore, we reconstructed human cognitive evolution by projecting nonsynonymous/synonymous rate ratios (ω values) in mammalian phylogeny onto the anatomically modern human (AMH) brain. This atlas retraces human neurogenetic selection and allows imputation of ancestral evolution in task-related functional networks (FNs). Adaptive evolution (high ω values) is associated with excitatory neurons and synaptic function. It shifted from FNs for motor control in anthropoid ancestry (60-41 mya) to attention in ancient hominoids (26-19 mya) and hominids (19-7.4 mya). Selection in FNs for language emerged with an early hominin ancestor (7.4-1.7 mya) and was later accompanied by adaptive evolution in FNs for strategic thinking during recent (0.8 mya-present) speciation of AMHs. This pattern mirrors increasingly complex cognitive demands and suggests that co-selection for language alongside strategic thinking may have separated AMHs from their archaic Denisovan and Neanderthal relatives.
Collapse
Affiliation(s)
- Joanna Kaczanowska
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | | | - Olga Chernomor
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna, Medical University of Vienna, Dr. Bohr Gasse 9, 1030 Vienna, Austria
| | - Dominic Kargl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bence Galik
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities (VBCF), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Private Bag X5050, Thohoyandou, Republic of South Africa
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna, Medical University of Vienna, Dr. Bohr Gasse 9, 1030 Vienna, Austria; Faculty of Computer Science, University of Vienna, Währinger Str. 29, 1090 Vienna, Austria
| | - Katja Bühler
- VRVis Research Center, Donau-City Strasse 11, 1220 Vienna, Austria
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
24
|
Pohl TT, Hörnberg H. Neuroligins in neurodevelopmental conditions: how mouse models of de novo mutations can help us link synaptic function to social behavior. Neuronal Signal 2022; 6:NS20210030. [PMID: 35601025 PMCID: PMC9093077 DOI: 10.1042/ns20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental conditions (or neurodevelopmental disorders, NDDs) are highly heterogeneous with overlapping characteristics and shared genetic etiology. The large symptom variability and etiological heterogeneity have made it challenging to understand the biological mechanisms underpinning NDDs. To accommodate this individual variability, one approach is to move away from diagnostic criteria and focus on distinct dimensions with relevance to multiple NDDs. This domain approach is well suited to preclinical research, where genetically modified animal models can be used to link genetic variability to neurobiological mechanisms and behavioral traits. Genetic factors associated with NDDs can be grouped functionally into common biological pathways, with one prominent functional group being genes associated with the synapse. These include the neuroligins (Nlgns), a family of postsynaptic transmembrane proteins that are key modulators of synaptic function. Here, we review how research using Nlgn mouse models has provided insight into how synaptic proteins contribute to behavioral traits associated with NDDs. We focus on how mutations in different Nlgns affect social behaviors, as differences in social interaction and communication are a common feature of most NDDs. Importantly, mice carrying distinct mutations in Nlgns share some neurobiological and behavioral phenotypes with other synaptic gene mutations. Comparing the functional implications of mutations in multiple synaptic proteins is a first step towards identifying convergent neurobiological pathways in multiple brain regions and circuits.
Collapse
Affiliation(s)
- Tobias T. Pohl
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Hanna Hörnberg
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|
25
|
Abstract
Visual representations of bodies, in addition to those of faces, contribute to the recognition of con- and heterospecifics, to action recognition, and to nonverbal communication. Despite its importance, the neural basis of the visual analysis of bodies has been less studied than that of faces. In this article, I review what is known about the neural processing of bodies, focusing on the macaque temporal visual cortex. Early single-unit recording work suggested that the temporal visual cortex contains representations of body parts and bodies, with the dorsal bank of the superior temporal sulcus representing bodily actions. Subsequent functional magnetic resonance imaging studies in both humans and monkeys showed several temporal cortical regions that are strongly activated by bodies. Single-unit recordings in the macaque body patches suggest that these represent mainly body shape features. More anterior patches show a greater viewpoint-tolerant selectivity for body features, which may reflect a processing principle shared with other object categories, including faces. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rufin Vogels
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Belgium; .,Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
26
|
Miller CT, Gire D, Hoke K, Huk AC, Kelley D, Leopold DA, Smear MC, Theunissen F, Yartsev M, Niell CM. Natural behavior is the language of the brain. Curr Biol 2022; 32:R482-R493. [PMID: 35609550 PMCID: PMC10082559 DOI: 10.1016/j.cub.2022.03.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The breadth and complexity of natural behaviors inspires awe. Understanding how our perceptions, actions, and internal thoughts arise from evolved circuits in the brain has motivated neuroscientists for generations. Researchers have traditionally approached this question by focusing on stereotyped behaviors, either natural or trained, in a limited number of model species. This approach has allowed for the isolation and systematic study of specific brain operations, which has greatly advanced our understanding of the circuits involved. At the same time, the emphasis on experimental reductionism has left most aspects of the natural behaviors that have shaped the evolution of the brain largely unexplored. However, emerging technologies and analytical tools make it possible to comprehensively link natural behaviors to neural activity across a broad range of ethological contexts and timescales, heralding new modes of neuroscience focused on natural behaviors. Here we describe a three-part roadmap that aims to leverage the wealth of behaviors in their naturally occurring distributions, linking their variance with that of underlying neural processes to understand how the brain is able to successfully navigate the everyday challenges of animals' social and ecological landscapes. To achieve this aim, experimenters must harness one challenge faced by all neurobiological systems, namely variability, in order to gain new insights into the language of the brain.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
| | - David Gire
- Department of Psychology, University of Washington, Guthrie Hall, Seattle, WA 98105, USA
| | - Kim Hoke
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alexander C Huk
- Center for Perceptual Systems, Departments of Neuroscience and Psychology, University of Texas at Austin, 116 Inner Campus Drive, Austin, TX 78712, USA
| | - Darcy Kelley
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - David A Leopold
- Section of Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Matthew C Smear
- Department of Psychology and Institute of Neuroscience, University of Oregon, 1227 University Street, Eugene, OR 97403, USA
| | - Frederic Theunissen
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Michael Yartsev
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, 222 Huestis Hall, Eugene, OR 97403, USA.
| |
Collapse
|
27
|
Bars SL, Bourgeois-Gironde S, Wyart V, Sari I, Pacherie E, Chambon V. Motor Coordination and Strategic Cooperation in Joint Action. Psychol Sci 2022; 33:736-751. [PMID: 35446732 DOI: 10.1177/09567976211053275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Naturalistic joint action between two agents typically requires both motor coordination and strategic cooperation. However, these two fundamental processes have systematically been studied independently. We presented 50 dyads of adult participants with a novel collaborative task that combined different levels of motor noise with different levels of strategic noise, to determine whether the sense of agency (the experience of control over an action) reflects the interplay between these low-level (motor) and high-level (strategic) dimensions. We also examined how dominance in motor control could influence prosocial behaviors. We found that self-agency was particularly dependent on motor cues, whereas joint agency was particularly dependent on strategic cues. We suggest that the prime importance of strategic cues to joint agency reflects the co-representation of coagents' interests during the task. Furthermore, we observed a reduction in prosocial strategies in agents who exerted dominant motor control over joint action, showing that the strategic dimension of human interactions is also susceptible to the influence of low-level motor characteristics.
Collapse
Affiliation(s)
- Solène Le Bars
- Institut Jean Nicod, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), École des Hautes Études en Sciences Sociales (EHESS).,Département d'Études Cognitives, École Normale Supérieure, Paris Sciences et Lettres University.,Altran Lab, Research & Innovation Department, Capgemini Engineering, Neuilly-sur-Seine, France
| | - Sacha Bourgeois-Gironde
- Institut Jean Nicod, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), École des Hautes Études en Sciences Sociales (EHESS).,Département d'Études Cognitives, École Normale Supérieure, Paris Sciences et Lettres University
| | - Valentin Wyart
- Département d'Études Cognitives, École Normale Supérieure, Paris Sciences et Lettres University.,Laboratoire de Neurosciences Cognitives Computationnelles, École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale (INSERM)
| | - Izel Sari
- Institut Jean Nicod, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), École des Hautes Études en Sciences Sociales (EHESS).,Département d'Études Cognitives, École Normale Supérieure, Paris Sciences et Lettres University
| | - Elisabeth Pacherie
- Institut Jean Nicod, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), École des Hautes Études en Sciences Sociales (EHESS).,Département d'Études Cognitives, École Normale Supérieure, Paris Sciences et Lettres University
| | - Valérian Chambon
- Institut Jean Nicod, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), École des Hautes Études en Sciences Sociales (EHESS).,Département d'Études Cognitives, École Normale Supérieure, Paris Sciences et Lettres University
| |
Collapse
|
28
|
Zhang W, Rose MC, Yartsev MM. A unifying mechanism governing inter-brain neural relationship during social interactions. eLife 2022; 11:70493. [PMID: 35142287 PMCID: PMC8947764 DOI: 10.7554/elife.70493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/08/2022] [Indexed: 01/23/2023] Open
Abstract
A key goal of social neuroscience is to understand the inter-brain neural relationship-the relationship between the neural activity of socially interacting individuals. Decades of research investigating this relationship have focused on the similarity in neural activity across brains. Here, we instead asked how neural activity differs between brains, and how that difference evolves alongside activity patterns shared between brains. Applying this framework to bats engaged in spontaneous social interactions revealed two complementary phenomena characterizing the inter-brain neural relationship: fast fluctuations of activity difference across brains unfolding in parallel with slow activity covariation across brains. A model reproduced these observations and generated multiple predictions that we confirmed using experimental data involving pairs of bats and a larger social group of bats. The model suggests that a simple computational mechanism involving positive and negative feedback could explain diverse experimental observations regarding the inter-brain neural relationship.
Collapse
Affiliation(s)
- Wujie Zhang
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Maimon C Rose
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute and Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
29
|
A role of anterior cingulate cortex in the emergence of worker-parasite relationship. Proc Natl Acad Sci U S A 2021; 118:2111145118. [PMID: 34815341 DOI: 10.1073/pnas.2111145118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
We studied the brain mechanisms underlying action selection in a social dilemma setting in which individuals' effortful gains are unfairly distributed among group members. A stable "worker-parasite" relationship developed when three individually operant-conditioned rats were placed together in a Skinner box equipped with response lever and food dispenser on opposite sides. Specifically, one rat, the "worker," engaged in lever-pressing while the other two "parasitic" rats profited from the worker's effort by crowding the feeder in anticipation of food. Anatomically, c-Fos expression in the anterior cingulate cortex (ACC) was significantly higher in worker rats than in parasite rats. Functionally, ACC inactivation suppressed the worker's lever-press behavior drastically under social, but only mildly under individual, settings. Transcriptionally, GABAA receptor- and potassium channel-related messenger RNA expressions were reliably lower in the worker's, relative to parasite's, ACC. These findings indicate the requirement of ACC activation for the expression of exploitable, effortful behavior, which could be mediated by molecular pathways involving GABAA receptor/potassium channel proteins.
Collapse
|
30
|
Jiang M, Wang M, Shi Q, Wei L, Lin Y, Wu D, Liu B, Nie X, Qiao H, Xu L, Yang T, Wang Z. Evolution and neural representation of mammalian cooperative behavior. Cell Rep 2021; 37:110029. [PMID: 34788618 DOI: 10.1016/j.celrep.2021.110029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cooperation is common in nature and is pivotal to the development of human society. However, the details of how and why cooperation evolved remain poorly understood. Cross-species investigation of cooperation may help to elucidate the evolution of cooperative strategies. Thus, we design an automated cooperative behavioral paradigm and quantitatively examine the cooperative abilities and strategies of mice, rats, and tree shrews. We find that social communication plays a key role in the establishment of cooperation and that increased cooperative ability and a more efficient cooperative strategy emerge as a function of the evolutionary hierarchy of the tested species. Moreover, we demonstrate that single-unit activities in the orbitofrontal and prelimbic cortex in rats represent neural signals that may be used to distinguish between the cooperative and non-cooperative tasks, and such signals are distinct from the reward signals. Both signals may represent distinct components of the internal drive for cooperation.
Collapse
Affiliation(s)
- Mengping Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaoyaoxin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongqin Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingcheng Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boyi Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiupeng Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hong Qiao
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tianming Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Morelli M, Casagrande M, Forte G. Decision Making: a Theoretical Review. Integr Psychol Behav Sci 2021; 56:609-629. [PMID: 34780011 DOI: 10.1007/s12124-021-09669-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Decision-making is a crucial skill that has a central role in everyday life and is necessary for adaptation to the environment and autonomy. It is the ability to choose between two or more options, and it has been studied through several theoretical approaches and by different disciplines. In this overview article, we contend a theoretical review regarding most theorizing and research on decision-making. Specifically, we focused on different levels of analyses, including different theoretical approaches and neuropsychological aspects. Moreover, common methodological measures adopted to study decision-making were reported. This theoretical review emphasizes multiple levels of analysis and aims to summarize evidence regarding this fundamental human process. Although several aspects of the field are reported, more features of decision-making process remain uncertain and need to be clarified. Further experimental studies are necessary for understanding this process better and for integrating and refining the existing theories.
Collapse
Affiliation(s)
- Matteo Morelli
- Dipartimento di Psicologia, Università di Roma "Sapienza", Via dei Marsi. 78, 00185, Rome, Italy
| | - Maria Casagrande
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Università di Roma "Sapienza", Via degli Apuli, 1, 00185, Rome, Italy.
| | - Giuseppe Forte
- Dipartimento di Psicologia, Università di Roma "Sapienza", Via dei Marsi. 78, 00185, Rome, Italy. .,Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
32
|
Abdo MMM, Mohamed AS, Hammed MAE, Hashem RE, El Nagar ZM. Affective theory of the mind and suicide in women with borderline personality disorder and schizophrenia: a comparative study. MIDDLE EAST CURRENT PSYCHIATRY 2021. [DOI: 10.1186/s43045-021-00142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Theory of mind (ToM) is one of the essential components of social cognition. Affective ToM enables us to interpret other’s feelings and behaviors. Borderline personality disorder (BPD) and schizophrenia are two distinct mental disorders, yet they have a mutual deficit in interpreting emotions, thoughts, and intentions which may lead to a higher incidence of suicidality. Studies that involved social cognition, particularly ToM in schizophrenia, or BPD have controversial results. Therefore, this study aimed at comparing affective ToM functioning in female patients with BPD, schizophrenia, and healthy controls. In addition, identifying the possible impact and any correlation exists between the affective ToM and liability for suicide in those patients. Sixty individuals were recruited from the Institute of Psychiatry, Ain Shams University, Cairo, Egypt, and assigned into 3 groups where group A involved 20 BPD patients, group B involved 20 schizophrenic patients, and group C were healthy persons as a control. Assessment of affective ToM was done using Reading the Mind in the Eyes Test (RMET), and probability of suicide was measured using Suicide Probability Scale (SPS).
Results
Regarding ToM, the three groups were assessed using RMET and the results revealed a significantly higher mean score (hypermentalization) in BPD patients than both schizophrenic patients and controls. While schizophrenic patients had significantly lower mean scores than the control group (hypomentalization). As well, BPD patients had a significantly higher suicide probability total score than Schizophrenic patients and in all subdomains except for the hostility subdomain that was significantly higher in schizophrenic patients. Interestingly, in BPD, the suicide probability total score was positively correlated with RMET.
Conclusions
BPD patients have enhanced affective ToM and hypermentalization that is significantly associated with increased suicide probability in those patients, while in schizophrenia, hypomentalization could not be linked to increased suicide probability. Rehabilitation and proper management of ToM abnormalities might be a crucial tool in suicide prevention in mental illnesses, particularly, BPD.
Collapse
|
33
|
Gossman KR, Dykstra B, García BH, Swopes AP, Kimbrough A, Smith AS. Pair Bond-Induced Affiliation and Aggression in Male Prairie Voles Elicit Distinct Functional Connectivity in the Social Decision-Making Network. Front Neurosci 2021; 15:748431. [PMID: 34720866 PMCID: PMC8553992 DOI: 10.3389/fnins.2021.748431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Complex social behaviors are governed by a neural network theorized to be the social decision-making network (SDMN). However, this theoretical network is not tested on functional grounds. Here, we assess the organization of regions in the SDMN using c-Fos, to generate functional connectivity models during specific social interactions in a socially monogamous rodent, the prairie voles (Microtus ochrogaster). Male voles displayed robust selective affiliation toward a female partner, while exhibiting increased threatening, vigilant, and physically aggressive behaviors toward novel males and females. These social interactions increased c-Fos levels in eight of the thirteen brain regions of the SDMN. Each social encounter generated a distinct correlation pattern between individual brain regions. Thus, hierarchical clustering was used to characterize interrelated regions with similar c-Fos activity resulting in discrete network modules. Functional connectivity maps were constructed to emulate the network dynamics resulting from each social encounter. Our partner functional connectivity network presents similarities to the theoretical SDMN model, along with connections in the network that have been implicated in partner-directed affiliation. However, both stranger female and male networks exhibited distinct architecture from one another and the SDMN. Further, the stranger-evoked networks demonstrated connections associated with threat, physical aggression, and other aversive behaviors. Together, this indicates that distinct patterns of functional connectivity in the SDMN can be detected during select social encounters.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Benjamin Dykstra
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Byron H. García
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arielle P. Swopes
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
34
|
Báez-Mendoza R, Vázquez Y, Mastrobattista EP, Williams ZM. Neuronal Circuits for Social Decision-Making and Their Clinical Implications. Front Neurosci 2021; 15:720294. [PMID: 34658766 PMCID: PMC8517320 DOI: 10.3389/fnins.2021.720294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Social living facilitates individual access to rewards, cognitive resources, and objects that would not be otherwise accessible. There are, however, some drawbacks to social living, particularly when competing for scarce resources. Furthermore, variability in our ability to make social decisions can be associated with neuropsychiatric disorders. The neuronal mechanisms underlying social decision-making are beginning to be understood. The momentum to study this phenomenon has been partially carried over by the study of economic decision-making. Yet, because of the similarities between these different types of decision-making, it is unclear what is a social decision. Here, we propose a definition of social decision-making as choices taken in a context where one or more conspecifics are involved in the decision or the consequences of it. Social decisions can be conceptualized as complex economic decisions since they are based on the subjective preferences between different goods. During social decisions, individuals choose based on their internal value estimate of the different alternatives. These are complex decisions given that conspecifics beliefs or actions could modify the subject's internal valuations at every choice. Here, we first review recent developments in our collective understanding of the neuronal mechanisms and circuits of social decision-making in primates. We then review literature characterizing populations with neuropsychiatric disorders showing deficits in social decision-making and the underlying neuronal circuitries associated with these deficits.
Collapse
Affiliation(s)
- Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yuriria Vázquez
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, United States
| | - Emma P. Mastrobattista
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Si Y, Li F, Li F, Tu J, Yi C, Tao Q, Zhang X, Pei C, Gao S, Yao D, Xu P. The Growing From Adolescence to Adulthood Influences the Decision Strategy to Unfair Situations. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2981512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Wei F, Li W, Ma B, Deng X, Zhang L, Zhao L, Zheng T, Jing Y. Experiences affect social behaviors via altering neuronal morphology and oxytocin system. Psychoneuroendocrinology 2021; 129:105247. [PMID: 33940517 DOI: 10.1016/j.psyneuen.2021.105247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Life experiences, such as maternal deprivation (MD) and environment enrichment (EE), affect social behaviors in the adult. But, the underlying mechanism remains unclear. In the present study, we determined whether neonatal MD induces social deficits, whether postweaning EE restores the deficits, and their effects on neuron morphology and oxytocin (OT)-oxytocin receptor (OTR) system. We found that MD induced repetitive behavior and deficits in novel object recognition and sociability, and EE alleviated these deficits. MD decreased oxytocinergic neurons in the magnocellular hypothalamic paraventricular nucleus (mPVH), which was parallel to the increased OTR levels and dendritic branches of projection neurons in the basolateral amygdala (BLA). EE increased the OTR levels in the prelimbic cortex (PL) and the oxytocinergic neurons in the parvocellular PVH (vPVH), which were parallel to the increased dendritic branches of small pyramidal neurons in the PL and synaptic connections marked with synaptophysin and postsynaptic density protein 95 in the BLA and PL. Together, the results suggest that postweaning EE alleviates the social impairments induced by neonatal MD and OT-OTR system are experience-dependent and associated with social behaviors and neuron morphology.
Collapse
Affiliation(s)
- Fengmei Wei
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopedics, First Hospital of Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Tingjuan Zheng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu Province 730000, PR China.
| |
Collapse
|
37
|
Friedrich P, Forkel SJ, Amiez C, Balsters JH, Coulon O, Fan L, Goulas A, Hadj-Bouziane F, Hecht EE, Heuer K, Jiang T, Latzman RD, Liu X, Loh KK, Patil KR, Lopez-Persem A, Procyk E, Sallet J, Toro R, Vickery S, Weis S, Wilson CRE, Xu T, Zerbi V, Eickoff SB, Margulies DS, Mars RB, Thiebaut de Schotten M. Imaging evolution of the primate brain: the next frontier? Neuroimage 2021; 228:117685. [PMID: 33359344 PMCID: PMC7116589 DOI: 10.1016/j.neuroimage.2020.117685] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Joshua H Balsters
- Department of Psychology, Royal Holloway University of London, United Kingdom
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Fadila Hadj-Bouziane
- Lyon Neuroscience Research Center, ImpAct Team, INSERM U1028, CNRS UMR5292, Université Lyon 1, Bron, France
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert D Latzman
- Department of Psychology, Georgia State University, Atlanta, United States
| | - Xiaojin Liu
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Kep Kee Loh
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Alizée Lopez-Persem
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Jerome Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roberto Toro
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Neuroscience department, Institut Pasteur, UMR 3571, CNRS, Université de Paris, Paris 75015, France
| | - Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Ting Xu
- Child Mind Institute, New York, United States
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon B Eickoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Daniel S Margulies
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75006, Paris, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
38
|
Noritake A, Ninomiya T, Isoda M. Subcortical encoding of agent-relevant associative signals for adaptive social behavior in the macaque. Neurosci Biobehav Rev 2021; 125:78-87. [PMID: 33609569 DOI: 10.1016/j.neubiorev.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Primates are group-living creatures that constantly face the challenges posed by complex social demands. To date, the cortical mechanisms underlying social information processing have been the major focus of attention. However, emerging evidence suggests that subcortical regions also mediate the collection and processing of information from other agents. Here, we review the literature supporting the hypothesis that behavioral variables important for decision-making, i.e., stimulus, action, and outcome, are associated with agent information (self and other) in subcortical regions, such as the amygdala, striatum, lateral hypothalamus, and dopaminergic midbrain nuclei. Such self-relevant and other-relevant associative signals are then integrated into a social utility signal, presumably at the level of midbrain dopamine neurons. This social utility signal allows decision makers to organize their optimal behavior in accordance with social demands. Determining how self-relevant and other-relevant signals might be altered in psychiatric and neurodevelopmental disorders will be fundamental to better understand how social behaviors are dysregulated in disease conditions.
Collapse
Affiliation(s)
- Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan
| | - Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
39
|
Gangopadhyay P, Chawla M, Dal Monte O, Chang SWC. Prefrontal-amygdala circuits in social decision-making. Nat Neurosci 2020; 24:5-18. [PMID: 33169032 DOI: 10.1038/s41593-020-00738-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
An increasing amount of research effort is being directed toward investigating the neural bases of social cognition from a systems neuroscience perspective. Evidence from multiple animal species is beginning to provide a mechanistic understanding of the substrates of social behaviors at multiple levels of neurobiology, ranging from those underlying high-level social constructs in humans and their more rudimentary underpinnings in monkeys to circuit-level and cell-type-specific instantiations of social behaviors in rodents. Here we review literature examining the neural mechanisms of social decision-making in humans, non-human primates and rodents, focusing on the amygdala and the medial and orbital prefrontal cortical regions and their functional interactions. We also discuss how the neuropeptide oxytocin impacts these circuits and their downstream effects on social behaviors. Overall, we conclude that regulated interactions of neuronal activity in the prefrontal-amygdala pathways critically contribute to social decision-making in the brains of primates and rodents.
Collapse
Affiliation(s)
| | - Megha Chawla
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT, USA.,Department of Psychology, University of Turin, Torino, Italy
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Woodcock KA, Cheung C, González Marx D, Mandy W. Social Decision Making in Autistic Adolescents: The Role of Theory of Mind, Executive Functioning and Emotion Regulation. J Autism Dev Disord 2020; 50:2501-2512. [PMID: 30879258 DOI: 10.1007/s10803-019-03975-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Social decision making is often challenging for autistic individuals. Twenty autistic adolescents made decisions in the socially interactive context of a one-shot ultimatum game, and performance was compared to a large matched typical reference sample. Theory of mind, executive functioning and emotion regulation were measured via direct assessments, self- and parent report. Relative to the reference sample, autistic adolescents proposed fewer fair offers, and this was associated with poorer theory of mind. Autistic adolescents responded similarly to the reference sample when making decisions about offers proposed to them, however they did not appear to down regulate their negative emotion in response to unfair treatment in the same way. Atypical processes may underpin even apparently typical decisions made by autistic adolescents.
Collapse
Affiliation(s)
- Kate Anne Woodcock
- Centre for Applied Psychology & Institute for Mental Health, University of Birmingham, Birmingham, UK.
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK.
- School of Psychology, University of Birmingham, 52 Pritchatts Road, Edgbaston, Birmingham, B15 2SA, UK.
| | - Catherine Cheung
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Daniel González Marx
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Physics, University of Göttingen, Göttingen, Germany
| | - Will Mandy
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
41
|
Maylott SE, Paukner A, Ahn YA, Simpson EA. Human and monkey infant attention to dynamic social and nonsocial stimuli. Dev Psychobiol 2020; 62:841-857. [PMID: 32424813 PMCID: PMC7944642 DOI: 10.1002/dev.21979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The present study explored behavioral norms for infant social attention in typically developing human and nonhuman primate infants. We examined the normative development of attention to dynamic social and nonsocial stimuli longitudinally in macaques (Macaca mulatta) at 1, 3, and 5 months of age (N = 75) and humans at 2, 4, 6, 8, and 13 months of age (N = 69) using eye tracking. All infants viewed concurrently played silent videos-one social video and one nonsocial video. Both macaque and human infants were faster to look to the social than the nonsocial stimulus, and both species grew faster to orient to the social stimulus with age. Further, macaque infants' social attention increased linearly from 1 to 5 months. In contrast, human infants displayed a nonlinear pattern of social interest, with initially greater attention to the social stimulus, followed by a period of greater interest in the nonsocial stimulus, and then a rise in social interest from 6 to 13 months. Overall, human infants looked longer than macaque infants, suggesting humans have more sustained attention in the first year of life. These findings highlight potential species similarities and differences, and reflect a first step in establishing baseline patterns of early social attention development.
Collapse
Affiliation(s)
- Sarah E Maylott
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Annika Paukner
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| | - Yeojin A Ahn
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
42
|
Me first: Neural representations of fairness during three-party interactions. Neuropsychologia 2020; 147:107576. [PMID: 32758554 DOI: 10.1016/j.neuropsychologia.2020.107576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/20/2022]
Abstract
One hallmark of human morality is a deep sense of fairness. People are motivated by both self-interest and a concern for the welfare of others. However, it remains unclear whether these motivations rely on similar neural computations, and the extent to which such computations influence social decision-making when self-fairness and other-fairness motivations compete. In this study, two groups of participants engaged in the role of responder in a three-party Ultimatum Game while being scanned with functional MRI (N = 32) or while undergoing high-density electroencephalography (N = 40). In both studies, participants accepted more OtherFair offers when they themselves received fair offers. Though SelfFairness was reliably decoded from scalp voltages by 170 ms, and from hemodynamic responses in right insula and dorsolateral prefrontal cortex, there was no overlap between neural representations of fairness for self and for other. Distinct neural computations and mechanisms seem to be involved when making decisions about fairness in three-party contexts, which are anchored in an egocentric, self-serving bias.
Collapse
|
43
|
Medaglia JD, Kuersten A, Hamilton RH. Protecting Decision-Making in the Era of Neuromodulation. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Prounis GS, Ophir AG. One cranium, two brains not yet introduced: Distinct but complementary views of the social brain. Neurosci Biobehav Rev 2020; 108:231-245. [PMID: 31743724 PMCID: PMC6949399 DOI: 10.1016/j.neubiorev.2019.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Social behavior is pervasive across the animal kingdom, and elucidating how the brain enables animals to respond to social contexts is of great interest and profound importance. Our understanding of 'the social brain' has been fractured as it has matured. Two drastically different conceptualizations of the social brain have emerged with relatively little awareness of each other. In this review, we briefly recount the history behind the two dominant definitions of a social brain. The divide that has emerged between these visions can, in part, be attributed to differential attention to cortical or sub-cortical regions in the brain, and differences in methodology, comparative perspectives, and emphasis on functional specificity or generality. We discuss how these factors contribute to a lack of communication between research efforts, and propose ways in which each version of the social brain can benefit from the perspectives, tools, and approaches of the other. Interface between the two characterizations of social brain networks is sure to provide essential insight into what the social brain encompasses.
Collapse
Affiliation(s)
- George S Prounis
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
45
|
Unakafov AM, Schultze T, Gail A, Moeller S, Kagan I, Eule S, Wolf F. Emergence and suppression of cooperation by action visibility in transparent games. PLoS Comput Biol 2020; 16:e1007588. [PMID: 31917809 PMCID: PMC6975562 DOI: 10.1371/journal.pcbi.1007588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/22/2020] [Accepted: 12/06/2019] [Indexed: 11/18/2022] Open
Abstract
Real-world agents, humans as well as animals, observe each other during interactions and choose their own actions taking the partners' ongoing behaviour into account. Yet, classical game theory assumes that players act either strictly sequentially or strictly simultaneously without knowing each other's current choices. To account for action visibility and provide a more realistic model of interactions under time constraints, we introduce a new game-theoretic setting called transparent games, where each player has a certain probability of observing the partner's choice before deciding on its own action. By means of evolutionary simulations, we demonstrate that even a small probability of seeing the partner's choice before one's own decision substantially changes the evolutionary successful strategies. Action visibility enhances cooperation in an iterated coordination game, but reduces cooperation in a more competitive iterated Prisoner's Dilemma. In both games, "Win-stay, lose-shift" and "Tit-for-tat" strategies are predominant for moderate transparency, while a "Leader-Follower" strategy emerges for high transparency. Our results have implications for studies of human and animal social behaviour, especially for the analysis of dyadic and group interactions.
Collapse
Affiliation(s)
- Anton M. Unakafov
- Georg-Elias-Müller-Institute of Psychology, University of Goettingen, Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- Campus Institute for Dynamics of Biological Networks, Goettingen, Germany
- Max Planck Institute for Experimental Medicine, Goettingen, Germany
- German Primate Center—Leibniz Institute for Primate Research, Goettingen, Germany
| | - Thomas Schultze
- Georg-Elias-Müller-Institute of Psychology, University of Goettingen, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
| | - Alexander Gail
- Georg-Elias-Müller-Institute of Psychology, University of Goettingen, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- German Primate Center—Leibniz Institute for Primate Research, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| | - Sebastian Moeller
- Georg-Elias-Müller-Institute of Psychology, University of Goettingen, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- German Primate Center—Leibniz Institute for Primate Research, Goettingen, Germany
| | - Igor Kagan
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- German Primate Center—Leibniz Institute for Primate Research, Goettingen, Germany
| | - Stephan Eule
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- Campus Institute for Dynamics of Biological Networks, Goettingen, Germany
- German Primate Center—Leibniz Institute for Primate Research, Goettingen, Germany
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- Campus Institute for Dynamics of Biological Networks, Goettingen, Germany
- Max Planck Institute for Experimental Medicine, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| |
Collapse
|
46
|
Facial responses of adult humans during the anticipation and consumption of touch and food rewards. Cognition 2020; 194:104044. [DOI: 10.1016/j.cognition.2019.104044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 01/04/2023]
|
47
|
Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Neurosci Biobehav Rev 2019; 107:229-237. [PMID: 31509767 PMCID: PMC6936221 DOI: 10.1016/j.neubiorev.2019.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 09/06/2019] [Indexed: 11/27/2022]
Abstract
Traditional active avoidance tasks have advanced the field of aversive learning and memory for decades and are useful for studying simple avoidance responses in isolation; however, these tasks have limited clinical relevance because they do not model several key features of clinical avoidance. In contrast, platform-mediated avoidance (PMA) more closely resembles clinical avoidance because the response i) is associated with an unambiguous safe location, ii) is not associated with an artificial termination of the warning signal, and iii) is associated with a decision-based appetitive cost. Recent findings on the neuronal circuits of PMA have confirmed that amygdala-striatal circuits are essential for avoidance. In PMA, however, the prelimbic cortex facilitates the avoidance response early during the warning signal, perhaps through disinhibition of the striatum. Future studies on avoidance should account for additional factors such as sex differences and social interactions that will advance our understanding of maladaptive avoidance contributing to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria M Diehl
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico; Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506 United States
| | | | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico.
| |
Collapse
|
48
|
Si Y, Jiang L, Tao Q, Chen C, Li F, Jiang Y, Zhang T, Cao X, Wan F, Yao D, Xu P. Predicting individual decision-making responses based on the functional connectivity of resting-state EEG. J Neural Eng 2019; 16:066025. [DOI: 10.1088/1741-2552/ab39ce] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Cognitive bots and algorithmic humans: toward a shared understanding of social intelligence. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Varela SAM, Teles MC, Oliveira RF. The correlated evolution of social competence and social cognition. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susana A. M. Varela
- Instituto Gulbenkian de Ciência Oeiras Portugal
- ISPA‐Instituto Universitário Lisboa Portugal
| | - Magda C. Teles
- Instituto Gulbenkian de Ciência Oeiras Portugal
- ISPA‐Instituto Universitário Lisboa Portugal
| | - Rui F. Oliveira
- Instituto Gulbenkian de Ciência Oeiras Portugal
- ISPA‐Instituto Universitário Lisboa Portugal
- Champalimaud Neuroscience Programme Lisboa Portugal
| |
Collapse
|