1
|
Korda Ž, Walcher S, Körner C, Benedek M. Internal coupling: Eye behavior coupled to visual imagery. Neurosci Biobehav Rev 2024; 165:105855. [PMID: 39153584 DOI: 10.1016/j.neubiorev.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Our eyes do not only respond to visual perception but also to internal cognition involving visual imagery, which can be referred to as internal coupling. This review synthesizes evidence on internal coupling across diverse domains including episodic memory and simulation, visuospatial memory, numerical cognition, object movement, body movement, and brightness imagery. In each domain, eye movements consistently reflect distinct aspects of mental imagery typically akin to those seen in corresponding visual experiences. Several findings further suggest that internal coupling may not only coincide with but also supports internal cognition as evidenced by improved cognitive performance. Available theoretical accounts suggest that internal coupling may serve at least two functional roles in visual imagery: facilitating memory reconstruction and indicating shifts in internal attention. Moreover, recent insights into the neurobiology of internal coupling highlight substantially shared neural pathways in externally and internally directed cognition. The review concludes by identifying open questions and promising avenues for future research such as exploring moderating roles of context and individual differences in internal coupling.
Collapse
Affiliation(s)
- Živa Korda
- Department of Psychology, University of Graz, Graz, Austria.
| | - Sonja Walcher
- Department of Psychology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
2
|
Gurguryan L, Fenerci C, Ngo N, Sheldon S. The Neural Corelates of Constructing Conceptual and Perceptual Representations of Autobiographical Memories. J Cogn Neurosci 2024; 36:1350-1373. [PMID: 38683700 DOI: 10.1162/jocn_a_02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Contemporary neurocognitive frameworks propose that conceptual and perceptual content of autobiographical memories-personal past experiences-are processed by dissociable neural systems. Other work has proposed a central role of the anterior hippocampus in initially constructing autobiographical memories, regardless of the content. Here, we report on an fMRI study that utilized a repeated retrieval paradigm to test these ideas. In an MRI scanner, participants retrieved autobiographical memories at three timepoints. During the third retrieval, participants either shifted their focus to the conceptual content of the memory, the perceptual content of the memory, or retrieved the memory as they had done so on previous trials. We observed stronger anterior hippocampal activity for the first retrieval compared with later retrievals, regardless of whether there was a shift in content in those later trials. We also found evidence for separate cortical systems when constructing autobiographical memories with a focus on conceptual or perceptual content. Finally, we found that there was common engagement between later retrievals that required a shift toward conceptual content and the initial retrieval of a memory. This final finding was explored further with a behavioral experiment that provided evidence that focusing on conceptual content of a memory guides memory construction, whereas perceptual content adds precision to a memory. Together, these findings suggest there are distinct content-oriented cortical systems that work with the anterior hippocampus to construct representations of autobiographical memories.
Collapse
Affiliation(s)
| | | | - Nguyet Ngo
- McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
3
|
Teghil A, Boccia M. Brain connectivity patterns associated with individual differences in the access to experience-near personal semantics: a resting-state fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:87-99. [PMID: 38200283 PMCID: PMC10827898 DOI: 10.3758/s13415-023-01149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
It has been proposed that a continuum of specificity exists between episodic and semantic autobiographical memory. Personal semantics have been theorized to situate intermediately on this continuum, with more "experience-near" personal semantics (enPS) closer to the episodic end. We used individual differences in behavior as a model to investigate brain networks associated with the access to episodic autobiographical (EAM) and enPS information, assessing the relation between performance in the EAM and enPS conditions of the Autobiographical Fluency Task (AFT) and intrinsic brain connectivity. Results of an intrinsic connectivity contrast analysis showed that the global connectivity of two clusters in the left and right posterior cingulate cortex (PCC) was predicted by performance in the enPS conditions. Moreover, enPS scores predicted the connectivity strength of the right PCC with the bilateral anterior hippocampus (aHC), anterior middle temporal gyrus (aMTG) and medial orbitofrontal cortex, and the left aMTG and PCC. enPS scores also predicted the connectivity strength of the left PCC with the bilateral HC and MTG. The network highlighted involves parts of the core and of the dorsal medial subsystems of the Default Mode Network, in line with the proposal that enPS represents an intermediate entity between episodic and semantic memory.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
4
|
Moscovitch DA, Moscovitch M, Sheldon S. Neurocognitive Model of Schema-Congruent and -Incongruent Learning in Clinical Disorders: Application to Social Anxiety and Beyond. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1412-1435. [PMID: 36795637 PMCID: PMC10623626 DOI: 10.1177/17456916221141351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Negative schemas lie at the core of many common and debilitating mental disorders. Thus, intervention scientists and clinicians have long recognized the importance of designing effective interventions that target schema change. Here, we suggest that the optimal development and administration of such interventions can benefit from a framework outlining how schema change occurs in the brain. Guided by basic neuroscientific findings, we provide a memory-based neurocognitive framework for conceptualizing how schemas emerge and change over time and how they can be modified during psychological treatment of clinical disorders. We highlight the critical roles of the hippocampus, ventromedial prefrontal cortex, amygdala, and posterior neocortex in directing schema-congruent and -incongruent learning (SCIL) in the interactive neural network that comprises the autobiographical memory system. We then use this framework, which we call the SCIL model, to derive new insights about the optimal design features of clinical interventions that aim to strengthen or weaken schema-based knowledge through the core processes of episodic mental simulation and prediction error. Finally, we examine clinical applications of the SCIL model to schema-change interventions in psychotherapy and provide cognitive-behavior therapy for social anxiety disorder as an illustrative example.
Collapse
Affiliation(s)
- David A. Moscovitch
- Department of Psychology and Centre for Mental Health Research & Treatment, University of Waterloo
| | - Morris Moscovitch
- Rotman Research Institute and Department of Psychology, Baycrest Centre for Geriatric Care
- Department of Psychology, University of Toronto
| | | |
Collapse
|
5
|
Lv X, Funahashi S, Li C, Wu J. Variational relevance evaluation of individual fMRI data enables deconstruction of task-dependent neural dynamics. Commun Biol 2023; 6:491. [PMID: 37147471 PMCID: PMC10163018 DOI: 10.1038/s42003-023-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
In neuroimaging research, univariate analysis has always been used to localize "representations" at the microscale, whereas network approaches have been applied to characterize transregional "operations". How are representations and operations linked through dynamic interactions? We developed the variational relevance evaluation (VRE) method to analyze individual task fMRI data, which selects informative voxels during model training to localize the "representation", and quantifies the dynamic contributions of single voxels across the whole-brain to different cognitive functions to characterize the "operation". Using 15 individual fMRI data files for higher visual area localizers, we evaluated the characterization of selected voxel positions of VRE and revealed different object-selective regions functioning in similar dynamics. Using another 15 individual fMRI data files for memory retrieval after offline learning, we found similar task-related regions working in different neural dynamics for tasks with diverse familiarities. VRE demonstrates a promising horizon in individual fMRI research.
Collapse
Affiliation(s)
- Xiaoyu Lv
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
- Researh Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
7
|
Kim H. Neural correlates of paired associate recollection: A neuroimaging meta-analysis. Brain Res 2023; 1801:148200. [PMID: 36513138 DOI: 10.1016/j.brainres.2022.148200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Functional neuroimaging data on paired associate recollection have expanded over the years, raising the need for an integrative understanding of the literature. The present study performed a quantitative meta-analysis of the data to fulfill that need. The meta-analysis focused on the three most widely used types of activation contrast: Hit > Miss, Intact > Rearranged, and Memory > Perception. The major results were as follows. First, the Hit > Miss contrast mainly involved regions in the default mode network (DMN)/medial temporal lobe (MTL), likely reflecting a greater amount of retrieved information during the Hit than Miss trials. Second, the Intact > Rearranged contrast mainly involved regions in the DMN/MTL, supporting the view that rejecting recombination foils is based on familiarity with the component parts in the absence of recollection. Third, the Memory > Perception contrast primarily involved regions in the frontoparietal control network, likely reflecting the greater demands on controlled processing during Memory than Perception conditions. Fourth, the subcortical clusters included the amygdala, caudate nucleus/putamen, and mediodorsal thalamus regions, suggesting that these regions are components of the neural circuits supporting associative recollection. Finally, comparisons with previous meta-analyses suggested that associative recollection involves the DMN regions more strongly than source recollection but less strongly than subjective recollection. In conclusion, this study contributes uniquely to the growing literature on paired associate recollection by clarifying the convergent findings and differences among studies.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea.
| |
Collapse
|
8
|
Humphreys GF, Tibon R. Dual-axes of functional organisation across lateral parietal cortex: the angular gyrus forms part of a multi-modal buffering system. Brain Struct Funct 2023; 228:341-352. [PMID: 35670844 PMCID: PMC9813060 DOI: 10.1007/s00429-022-02510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Decades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffering of spatio-temporally extended representations. We review the principles derived from computational modelling with neuroimaging task data and functional and structural connectivity measures that underpin the unified neurocomputational framework. We propose that although a variety of cognitive activities might draw on shared underlying machinery, variations in task preference across angular gyrus, and wider LPC, arise from graded changes in the underlying structural connectivity of the region to different input/output information sources. More specifically, we propose two primary axes of organisation: a dorsal-ventral axis and an anterior-posterior axis, with variations in task preference arising from underlying connectivity to different core cognitive networks (e.g. the executive, language, visual, or episodic memory networks).
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
9
|
Morawetz C, Berboth S, Kohn N, Jackson PL, Jauniaux J. Reappraisal and empathic perspective-taking - More alike than meets the eyes. Neuroimage 2022; 255:119194. [PMID: 35413444 DOI: 10.1016/j.neuroimage.2022.119194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 04/06/2022] [Indexed: 01/10/2023] Open
Abstract
Emotion regulation and empathy represent highly intertwined psychological processes sharing common conceptual ground. Despite the wealth of research in these fields, the joint and distinct functional nature and topological features of these constructs have not yet been investigated using the same experimental approach. This study investigated the common and distinct neural correlates of emotion regulation and empathy using a meta-analytic approach. The regions that were jointly activated were then characterized using meta-analytic connectivity modeling and functional decoding of metadata terms. The results revealed convergent activity within the ventrolateral and dorsomedial prefrontal cortex as well as temporal regions. The functional decoding analysis demonstrated that emotion regulation and empathy were related to highly similar executive and internally oriented processes. This synthesis underlining strong functional and neuronal correspondence between emotion regulation and empathy could (i) facilitate greater integration of these two separate lines of literature, (ii) accelerate progress toward elucidating the neural mechanisms that support social cognition, and (iii) push forward the development of a common theoretical framework for these psychological processes essential to human social interactions.
Collapse
Affiliation(s)
| | - Stella Berboth
- Institute of Psychology, University of Innsbruck, Austria
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Netherlands
| | | | - Josiane Jauniaux
- Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| |
Collapse
|
10
|
Simons JS, Ritchey M, Fernyhough C. Brain Mechanisms Underlying the Subjective Experience of Remembering. Annu Rev Psychol 2021; 73:159-186. [PMID: 34587777 DOI: 10.1146/annurev-psych-030221-025439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to remember events in vivid, multisensory detail is a significant part of human experience, allowing us to relive previous encounters and providing us with the store of memories that shape our identity. Recent research has sought to understand the subjective experience of remembering, that is, what it feels like to have a memory. Such remembering involves reactivating sensory-perceptual features of an event and the thoughts and feelings we had when the event occurred, integrating them into a conscious first-person experience. It allows us to reflect on the content of our memories and to understand and make judgments about them, such as distinguishing events that actually occurred from those we might have imagined or been told about. In this review, we consider recent evidence from functional neuroimaging in healthy participants and studies of neurological and psychiatric conditions, which is shedding new light on how we subjectively experience remembering. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Charles Fernyhough
- Department of Psychology, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Cooper RA, Kurkela KA, Davis SW, Ritchey M. Mapping the organization and dynamics of the posterior medial network during movie watching. Neuroimage 2021; 236:118075. [PMID: 33910099 PMCID: PMC8290580 DOI: 10.1016/j.neuroimage.2021.118075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Brain regions within a posterior medial network (PMN) are characterized by sensitivity to episodic tasks, and they also demonstrate strong functional connectivity as part of the default network. Despite its cohesive structure, delineating the intranetwork organization and functional diversity of the PMN is crucial for understanding its contributions to multidimensional event cognition. Here, we probed functional connectivity of the PMN during movie watching to identify its pattern of connections and subnetwork functions in a split-sample replication of 136 participants. Consistent with prior findings of default network fractionation, we identified distinct PMN subsystems: a Ventral PM subsystem (retrosplenial cortex, parahippocampal cortex, posterior angular gyrus) and a Dorsal PM subsystem (medial prefrontal cortex, hippocampus, precuneus, posterior cingulate cortex, anterior angular gyrus). Ventral and Dorsal PM subsystems were differentiated by functional connectivity with parahippocampal cortex and precuneus and integrated by retrosplenial cortex and posterior cingulate cortex, respectively. Finally, the distinction between PMN subsystems is functionally relevant: whereas both Dorsal and Ventral PM connectivity tracked the movie content, only Ventral PM connections increased in strength at event transitions and appeared sensitive to episodic memory. Overall, these findings reveal PMN functional pathways and the distinct functional roles of intranetwork subsystems during event cognition.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology and Neuroscience, Boston College, United States.
| | - Kyle A Kurkela
- Department of Psychology and Neuroscience, Boston College, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, United States
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, United States
| |
Collapse
|
12
|
Schneider E, Züst MA, Wuethrich S, Schmidig F, Klöppel S, Wiest R, Ruch S, Henke K. Larger capacity for unconscious versus conscious episodic memory. Curr Biol 2021; 31:3551-3563.e9. [PMID: 34256016 DOI: 10.1016/j.cub.2021.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Episodic memory is the memory for experienced events. A peak competence of episodic memory is the mental combination of events to infer commonalities. Inferring commonalities may proceed with and without consciousness of events. Yet what distinguishes conscious from unconscious inference? This question inspired nine experiments that featured strongly and weakly masked cartoon clips presented for unconscious and conscious inference. Each clip featured a scene with a visually impenetrable hiding place. Five animals crossed the scene one-by-one consecutively. One animal trajectory represented one event. The animals moved through the hiding place, where they might linger or not. The participants' task was to observe the animals' entrances and exits to maintain a mental record of which animals hid simultaneously. We manipulated information load to explore capacity limits. Memory of inferences was tested immediately, 3.5 or 6 min following encoding. The participants retrieved inferences well when encoding was conscious. When encoding was unconscious, the participants needed to respond intuitively. Only habitually intuitive decision makers exhibited a significant delayed retrieval of inferences drawn unconsciously. Their unconscious retrieval performance did not drop significantly with increasing information load, while conscious retrieval performance dropped significantly. A working memory network, including hippocampus, was activated during both conscious and unconscious inference and correlated with retrieval success. An episodic retrieval network, including hippocampus, was activated during both conscious and unconscious retrieval of inferences and correlated with retrieval success. Only conscious encoding/retrieval recruited additional brain regions outside these networks. Hence, levels of consciousness influenced the memories' behavioral impact, memory capacity, and the neural representational code.
Collapse
Affiliation(s)
- Else Schneider
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Marc Alain Züst
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland; University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bolligenstraße 111, 3000 Bern, Switzerland
| | - Sergej Wuethrich
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Flavio Schmidig
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bolligenstraße 111, 3000 Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Simon Ruch
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| |
Collapse
|
13
|
Berry SC, Wise RG, Lawrence AD, Lancaster TM. Extended-amygdala intrinsic functional connectivity networks: A population study. Hum Brain Mapp 2021; 42:1594-1616. [PMID: 33314443 PMCID: PMC7978137 DOI: 10.1002/hbm.25314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pre-clinical and human neuroimaging research implicates the extended-amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance-use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task-free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter-individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST-CeA intrinsic functional connectivity (iFC) was heritable and further examined co-heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST-CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co-heritability associations with our principal components either across the ICNs or for specific BST-Amygdala iFC. Possible differences in phenotype associations across task-free, task-based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well-established ExtA ICNs.
Collapse
Affiliation(s)
- Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Richard G. Wise
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences"G. D'Annunzio University" of Chieti‐PescaraChietiItaly
| | - Andrew D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | | |
Collapse
|
14
|
Conti F, Irish M. Harnessing Visual Imagery and Oculomotor Behaviour to Understand Prospection. Trends Cogn Sci 2021; 25:272-283. [PMID: 33618981 DOI: 10.1016/j.tics.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Much of the rich internal world constructed by humans is derived from, and experienced through, visual mental imagery. Despite growing appreciation of visual exploration in guiding episodic memory processes, extant theories of prospection have yet to accommodate the precise role of visual mental imagery in the service of future-oriented thinking. We propose that the construction of future events relies on the assimilation of perceptual details originally experienced, and subsequently reinstantiated, predominantly in the visual domain. Individual differences in the capacity to summon discrete aspects of visual imagery can therefore account for the diversity of content generated by humans during future simulation. Our integrative framework provides a novel testbed to query alterations in future thinking in health and disease.
Collapse
Affiliation(s)
- Federica Conti
- Institut des Neurosciences de la Timone, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France; The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
15
|
Humphreys GF, Lambon Ralph MA, Simons JS. A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. Trends Neurosci 2021; 44:452-463. [PMID: 33612312 DOI: 10.1016/j.tins.2021.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
The angular gyrus (AG) region of lateral parietal cortex has been implicated in a wide variety of tasks and functions, generating numerous influential theories. However, these theories largely fail to explain why so many apparently distinct cognitive activities implicate common parietal structures. We propose a unifying model, based on a set of central principles, to account for coalescences of cognitive task activations across AG. To illustrate the proposed framework, we show how these principles account for findings from studies of episodic and semantic memory that have independently implicated the same AG regions but thus far been considered from largely domain-specific perspectives. We conclude that AG computations, as part of a wider lateral parietal system, enable the online dynamic buffering of multisensory spatiotemporally extended representations.
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EF, UK
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EF, UK.
| |
Collapse
|
16
|
Deng L, Stanley ML, Monge ZA, Wing EA, Geib BR, Davis SW, Cabeza R. Age-Related Compensatory Reconfiguration of PFC Connections during Episodic Memory Retrieval. Cereb Cortex 2021; 31:717-730. [PMID: 32710101 DOI: 10.1093/cercor/bhaa192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
During demanding cognitive tasks, older adults (OAs) frequently show greater prefrontal cortex (PFC) activity than younger adults (YAs). This age-related increase in PFC activity is often associated with enhanced cognitive performance, suggesting functional compensation. However, the brain is a complex network of interconnected regions, and it is unclear how network connectivity of PFC regions differs for OAs versus YAs. To investigate this, we examined the age-related difference on the functional brain networks mediating episodic memory retrieval. YAs and OAs participants encoded and recalled visual scenes, and age-related differences in network topology during memory retrieval were investigated as a function of memory performance. We measured both changes in functional integration and reconfiguration in connectivity patterns. The study yielded three main findings. First, PFC regions were more functionally integrated with the rest of the brain network in OAs. Critically, this age-related increase in PFC integration was associated with better retrieval performance. Second, PFC regions showed stronger performance-related reconfiguration of connectivity patterns in OAs. Finally, the PFC reconfiguration increases in OAs tracked reconfiguration reductions in the medial temporal lobe (MTL)-a core episodic memory region, suggesting that PFC connectivity in OAs may be compensating for MTL deficits.
Collapse
Affiliation(s)
- Lifu Deng
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Mathew L Stanley
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Erik A Wing
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.,The Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Benjamin R Geib
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Simon W Davis
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Neurology, Duke University, Durham, NC 27710, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Ritchey M, Cooper RA. Deconstructing the Posterior Medial Episodic Network. Trends Cogn Sci 2020; 24:451-465. [PMID: 32340798 DOI: 10.1016/j.tics.2020.03.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
Our ability to remember or imagine specific events involves the construction of complex mental representations, a process that engages cortical and hippocampal regions in a core posterior medial (PM) brain network. Existing theoretical approaches have described the overarching contributions of the PM network, but less is known about how episodic content is represented and transformed throughout this system. Here, we review evidence of key functional interactions among PM regions and their relation to the core cognitive operations and representations supporting episodic construction. Recent demonstrations of intranetwork functional diversity are integrated with existing accounts to inform a network-based model of episodic construction, in which PM regions flexibly share and manipulate event information to support the variable phenomenology of episodic memory and simulation.
Collapse
Affiliation(s)
- Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, 300 McGuinn Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| | - Rose A Cooper
- Department of Psychology and Neuroscience, Boston College, 300 McGuinn Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
18
|
Schedlbauer AM, Ekstrom AD. Flexible network community organization during the encoding and retrieval of spatiotemporal episodic memories. Netw Neurosci 2019; 3:1070-1093. [PMID: 31637339 PMCID: PMC6777981 DOI: 10.1162/netn_a_00102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/24/2019] [Indexed: 01/22/2023] Open
Abstract
Memory encoding and retrieval involve distinct interactions between multiple brain areas, yet the flexible structure of corresponding large-scale networks during such memory processing remains unclear. Using functional magnetic resonance imaging, we employed a spatiotemporal encoding and retrieval task, detecting functional community structure across the multiple components of our task. Consistent with past work, we identified a set of stable subnetworks, mostly belonging to primary motor and sensory cortices but also identified a subset of flexible hubs, mostly belonging to higher association areas. These “mover” hubs changed connectivity patterns across spatial and temporal memory encoding and retrieval, engaging in an integrative role within the network. Global encoding network and subnetwork dissimilarity predicted retrieval performance. Together, our findings emphasize the importance of flexible network allegiance among some hubs and the importance of network reconfiguration to human episodic memory. The degree to which task-related functional connectivity patterns remain stable or are dynamic when people learn and remember information remains largely untested. We investigated this issue by collecting fMRI while participants performed a memory encoding and retrieval task. Our results suggested that subnetworks are dynamic and tend to fragment relative to a resting-state network partition. From these changes in connectivity, we identified a subset of “movers,” or in other words, nodes that changed their allegiance to subnetworks across all aspects of the task. These findings emphasize that memory is a dynamic process involving changes in task-related functional connectivity across the brain.
Collapse
Affiliation(s)
| | - Arne D Ekstrom
- Neuroscience Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Beldzik E, Domagalik A, Beres A, Marek T. Linking visual gamma to task‐related brain networks—a simultaneous EEG‐fMRI study. Psychophysiology 2019; 56:e13462. [DOI: 10.1111/psyp.13462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/17/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Ewa Beldzik
- Institute of Applied Psychology, Faculty of Management and Social Communication Jagiellonian University Krakow Poland
| | - Aleksandra Domagalik
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Anna Beres
- Institute of Applied Psychology, Faculty of Management and Social Communication Jagiellonian University Krakow Poland
| | - Tadeusz Marek
- Institute of Applied Psychology, Faculty of Management and Social Communication Jagiellonian University Krakow Poland
| |
Collapse
|
20
|
Affiliation(s)
- Felipe De Brigard
- Department of Philosophy, Department of Psychology and Neuroscience, Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|