1
|
Kousar MU, Yaseen M, Yousouf M, Malik MA, Mushtaq A, Mukhtar T, Javaid R, Aijaz A, Jabeen A, Amin T. Aflatoxins in cereal based products-an overview of occurrence, detection and health implication. Toxicon 2024; 251:108148. [PMID: 39454764 DOI: 10.1016/j.toxicon.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Aflatoxins are naturally produced toxins by specific molds, namely Aspergillus flavus and Aspergillus parasiticus. These toxins can be found in various agricultural products, including crops like maize, peanuts, cottonseed, and tree nuts. They have the potential to contaminate the food supply during different stages of production, processing, and storage. Aflatoxin is a very poisonous substance that has been linked to adverse health effects in both humans and animals. It is essential to detect and monitor aflatoxins to ensure the safety of food. Efficient and precise analytical techniques, such as chromatography and immunoassays, have been used to accurately measure the levels of aflatoxins in different substances. Regulatory bodies and worldwide associations have determined maximum permissible limits for aflatoxins in food and nourishment products to protect the well-being of the general public. Effectively addressing aflatoxin contamination necessitates a comprehensive approach that encompasses various strategies in agriculture, post-harvest practices, and regulatory measures. Continuous research and collaborative endeavors are crucial in order to minimize aflatoxin exposure and mitigate the associated risks. This review offers a comprehensive examination of the presence, health consequences, and elimination techniques associated with aflatoxins.
Collapse
Affiliation(s)
- Mumtahin-Ul Kousar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Monisa Yousouf
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mudasir Ahmad Malik
- Department of Food Engineering and Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, WB, 732141, India.
| | - Aarizoo Mushtaq
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Taha Mukhtar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Rifat Javaid
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Anam Aijaz
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Abida Jabeen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| |
Collapse
|
2
|
Hu X, Wei W, Li X, Yang Y, Zhou B. Recent advances in ratiometric electrochemical sensors for food analysis. Food Chem X 2024; 23:101681. [PMID: 39157660 PMCID: PMC11328010 DOI: 10.1016/j.fochx.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Ratiometric electrochemical sensors are renowned for their dual-signal processing capabilities, enabling automatic correction of background noise and interferences through built-in calibration, thus providing more accurate and reproducible measurements. This characteristic makes them highly promising for food analysis. This review comprehensively summarizes and discusses the latest advancements in ratiometric electrochemical sensors and their applications in food analysis, emphasizing their design strategies, detection capabilities, and practical uses. Initially, we explore the construction and design strategies of these sensors. We then review the detection of various food-related analytes, including nutrients, additives, metal ions, pharmaceutical and pesticide residues, biotoxins, and pathogens. The review also briefly explores the challenges faced by ratiometric electrochemical sensors in food testing and potential future directions for development. It aims to provide researchers with a clear introduction and serve as a reference for the design and application of new, efficient ratiometric electrochemical sensors in food analysis.
Collapse
Affiliation(s)
- Xincheng Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yewen Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
3
|
Zhao D, Xie H, Gao L, Zhang J, Li Y, Mao G, Zhang H, Wang F, Lam SS, Song A. Detoxication and bioconversion of aflatoxin B 1 by yellow mealworms (Tenebrio molitor): A sustainable approach for valuable larval protein production from contaminated grain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113935. [PMID: 35999758 DOI: 10.1016/j.ecoenv.2022.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Yellow mealworm (Tenebrio molitor) is a supplementary protein source for food and feed and represents a promising solution to manage grain contaminated with Aflatoxin B1 (AFB1). In this study, AFB1 present in different concentrations in wheat bran was treated and removed via bioconversion by yellow mealworm of different instars, with emphasis on the bioconversion performance and metabolism of AFB1. Upon application of wheat bran spiked with 100 μg/kg AFB1 to 5th-6th instar yellow mealworms, the conversion rate of AFB1 was up to 87.85 %. Low level of AFB1 (< 2 μg/kg) was accumulated in the larval bodies, and the survival rate, development and nutrition contents of yellow mealworm were not significantly affected. It was revealed that 1 kg of wheat bran contaminated with AFB1 increased the weight of yellow mealworms from 138 g to 469 g, containing approximately 103 g of protein. The bioconversion of AFB1 by yellow mealworms led to generation of 13 metabolites in the frass and 3 metabolites in the larvae. AFB1 was detoxicated and removed via phase I metabolism comprising reduction, dehydrogenation, hydration, demethylation, hydroxylation, decarbonylation and ketoreduction, followed by phase II metabolism involving conjugation of amino acid, glucoside and glutathione (GSH). The toxicity of AFB1 metabolites was deemed lower than that of AFB1 according to their structures. This study provides a sustainable approach and theoretical foundation on using yellow mealworms for cleaner grain contamination management and valuable larval protein production via bioconversion of food and feed contaminated by AFB1.
Collapse
Affiliation(s)
- Dandan Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hui Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Lei Gao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jian Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Guotao Mao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hongsen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fengqin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
4
|
Ozonation: an Evolving Disinfectant Technology for the Food Industry. FOOD BIOPROCESS TECH 2022; 15:2102-2113. [PMID: 35855202 PMCID: PMC9284478 DOI: 10.1007/s11947-022-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
The food processing industry is currently facing challenges in delivering safe, healthy, and high-quality food. Constant monitoring at each step of the supply chain of food is vital to resolve the issue of food contamination. To achieve this aim and to meet consumer prospects, the technologies promoting the concept of clean label food have been widely cherished. Ozonation is one such advanced technology that assists in maintaining food product quality and safety. Its manifold approach and zero-by-product production make it a promising food disinfectant technique. Ozone due to its oxidative property has been widely used in sanitizing, washing, odor removal, water treatment, and in equipment, fruits, vegetable, and meat processing disinfection. Ozonation in foods is done in such a way that no nutritional, sensory, and physicochemical characteristics are altered. In this review, an attempt is made to give an overview of the impact and contribution of ozone as a disinfectant in food processing while comparing it with conventional disinfectants and its overall application in the food industry.
Collapse
|
5
|
Chen C, Pan Z. Postharvest processing of tree nuts: Current status and future prospects-A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:1702-1731. [PMID: 35174625 DOI: 10.1111/1541-4337.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/07/2022]
Abstract
Tree nuts are important economic crops and are consumed as healthy snacks worldwide. In recent years, the increasing needs for more efficient and effective postharvest processing technologies have been driven by the growing production, higher quality standards, stricter food safety requirements, development of new harvesting methods, and demand to achieve energy saving and carbon neutralization. Among all, the technologies related to drying, disinfection, and disinfestation and downstream processes, such as blanching, kernel peeling, and roasting, are the most important processes influencing the quality and safety of the products. These processes make up the largest contribution to the energy consumptions and environmental impacts stemming from tree nut production. Although many studies have been conducted to improve the processing efficiency and sustainability, and preserve the product quality and safety, information from these studies is fragmented and a centralized review highlighting the important technology advancements of postharvest processing of tree nuts would benefit the industry. In this comprehensive review, almonds, walnuts, and pistachios are selected as the representative crops of tree nuts. Current statuses, recent advances, and ongoing challenges in the scientific research as well as in the industrial processing practices of these tree nuts are summarized. Some new perspectives and applications of tree nut processing waste and by-products (such as the hulls and shells) are also discussed. In addition, future trends and research needs are highlighted. The material presented here will help both stakeholders and scientists to better understand postharvest tree nut processing and provide technological recommendations to improve the efficiency and sustainability, product quality and safety, and competitiveness of the industry.
Collapse
Affiliation(s)
- Chang Chen
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|
7
|
Tiwari S, Singh BK, Kishore V, Dubey NK. Boosting modern technologies with emphasis on biological approaches to potentiate prevention and control of aflatoxins: recent advances. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1933534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vatsala Kishore
- Department of Pathology, Heritage Institute of Medical Sciences, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Deng LZ, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang XH, Liu ZL, Wang H, Xiao HW. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
10
|
Javanmardi F, Khodaei D, Sheidaei Z, Bashiry M, Nayebzadeh K, Vasseghian Y, Mousavi Khaneghah A. Decontamination of Aflatoxins in Edible Oils: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1812635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fardin Javanmardi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Diako Khodaei
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Zhaleh Sheidaei
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Bashiry
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kooshan Nayebzadeh
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Afsah-Hejri L, Hajeb P, Ehsani RJ. Application of ozone for degradation of mycotoxins in food: A review. Compr Rev Food Sci Food Saf 2020; 19:1777-1808. [PMID: 33337096 DOI: 10.1111/1541-4337.12594] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
Abstract
Mycotoxins such as aflatoxins (AFs), ochratoxin A (OTA) fumonisins (FMN), deoxynivalenol (DON), zearalenone (ZEN), and patulin are stable at regular food process practices. Ozone (O3 ) is a strong oxidizer and generally considered as a safe antimicrobial agent in food industries. Ozone disrupts fungal cells through oxidizing sulfhydryl and amino acid groups of enzymes or attacks the polyunsaturated fatty acids of the cell wall. Fusarium is the most sensitive mycotoxigenic fungi to ozonation followed by Aspergillus and Penicillium. Studies have shown complete inactivation of Fusarium and Aspergillus by O3 gas. Spore germination and toxin production have also been reduced after ozone fumigation. Both naturally and artificially, mycotoxin-contaminated samples have shown significant mycotoxin reduction after ozonation. Although the mechanism of detoxification is not very clear for some mycotoxins, it is believed that ozone reacts with the functional groups in the mycotoxin molecules, changes their molecular structures, and forms products with lower molecular weight, less double bonds, and less toxicity. Although some minor physicochemical changes were observed in some ozone-treated foods, these changes may or may not affect the use of the ozonated product depending on the further application of it. The effectiveness of the ozonation process depends on the exposure time, ozone concentration, temperature, moisture content of the product, and relative humidity. Due to its strong oxidizing property and corrosiveness, there are strict limits for O3 gas exposure. O3 gas has limited penetration and decomposes quickly. However, ozone treatment can be used as a safe and green technology for food preservation and control of contaminants.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| | - Parvaneh Hajeb
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Reza J Ehsani
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| |
Collapse
|
12
|
Yu Y, Shi J, Xie B, He Y, Qin Y, Wang D, Shi H, Ke Y, Sun Q. Detoxification of aflatoxin B 1 in corn by chlorine dioxide gas. Food Chem 2020; 328:127121. [PMID: 32474241 DOI: 10.1016/j.foodchem.2020.127121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Chlorine dioxide (ClO2) gas was utilized for detoxifying aflatoxin B1 (AFB1) in corn for the first time. Four degradation compounds were identified by LC-MS as C17H13O8, C17H15O10, C16H15O10, and C15H11O8. Structurally, the biological activity of ClO2-treated AFB1 was removed due to the disappearance of C8-C9 double bond in the furan ring and the modification of cyclopentanone and methoxy after ClO2 treatment. The cell viability assay on human embryo hepatocytes confirmed little toxicity of the degradation products. The degradation efficiency of AFB1 on corn peaked near 90.0% under the optimized conditions and reached 79.6% for low initial contamination of AFB1 at 5-20 μg/kg. Accordingly, ClO2 has the potential to be developed into an effective, efficient, and economic approach to detoxify AFB1 in grains.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jianyang Shi
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; China Tobacco Sichuan Industry Co., Ltd., Chengdu 610066, PR China
| | - Bingying Xie
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Yutong He
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Yongping Qin
- Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dan Wang
- College of Life Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| | - Haichun Shi
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongpei Ke
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
13
|
Sun Z, Huang D, Duan X, Hong W, Liang J. Functionalized nanoflower-like hydroxyl magnesium silicate for effective adsorption of aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121792. [PMID: 31818670 DOI: 10.1016/j.jhazmat.2019.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
Aflatoxin B1 (AFB1), which is widely found in food and feed, poses a serious threat to the health of human and livestock. In this work, functionalized nanoflower-like hydroxyl magnesium silicate (FNHMS) was synthesized for adsorption of AFB1. First, bulk magnesium silicate (MS) was converted into nanoflower-like hydroxyl magnesium silicate (NHMS) by hydroxylation. Cetyltrimethylammonium bromide (CTMAB) modification then enhanced the hydrophobicity and the affinity to AFB1 of NHMS. The adsorption performance for AFB1 followed the order of MS < NHMS < FNHMS, and the adsorption performance increased with the increase of the dose of CTMAB. Isothermal adsorption analysis indicated that the surface of FNHMS was heterogeneous. The adsorption capacity of FNHMS-0.4 to AFB1 was estimated to be 27.34 mg g-1 and 28.61 mg g-1 by Freundlich and Dubinin-Radushkevich isotherm adsorption model, respectively. By analyzing the adsorption kinetics and adsorption thermodynamics, both physical adsorption and chemisorption existed in the process of AFB1 being adsorbed on FNHMS-0.4. Adsorption mechanisms analysis indicated that the adsorption followed the adsorption site priority of H > O > Mg. This work demonstrates that FNHMS could be a promising adsorbent for removal of AFB1.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education (Shandong University), Jinan 250061, People's Republic of China
| | - Di Huang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China
| | - Xinhui Duan
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China
| | - Wei Hong
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, People's Republic of China.
| |
Collapse
|
14
|
Ren D, Diao E, Hou H, Dong H. Degradation and ozonolysis pathway elucidation of deoxynivalenol. Toxicon 2020; 174:13-18. [DOI: 10.1016/j.toxicon.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
|
15
|
Nguyen T, Flint S, Palmer J. Control of aflatoxin M 1 in milk by novel methods: A review. Food Chem 2019; 311:125984. [PMID: 31855773 DOI: 10.1016/j.foodchem.2019.125984] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Aflatoxin M1 (AFM1) in milk and milk products has been recognised as an issue for over 30 years. Controlling AFM1 in milk is important to protect human health and trade. Preventing contamination by avoiding fungal contamination of cattle feed is the best method of control, however this is hard to avoid in some countries. Treating milk containing AFM1 is an alternative control measure, however, there is no single approved method. The challenge is to select a treatment method that is effective but does not affect the organoleptic quality of milk. This study reviews the strategies for degrading AFM1 in milk including yeast, lactic acid bacteria, enzyme, peroxide, ozone, UV light and cold plasma. This review compares the efficacy, influencing factors, (possible) mechanisms of activity, advantages, limitations and potential future trends of these methods and provides some recommendations for the treatment of milk to reduce the risk of AFM1 contamination.
Collapse
Affiliation(s)
- Thu Nguyen
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, New Zealand.
| |
Collapse
|
16
|
Ren D, Diao E, Hou H, Xie P, Mao R, Dong H, Qian S. Cytotoxicity of Deoxynivalenol after Being Exposed to Gaseous Ozone. Toxins (Basel) 2019; 11:E639. [PMID: 31684099 PMCID: PMC6891369 DOI: 10.3390/toxins11110639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, deoxynivalenol (DON) in aqueous solution was exposed to gaseous ozone for periods ranging from 0 to 20 min. The degradation efficiency and cytotoxicity of DON were investigated after being treated by ozone. The results showed that DON was rapidly degraded from 10.76 ± 0.09 mg/L to 0.22 ± 0.04 mg/L within 15 min (P < 0.05), representing a reduction of 97.95%, and no DON was detected after being exposed to 14.50 mg/L of ozone at a flow rate of 80 mL/min for 20 min. The degradation of DON depended on the ozone exposure time, and followed the first-order kinetic model (R2 = 0.9972). Human hepatic carcinoma (HepG2) and Henrietta Lacks (Hela) cells were used to evaluate the cytotoxicity of DON treated by ozone using the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The half-maximal inhibitory concentrations (IC50) values of DON on HepG2 and Hela cells were 2.10 and 1.33 mg/L after 48 h of exposure, respectively, and showed a dose-dependent manner. The cell vitalities of HepG2 and Hela cells on DON were both evidently improved after being exposed to ozone for 15 min, and there were no significant differences between the negative control and that treated at 20 min of ozone exposure. Gaseous ozone can potentially be used as a new method to detoxify DON in agricultural products.
Collapse
Affiliation(s)
- Dongliang Ren
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an 223300, China.
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Enjie Diao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an 223300, China.
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Hanxue Hou
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Peng Xie
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an 223300, China.
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Ruifeng Mao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an 223300, China.
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Haizhou Dong
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Shiquan Qian
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an 223300, China.
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
17
|
Wang X, You SH, Lien KW, Ling MP. Using disease-burden method to evaluate the strategies for reduction of aflatoxin exposure in peanuts. Toxicol Lett 2019; 314:75-81. [PMID: 31284020 DOI: 10.1016/j.toxlet.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Aflatoxin is a fungal secondary metabolite with high toxicity that is capable of contaminating various types of food crops. It has been identified as a Group 1 human carcinogen by the International Agency for Research on Cancer. Chronic aflatoxin exposure has caused worldwide concern as a matter of public food safety. Peanuts and peanut products are the major sources of aflatoxin exposure. Therefore, some reduction interventions have been developed to minimize contamination throughout the peanut production chain. The purpose of this study is to estimate the efficacy of interventions in reducing the health impact of hepatocellular carcinoma caused by aflatoxin contamination in peanuts. The estimated total Disability-Adjusted Life Years (DALYs) were calculated using FDA-iRISK software. Six aflatoxin reduction strategies were evaluated, including good agricultural practice (GAP), biocontrol, Purdue Improved Crop Storage packaging, basic processing, ozonolysis, and ultraviolet irradiation. The results indicated that basic processing could prevent huge public health loss of 4,079.7-21,833 total DALYs per year. In addition, GAP and biocontrol were both found to be effective strategies in the farm field. Meanwhile, the other three interventions had limited effectiveness in reducing total DALYs. In conclusion, this study could help farmers, processing plants, and government policy makers to alleviate aflatoxin contamination issues in the peanut production chain.
Collapse
Affiliation(s)
- Xin Wang
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, Taiwan
| | - Keng-Wen Lien
- Food and Drug Administration, Ministry of Health and Welfare, Taipei City, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
18
|
Mahato DK, Lee KE, Kamle M, Devi S, Dewangan KN, Kumar P, Kang SG. Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front Microbiol 2019; 10:2266. [PMID: 31636616 PMCID: PMC6787635 DOI: 10.3389/fmicb.2019.02266] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aflatoxins produced by the Aspergillus species are highly toxic, carcinogenic, and cause severe contamination to food sources, leading to serious health consequences. Contaminations by aflatoxins have been reported in food and feed, such as groundnuts, millet, sesame seeds, maize, wheat, rice, fig, spices and cocoa due to fungal infection during pre- and post-harvest conditions. Besides these food products, commercial products like peanut butter, cooking oil and cosmetics have also been reported to be contaminated by aflatoxins. Even a low concentration of aflatoxins is hazardous for human and livestock. The identification and quantification of aflatoxins in food and feed is a major challenge to guarantee food safety. Therefore, developing feasible, sensitive and robust analytical methods is paramount for the identification and quantification of aflatoxins present in low concentrations in food and feed. There are various chromatographic and sensor-based methods used for the detection of aflatoxins. The current review provides insight into the sources of contamination, occurrence, detection techniques, and masked mycotoxin, in addition to management strategies of aflatoxins to ensure food safety and security.
Collapse
Affiliation(s)
- Dipendra K. Mahato
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | | | - Krishna N. Dewangan
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sang G. Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
19
|
Structure Elucidation and Toxicity Analysis of the Degradation Products of Deoxynivalenol by Gaseous Ozone. Toxins (Basel) 2019; 11:toxins11080474. [PMID: 31443171 PMCID: PMC6723297 DOI: 10.3390/toxins11080474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
Fusarium Head Blight (FHB) or scab is a fungal disease of cereal grains. Wheat scab affects the yield and quality of wheat and produces mycotoxins such as deoxynivalenol (DON), which can seriously threaten human and animal health. In this study, gaseous ozone was used to degrade DON in wheat scab and the degradation products of ozonolysis were analyzed by ultra-performance liquid chromatography quadrupole-orbitrap mass spectrometry (UHPLC Q-Orbitrap). Toxicology analyses of the degradation products were also studied using structure-activity relationships. Ozone (8 mg L-1 concentration) was applied to 2 μg mL-1 of DON in ultrapure water, resulted in 95.68% degradation within 15 s. Ten ozonized products of DON in ultrapure water were analyzed and six main products (C15H18O7, C15H18O9, C15H22O9, C15H20O10, C15H18O8, and C15H20O9) were analyzed at varying concentrations of ozone and DON. Structural formulae were assigned to fragmentation products generated by MS2 and Mass Frontier® software. According to structure-activity relationship studies, the toxicities of the ozonized products were significantly decreased due to de-epoxidation and the attack of ozone at the C9-10 double bond in DON. Based on the results of the study above, we can find that gaseous ozone is an efficient and safe technology to degrade DON, and these results may provide a theoretical basis for the practical research of detoxifying DON in scabby wheat and other grains.
Collapse
|
20
|
Gavahian M, Cullen P. Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1630638] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - P.J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Zhou F, Luo J, Qi B, Chen X, Wan Y. Horseradish Peroxidase Immobilized on Multifunctional Hybrid Microspheres for Aflatoxin B1 Removal: Will Enzymatic Reaction be Enhanced by Adsorption? Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
22
|
Ferreira RG, Cardoso MV, de Souza Furtado KM, Espíndola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res 2019; 204:51-71. [PMID: 30304666 DOI: 10.1016/j.trsl.2018.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
Aflatoxin B1 (AFB1) is currently the most commonly studied mycotoxin due to its great toxicity, its distribution in a wide variety of foods such as grains and cereals and its involvement in the development of + (hepatocellular carcinoma; HCC). HCC is one of the main types of liver cancer, and has become a serious public health problem, due to its high incidence mainly in Southeast Asia and Africa. Studies show that AFB1 acts in synergy with other risk factors such as hepatitis B and C virus leading to the development of HCC through genetic and epigenetic modifications. The genetic modifications begin in the liver through the biomorphic AFB1, the AFB1-exo-8.9-Epoxy active, which interacts with DNA to form adducts of AFB1-DNA. These adducts induce mutation in codon 249, mediated by a transversion of G-T in the p53 tumor suppressor gene, causing HCC. Thus, this review provides an overview of the evidence for AFB1-induced epigenetic alterations and the potential mechanisms involved in the development of HCC, focusing on a critical analysis of the importance of severe legislation in the detection of aflatoxins.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neurosciences and Cell Biology Post-Graduation Program, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | - Magda Vieira Cardoso
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | | | | | | | - Marta Chagas Monteiro
- Neurosciences and Cell Biology Post-Graduation Program, Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| |
Collapse
|
23
|
Misra NN, Yadav B, Roopesh MS, Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr Rev Food Sci Food Saf 2018; 18:106-120. [PMID: 33337013 DOI: 10.1111/1541-4337.12398] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Cold plasma treatment is a promising intervention in food processing to boost product safety and extend the shelf-life. The activated chemical species of cold plasma can act rapidly against micro-organisms at ambient temperatures without leaving any known chemical residues. This review presents an overview of the action of cold plasma against molds and mycotoxins, the underlying mechanisms, and applications for ensuring food safety and quality. The cold plasma species act on multiple sites of a fungal cell resulting in loss of function and structure, and ultimately cell death. Likewise, the species cause chemical breakdown of mycotoxins through various pathways resulting in degradation products that are known to be less toxic. We argue that the preliminary reports from cold plasma research point at good potential of plasma for shelf-life extension and quality retention of foods. Some of the notable food sectors which could benefit from antimycotic and antimycotoxin efficacy of cold plasma include, the fresh produce, food grains, nuts, spices, herbs, dried meat and fish industries.
Collapse
Affiliation(s)
- N N Misra
- Center for Crops Utilization Research, Iowa State Univ., Ames, IA, USA
| | - Barun Yadav
- Dept. of Agricultural, Food & Nutritional Science, Univ. of Alberta, Canada
| | - M S Roopesh
- Dept. of Agricultural, Food & Nutritional Science, Univ. of Alberta, Canada
| | - Cheorun Jo
- Dept. of Agricultural Biotechnology, Center for Food & Bioconvergence, Research Inst. of Agriculture & Life Science, Seoul National Univ., Seoul, 08826, South Korea.,Inst. of Green Bio Science and Technology, Seoul National Univ., Pyeongchang, 25354, South Korea
| |
Collapse
|
24
|
Li S, Luo J, Fan J, Chen X, Wan Y. Aflatoxin B1 removal by multifunctional membrane based on polydopamine intermediate layer. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Pankaj S, Shi H, Keener KM. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Degradation and detoxification of aflatoxin B 1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1873-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins (Basel) 2016; 8:toxins8050125. [PMID: 27128939 PMCID: PMC4885040 DOI: 10.3390/toxins8050125] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N₂, 0.1% O₂ and 1% O₂, 21% O₂), then power (400, 700, 1000, 1150 W) and exposure time (1, 2, 4, and 12 min) were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min), a reduction in the concentration of total aflatoxins and AFB₁ of over 70% was obtained. Aflatoxins B₁ and G₁ were more sensitive to plasma treatments compared to aflatoxins B₂ and G₂, respectively. Under plasma treatment, aflatoxin B₁ was more sensitive compared to aflatoxin G₁. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics.
Collapse
Affiliation(s)
- Ilenia Siciliano
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
| | - Davide Spadaro
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
| | - Ambra Prelle
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
| | - Dario Vallauri
- Tecnogranda SpA, Via G.B. Conte, 19 Dronero, Cuneo 12025, Italy.
| | | | - Angelo Garibaldi
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
| | - Maria Lodovica Gullino
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Largo Paolo Braccini, 2 Grugliasco, Turin 10095, Italy.
| |
Collapse
|
29
|
Li MM, Guan EQ, Bian K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:544-53. [PMID: 25325346 DOI: 10.1080/19440049.2014.976596] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Deoxynivalenol (DON) is the secondary metabolite of Fusarium graminearum, which is always found in Fusarium head blight of wheat. In this study, gaseous ozone was used to treat both DON solution and scabbed wheat to investigate the effectiveness of ozone treatment on DON degradation and the effect of ozone on the quality parameters of wheat. It was found that gaseous ozone had a significant effect on DON reduction in solution, when 10 mg l(-1) gaseous ozone was used to treat a 1 μg ml(-1) of DON solution, the degradation rate of DON was 93.6% within 30 s. Lower initial concentrations of DON solution treated with higher concentrations of ozone, and longer times showed higher DON degradation rates. Gaseous ozone was effective against DON in scabbed wheat. The degradation rate of DON increased with ozone concentration and processing time. The correlation between the time and degradation rate was y = -1.1926x(2) + 11.427x - 8.7787. In the process of ozone oxidation, a higher moisture content of wheat was more sensitive than that of lower moisture content to ozone under the same conditions. All samples were treated with different concentrations of ozone for 4 h to investigate the effect of ozone on wheat quality. No significant detrimental changes in the starch pasting properties of wheat were observed after all the samples were treated with ozone within 4 h. On the other hand, there was a slight rise in the dough development time and stability time, which meant the quality of flour improved after ozone treatment.
Collapse
Affiliation(s)
- M M Li
- a College of Food Science and Technology; Henan Food Crop Collaborative Innovation Center, Henan University of Technology , Zhengzhou , Henan , China
| | | | | |
Collapse
|