1
|
Zambrano-Alvarado JI, Uyaguari-Diaz MI. Insights into water insecurity in Indigenous communities in Canada: assessing microbial risks and innovative solutions, a multifaceted review. PeerJ 2024; 12:e18277. [PMID: 39434791 PMCID: PMC11493031 DOI: 10.7717/peerj.18277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Canada is considered a freshwater-rich country, despite this, several Indigenous reserves struggle with household water insecurity. In fact, some of these communities have lacked access to safe water for almost 30 years. Water quality in Canadian Indigenous reserves is influenced by several factors including source water quality, drinking water treatments applied, water distribution systems, and water storage tanks when piped water is unavailable. The objective of this multifaceted review is to spot the challenges and consequences of inadequate drinking water systems (DWS) and the available technical and microbiological alternatives to address water sanitation coverage in Indigenous reserves of Canada, North America (also known as Turtle Island). A comprehensive literature review was conducted using national web portals from both federal and provincial governments, as well as academic databases to identify the following topics: The status of water insecurity in Indigenous communities across Canada; Microbiological, chemical, and natural causes contributing to water insecurity; Limitations of applying urban-style drinking water systems in Indigenous reserves in Canada and the management of DWS for Indigenous communities in other high-income countries; and the importance of determining the microbiome inhabiting drinking water systems along with the cutting-edge technology available for its analysis. A total of 169 scientific articles matched the inclusion criteria. The major themes discussed include: The status of water insecurity and water advisories in Canada; the risks of pathogenic microorganisms (i.e., Escherichia coli and total coliforms) and other chemicals (i.e., disinfection by-products) found in water storage tanks; the most common technologies available for water treatment including coagulation, high- and low-pressure membrane filtration procedures, ozone, ion exchange, and biological ion exchange and their limitations when applying them in remote Indigenous communities. Furthermore, we reviewed the benefits and drawbacks that high throughput tools such as metagenomics (the study of genomes of microbial communities), culturomics (a high-efficiency culture approach), and microfluidics devices (microminiaturized instruments) and what they could represent for water monitoring in Indigenous reserves. This multifaceted review demonstrates that water insecurity in Canada is a reflection of the institutional structures of marginalization that persist in the country and other parts of Turtle Island. DWS on Indigenous reserves are in urgent need of upgrades. Source water protection, and drinking water monitoring plus a comprehensive design of culturally adapted, and sustainable water services are required. Collaborative efforts between First Nations authorities and federal, provincial, and territorial governments are imperative to ensure equitable access to safe drinking water in Indigenous reserves.
Collapse
Affiliation(s)
| | - Miguel I. Uyaguari-Diaz
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Chen J, Zhang J, Wang N, Xiao B, Sun X, Li J, Zhong K, Yang L, Pang X, Huang F, Chen A. Critical review and recent advances of emerging real-time and non-destructive strategies for meat spoilage monitoring. Food Chem 2024; 445:138755. [PMID: 38387318 DOI: 10.1016/j.foodchem.2024.138755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Monitoring and evaluating food quality, especially meat quality, has received a growing interest to ensure human health and decrease waste of raw materials. Standard analytical approaches used for meat spoilage assessment suffer from time consumption, being labor-intensive, operation complexity, and destructiveness. To overcome shortfalls of these traditional methods and monitor spoilage microorganisms or related metabolites of meat products across the supply chain, emerging analysis devices/systems with higher sensitivity, better portability, on-line/in-line, non-destructive and cost-effective property are urgently needed. Herein, we first overview the basic concepts, causes, and critical monitoring indicators associated with meat spoilage. Then, the conventional detection methods for meat spoilage are outlined objectively in their strengths and weaknesses. In addition, we place the focus on the recent research advances of emerging non-destructive devices and systems for assessing meat spoilage. These novel strategies demonstrate their powerful potential in the real-time evaluation of meat spoilage.
Collapse
Affiliation(s)
- Jiaci Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jiapeng Li
- China Meat Research Center, Beijing, China.
| | - Ke Zhong
- Shandong Academy of Grape, Jinan, China.
| | - Longrui Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiangyi Pang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Kasputis T, Hosmer KE, He Y, Chen J. Ensuring food safety: Microfluidic-based approaches for the detection of food contaminants. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400003. [PMID: 38948318 PMCID: PMC11210746 DOI: 10.1002/ansa.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024]
Abstract
Detecting foodborne contamination is a critical challenge in ensuring food safety and preventing human suffering and economic losses. Contaminated food, comprising biological agents (e.g. bacteria, viruses and fungi) and chemicals (e.g. toxins, allergens, antibiotics and heavy metals), poses significant risks to public health. Microfluidic technology has emerged as a transformative solution, revolutionizing the detection of contaminants with precise and efficient methodologies. By manipulating minute volumes of fluid on miniaturized systems, microfluidics enables the creation of portable chips for biosensing applications. Advancements from early glass and silicon devices to modern polymers and cellulose-based chips have significantly enhanced microfluidic technology, offering adaptability, flexibility, cost-effectiveness and biocompatibility. Microfluidic systems integrate seamlessly with various biosensing reactions, facilitating nucleic acid amplification, target analyte recognition and accurate signal readouts. As research progresses, microfluidic technology is poised to play a pivotal role in addressing evolving challenges in the detection of foodborne contaminants. In this short review, we delve into various manufacturing materials for state-of-the-art microfluidic devices, including inorganics, elastomers, thermoplastics and paper. Additionally, we examine several applications where microfluidic technology offers unique advantages in the detection of food contaminants, including bacteria, viruses, fungi, allergens and more. This review underscores the significant advancement of microfluidic technology and its pivotal role in advancing the detection and mitigation of foodborne contaminants.
Collapse
Affiliation(s)
- Tom Kasputis
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | - Yawen He
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Juhong Chen
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
4
|
Hua MZ, Li S, Roopesh MS, Lu X. Development of a microfluidic device to enrich and detect zearalenone in food using quantum dot-embedded molecularly imprinted polymers. LAB ON A CHIP 2024; 24:2700-2711. [PMID: 38651374 DOI: 10.1039/d4lc00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mycotoxins are secondary metabolites of certain moulds, prevalent in 60-80% of food crops and many processed products but challenging to eliminate. Consuming mycotoxin-contaminated food and feed can lead to various adverse effects on humans and livestock. Therefore, testing mycotoxin residue levels is critical to ensure food safety. Gold standard analytical methods rely on liquid chromatography coupled with optical detectors or mass spectrometers, which are high-cost with limited capacity. This study reported the successful development of a microfluidic "lab-on-a-chip" device to enrich and detect zearalenone in food samples based on the fluorescence quenching effect of quantum dots and selective affinity of molecularly imprinted polymers (MIPs). The dummy template and functional polymer were synthesized and characterized, and the detailed microfluidic chip design and optimization of the flow conditions in the enrichment module were discussed. The device achieved an enrichment factor of 9.6 (±0.5) in 10 min to quantify zearalenone spiked in food with high recoveries (91-105%) at 1-10 mg kg-1, covering the concerned residue levels in the regulations. Each sample-to-answer test took only 20 min, involving 3 min of manual operation and no advanced equipment. This microfluidic device was mostly reusable, with a replaceable detection module compatible with fluorescence measurement using a handheld fluorometer. To our best knowledge, the reported device was the first application of an MIP-based microfluidic sensor for detecting mycotoxin in real food samples, providing a novel, rapid, portable, and cost-effective tool for monitoring mycotoxin contamination for food safety and security.
Collapse
Affiliation(s)
- Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Shenmiao Li
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - M S Roopesh
- Department of Agricultural, Food, and Nutrition Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
5
|
Zhu L, Wu M, Li R, Zhao Y, Lu Y, Wang T, Du L, Wan L. Research progress on pesticide residue detection based on microfluidic technology. Electrophoresis 2023; 44:1377-1404. [PMID: 37496295 DOI: 10.1002/elps.202300048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
The problem of pesticide residue contamination has attracted widespread attention and poses a risk to human health. The current traditional pesticide residue detection methods have difficulty meeting rapid and diverse field screening requirements. Microfluidic technology integrates functions from sample preparation to detection, showing great potential for quick and accurate high-throughput detection of pesticide residues. This paper reviews the latest research progress on microfluidic technology for pesticide residue detection. First, the commonly used microfluidic materials are summarized, including silicon, glass, paper, polydimethylsiloxane, and polymethyl methacrylate. We evaluated their advantages and disadvantages in pesticide residue detection applications. Second, the current pesticide residue detection technology based on microfluidics and its application to real samples are summarized. Finally, we discuss this technology's present challenges and future research directions. This study is expected to provide a reference for the future development of microfluidic technology for pesticide residue detection.
Collapse
Affiliation(s)
- Lv Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Mengyao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yang Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
6
|
Wang A, Feng X, He G, Xiao Y, Zhong T, Yu X. Recent advances in digital microfluidic chips for food safety analysis: Preparation, mechanism and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
Yang N, Ji Y, Wang A, Tang J, Liu S, Zhang X, Xu L, He Y. An integrated nucleic acid detection method based on a microfluidic chip for collection and culture of rice false smut spores. LAB ON A CHIP 2022; 22:4894-4904. [PMID: 36378140 DOI: 10.1039/d2lc00931e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rice false smut spores (RFSS), which are airborne spores caused by Ustilaginoidea virens (U. virens), not only cause severe yield loss and grain quality reduction, but also produce toxins that are harmful to humans and animals. Nucleic acid detection has become the main method for RFSS monitoring due to its high specificity and sensitivity. However, nucleic acid detection requires multiple steps of spore collection, DNA extraction, nucleic acid amplification and detection, which has a high demand for personnel and is hard to link with other intelligent equipment to achieve automation. Microfluidic chip has become an important approach for integrated detection of pathogens owning to miniaturization and integration in recent years. Yet there is a lack of portable methods that integrate the collection of airborne fungal spores and nucleic acid detection. Because RFSS have thick cell walls and require liquid nitrogen grinding to extract DNA, breaking the walls on-chip is difficult. Therefore, the realization of RFSS wall breaking on-chip is a major difficulty and also a very meaningful study. This study uses RFSS as the research object and provides a novel method of culturing RFSS on-chip to solve the problem of hard wall breaking, realizing the integrated detection of RFSS. The mycelium grown by RFSS germination could be easily broken to release DNA for on-chip detection, which eliminates the need for manual DNA extraction and resolves the issue of difficult wall breaking. This chip can collect RFSS based on the aerodynamic theory and achieve gas-liquid coupling through a simple microvalve structure. A micromixer is constructed to mix the liquid, and then accomplish detection quickly by recombinase polymerase amplification and lateral flow dipsticks (RPA-LFD). The detection sensitivity of this method is 1 × 102-1 × 105 CFU ml-1. It can realize the "sample in and answer out" detection of RFSS due to its simple operation, independence from precision instruments, high sensitivity and specificity. The result shows that it can be used for the early detection of RFSS, has great application prospects and is expected to promote the development of on-site instant detection equipment.
Collapse
Affiliation(s)
- Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyuan Ji
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Aiying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jian Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shuhua Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaodong Zhang
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijia Xu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, 625000, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Microfluidics in smart packaging of foods. Food Res Int 2022; 161:111873. [DOI: 10.1016/j.foodres.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
|
9
|
|
10
|
|
11
|
Xia X, Yang H, Cao J, Zhang J, He Q, Deng R. Isothermal nucleic acid amplification for food safety analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
13
|
Fabrication of zein-modified starch nanoparticle complexes via microfluidic chip and encapsulation of nisin. Curr Res Food Sci 2022; 5:1110-1117. [PMID: 35865806 PMCID: PMC9294254 DOI: 10.1016/j.crfs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
A microfluidic chip is a micro-reactor that precisely manipulates and controls fluids. Zein is a group of prolamines extracted from corn that can form self-assembled nanoparticles in water or a low concentration of ethanol in a microfluidic chip. However, the zein nanoparticles have stability issues, especially in a neutral pH environment due to the proximity of the isoelectric point. This study was designed 1) to evaluate the effect of octenyl succinic anhydride (OSA) modified starch on the stability of zein nanoparticles formed using a microfluidic chip and 2) to apply the zein-OSA starch for encapsulation of nisin and evaluate its anti-microbial activity in a model food matrix. A T-junction configuration of the microfluidic chip was used to fabricate the zein nanoparticles using 1% or 2% zein solution and 0–10% (w/w) of OSA starch solution. The stability of the nanoparticles in various ionic strength environments was assessed. Encapsulation efficiency and anti-microbial activity of nisin in the zein nanoparticles against Listeria monocytogenes in a fresh cheese were measured. As the concentration of OSA starch increased from 0 to 10%, effective diameter increased from 117.8 ± 14.5 to 198.7 ± 13.9 nm without affecting polydispersity indexes and zeta-potential changed toward that of the modified starch indicating the zein surface coverage by the OSA starch. The zein-OSA starch nanoparticle complexes were more stable at various sodium chloride concentrations than the zein nanoparticles without OSA starch. The encapsulation efficiency of nisin was positively correlated with the OSA starch concentration. The anti-microbial activity of nisin in the fresh cheese also increased until 3-days of storage as the concentration of the OSA starch increased, which presented both a potential and challenge toward applications. Microfluidic chip formed zein nanoparticles with OSA-modified starch. Zein nanoparticle size and stability were affected by zein and modified starch concentration. Nisin was encapsulated in the zein nanoparticles via microfluidic chip. Anti-microbial activity of nisin was improved by the encapsulation.
Collapse
|
14
|
Garcia-Cardosa M, Granados-Ortiz FJ, Ortega-Casanova J. A Review on Additive Manufacturing of Micromixing Devices. MICROMACHINES 2021; 13:73. [PMID: 35056237 PMCID: PMC8778246 DOI: 10.3390/mi13010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.
Collapse
|
15
|
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:901-927. [PMID: 34803553 PMCID: PMC8590809 DOI: 10.1007/s10311-021-01342-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT UK
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Balasubramanian Sivasamy
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641407 India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
17
|
Jolvis Pou KR, Raghavan V, Packirisamy M. Applications of microfluidic technology in food sector: A bibliometric analysis. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2021. [DOI: 10.1080/09737766.2021.1989989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. R. Jolvis Pou
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue Montreal, Quebec, H9X 3V9, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue Montreal, Quebec, H9X 3V9, Canada
| | - Muthukumaran Packirisamy
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
18
|
Radovanović M, Ilić M, Pastor K, Ačanski M, Panić S, Srdić VV, Randjelović D, Kojić T, Stojanović GM. Rapid detection of olive oil blends using a paper-based portable microfluidic platform. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Gimeno A, Stanley CE, Ngamenie Z, Hsung MH, Walder F, Schmieder SS, Bindschedler S, Junier P, Keller B, Vogelgsang S. A versatile microfluidic platform measures hyphal interactions between Fusarium graminearum and Clonostachys rosea in real-time. Commun Biol 2021; 4:262. [PMID: 33637874 PMCID: PMC7910300 DOI: 10.1038/s42003-021-01767-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Routinely, fungal-fungal interactions (FFI) are studied on agar surfaces. However, this format restricts high-resolution dynamic imaging. To gain experimental access to FFI at the hyphal level in real-time, we developed a microfluidic platform, a FFI device. This device utilises microchannel geometry to enhance the visibility of hyphal growth and provides control channels to allow comparisons between localised and systemic effects. We demonstrate its function by investigating the FFI between the biological control agent (BCA) Clonostachys rosea and the plant pathogen Fusarium graminearum. Microscope image analyses confirm the inhibitory effect of the necrotrophic BCA and we show that a loss of fluorescence in parasitised hyphae of GFP-tagged F. graminearum coincides with the detection of GFP in mycelium of C. rosea. The versatility of our device to operate under both water-saturated and nutrient-rich as well as dry and nutrient-deficient conditions, coupled with its spatio-temporal output, opens new opportunities to study relationships between fungi.
Collapse
Affiliation(s)
- Alejandro Gimeno
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Claire E Stanley
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland.
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland.
- Department of Bioengineering, Imperial College London, London, UK.
| | - Zacharie Ngamenie
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland
| | - Ming-Hui Hsung
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland
| | - Florian Walder
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland
| | - Stefanie S Schmieder
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Beat Keller
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Susanne Vogelgsang
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland.
| |
Collapse
|
21
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Martinez L, He L. Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review. ACS APPLIED BIO MATERIALS 2021; 4:295-310. [PMID: 35014285 DOI: 10.1021/acsabm.0c01349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mycotoxins are toxic metabolites produced by fungi that contaminate many important crops worldwide. Humans are commonly exposed to mycotoxins through the consumption of contaminated food products. Mycotoxin contamination is unpredictable and unavoidable; it occurs at any point in the food production system under favorable conditions, and they cannot be destroyed by common heat treatments, because of their high thermal stability. Early and fast detection plays an essential role in this unique challenge to monitor the presence of these compounds in the food chain. Surface-enhanced Raman spectroscopy (SERS) is an advanced spectroscopic technique that integrates Raman spectroscopic molecular fingerprinting and enhanced sensitivity based on nanotechnology to meet the requirement of sensitivity and selectivity, but that can also be performed in a cost-effective and straightforward manner. This Review focuses on the SERS methodologies applied to date for qualitative and quantitative analysis of mycotoxins based on a variety of SERS substrates, as well as our perspectives on current limitations and future trends for applying this technique to mycotoxin analyses.
Collapse
Affiliation(s)
- Lourdes Martinez
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts United States
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts United States
| |
Collapse
|
23
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
24
|
Mejía-Carmona K, Maciel EVS, Lanças FM. Miniaturized liquid chromatography applied to the analysis of residues and contaminants in food: A review. Electrophoresis 2020; 41:1680-1693. [PMID: 32359175 DOI: 10.1002/elps.202000019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
The humankind is pretty dependent on food to control several biological processes into the organism. As the world population increases, the demand for foodstuffs follows the same trend claiming for a high food production situation. For this reason, a substantial amount of chemicals is used in agriculture and livestock husbandries every year, enhancing the likelihood of contaminated foodstuffs being commercialized. This outlook becomes a public health concern; thus, the governmental regulatory agencies impose laws to control the residues and contaminants in food matrices. Currently, one of the most important analytical techniques to perform it is LC. Despite its already recognized effectiveness, it is often time consuming and requires significant volumes of reagents, which are transformed into toxic waste. In this context, miniaturized LC modes emerge as a greener and more effective analytical technique. They have remarkable advantages, including higher sensitivity, lower sample amount, solvent and stationary phase requirements, and more natural coupling to MS. In this review, most of the critical characteristics of them are discussed, focusing on the benchtop instruments and their related analytical columns. Additionally, a discussion regarding the last 10 years of publications reporting miniaturized LC application for the analysis of natural and industrial food samples is categorized. The main chemical classes as applied in the crops are highlighted, including pesticides, veterinary drugs, and mycotoxins.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
25
|
Guan Y, Sun B. Detection and extraction of heavy metal ions using paper-based analytical devices fabricated via atom stamp printing. MICROSYSTEMS & NANOENGINEERING 2020; 6:14. [PMID: 34567629 PMCID: PMC8433178 DOI: 10.1038/s41378-019-0123-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 05/23/2023]
Abstract
As a promising concept, microfluidic paper-based analytical devices (μPADs) have seen rapid development in recent years. In this study, a new method of fabricating μPADs by atom stamp printing (ASP) is proposed and studied. The advantages of this new method compared to other methods include its low cost, ease of operation, high production efficiency, and high resolution (the minimum widths of the hydrophilic channels and hydrophobic barriers are 328 and 312 μm, respectively). As a proof of concept, μPADs fabricated with the ASP method were used to detect different concentrations of Cu2+ via a colorimetric method. Moreover, combined with a distance-based detection method, these devices achieved a Cu2+ detection limit of down to 1 mg/L. In addition, a new paper-based solid-liquid extraction device (PSED) based on a three-dimensional (3D) μPAD with a "3 + 2" structure and a recyclable extraction mode was developed. Specifically, using the characteristics of paper filtration and capillary force, the device completed multiple extraction and filtration steps from traditional solid-liquid extraction processes with high efficiency. The developed PSED platform allows the detection of heavy metal ions much more cheaply and simply and with a faster response time at the point of care, and it has great promise for applications in food safety and environmental pollution in resource-limited areas.
Collapse
Affiliation(s)
- Yanfang Guan
- School of Electromechanical Engineering, Henan University of technology, Zhengzhou, 450001 China
| | - Baichuan Sun
- School of Electromechanical Engineering, Henan University of technology, Zhengzhou, 450001 China
| |
Collapse
|
26
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
27
|
Lee CJ, Hsu YH. Vacuum pouch microfluidic system and its application for thin-film micromixers. LAB ON A CHIP 2019; 19:2834-2843. [PMID: 31353372 DOI: 10.1039/c8lc01286e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, a new type of lab-on-a-chip system, called vacuum pouch microfluidic (VPM) system, is reported. The core of this technology is a thin-film vacuum pouch that provides negative pumping pressure once it is activated. It is a degassed plastic bag that encloses a microfluidic chip. To demonstrate its performance, a passive thin-film micromixer is developed to integrate with the vacuum pouch. Since both the vacuum pouch and the thin-film micromixer are made of plastic film, they can be laminated together to construct a multi-layered microfluidic system. Excluding the storage reservoir, the overall thickness is 0.4 mm and the total weight is 0.3 g. This system provides a simple and straightforward strategy to construct a standalone, portable, flexible and low cost microfluidic system. The thin-film micromixer uses a serpentine channel to perform the mixing process, and it is found to have distinct mixing mechanisms under different Reynolds (Re) numbers, where lateral diffusion dominates for Re < 1 and chaotic mixing starts to contribute for Re > 10. Integrating this thin-film micromixer with the vacuum pouch, it is demonstrated that the negative pumping pressure can be adjusted by different storage reservoirs being placed at the channel exit. Reynolds numbers ranging from 0.0064 to 45.2 can be achieved. It also is verified that the VPM micromixer can be stored for 4 weeks to provide a sufficient flow rate for mixing applications. Finally, to demonstrate the feasibility of applying this VPM-based thin-film micromixer for on-site detection, this system is integrated with the colorimetric method. It is verified that a 10 μl ferrous ion solution and a 10 μl potassium ferricyanide solution can be mixed in 12 seconds, and concentrations of 10 ppm to 1000 ppm can be quantified by analyzing the colorimetric signal in hue values.
Collapse
Affiliation(s)
- Cheng-Je Lee
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| | | |
Collapse
|
28
|
Düven G, Çetin B, Kurtuldu H, Gündüz GT, Tavman Ş, Kışla D. A portable microfluidic platform for rapid determination of microbial load and somatic cell count in milk. Biomed Microdevices 2019; 21:49. [DOI: 10.1007/s10544-019-0407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Guo Z, Wang M, Wu J, Tao F, Chen Q, Wang Q, Ouyang Q, Shi J, Zou X. Quantitative assessment of zearalenone in maize using multivariate algorithms coupled to Raman spectroscopy. Food Chem 2019; 286:282-288. [PMID: 30827607 DOI: 10.1016/j.foodchem.2019.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 01/03/2023]
Abstract
Zearalenone is a contaminant in food and feed products which are hazardous to humans and animals. This study explored the feasibility of the Raman rapid screening technique for zearalenone in contaminated maize. For representative Raman spectra acquisition, the ground maize samples were collected by extended sample area to avoid the adverse effect of heterogeneous component. Regression models were built with partial least squares (PLS) and compared with those built with other variable selection algorithms such as synergy interval PLS (siPLS), ant colony optimization PLS (ACO-PLS) and siPLS-ACO. SiPLS-ACO algorithm was superior to others in terms of predictive power performance for zearalenone analysis. The best model based on siPLS-ACO achieved coefficients of correlation (Rp) of 0.9260 and RMSEP of 87.9132 μg/kg in the prediction set, respectively. Raman spectroscopy combined multivariate calibration showed promising results for the rapid screening large numbers of zearalenone maize contaminations in bulk quantities without sample-extraction steps.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Mingming Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingzhu Wu
- Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology & Business University, Beijing 100048, China
| | - Feifei Tao
- Geosystems Research Institute, Mississippi State University, Building 1021, Stennis Space Center, MS 39529, USA
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingyan Wang
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Sino-British Joint Laboratory of Food Nondestructive Detection, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Sino-British Joint Laboratory of Food Nondestructive Detection, Zhenjiang 212013, China
| |
Collapse
|
30
|
Zhang Y, Gregory DA, Zhang Y, Smith PJ, Ebbens SJ, Zhao X. Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804213. [PMID: 30515976 DOI: 10.1002/smll.201804213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Stirring small volumes of solution can reduce immunoassay readout time, homogenize cell cultures, and increase enzyme reactivity in bioreactors. However, at present many small scale stirring methods require external actuation, which can be cumbersome. To address this, here, reactive inkjet printing is shown to be able to produce autonomously rotating biocompatible silk-based microstirrers that can enhance fluid mixing. Rotary motion is generated either by release of a surface active agent (small molecular polyethylene glycol) resulting in Marangoni effect, or by catalytically powered bubble propulsion. The Marangoni driven devices do not require any chemicals to be added to the fluid as the "fuel," while the catalytically powered devices are powered by decomposing substrate molecules in solution. A comparison of Marangoni effect and enzyme powered stirrers is made. Marangoni effect driven stirrers rotate up to 600 rpm, 75-100-fold faster than enzyme driven microstirrers, however enzyme powered stirrers show increased longevity. Further to stirring applications, the sensitivity of the motion generation mechanisms to fluid properties allows the rotating devices to also be exploited for sensing applications, for example, acting as motion sensors for water pollution.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Yi Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Patrick J Smith
- Department of Mechanical Engineering, University of Sheffield, 64 Garden Street, Sheffield, S1 4BJ, UK
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Gehu Road, Changzhou, 213164, China
| |
Collapse
|
31
|
Xu L, Zhang H, Yan X, Peng H, Wang Z, Zhang Q, Li P, Zhang Z, Le XC. Binding-Induced DNA Dissociation Assay for Small Molecules: Sensing Aflatoxin B1. ACS Sens 2018; 3:2590-2596. [PMID: 30430837 DOI: 10.1021/acssensors.8b00975] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a new fluorescence turn-on sensor for homogeneous detection of aflatoxin B1 (AFB1), a potent low molecular weight mycotoxin. A key innovation is the binding-induced intramolecular interaction involving the following two sets of probes: (1) a gold nanoparticle (AuNP) immobilized with hundreds of assistant oligonucleotides (AO) and dozens of anti-AFB1 monoclonal antibodies, and (2) the AFB1-BSA (BSA = bovine serum albumin) antigen conjugated with fluorophore-labeled signal oligonucleotides (SO) that contained a short sequence complementary to AO. Specific binding of AFB1-BSA to the antibody brought the fluorophore very close to the surface of the AuNP through a stable intramolecular hybridization between AO and SO, resulting in efficient quenching of fluorescence. The improved fluorescence quenching substantially reduced the background, due to the binding-induced intramolecular hybridization, and improved the signal-to-background ratio by 390%. In the presence of AFB1 in a sample, competitive binding of AFB1 in the sample to the antibodies immobilized on the AuNP caused the release of the fluorophore-labeled AFB1-BSA from the AuNP, turning on fluorescence. A detection limit of 2.3 nM was achieved, which meets the requirement for AFB1 detection at regulatory levels. Analyses of rice samples using this assay showed recoveries of 86-102%. Incorporating appropriate antibody probes could extend the assay to the detection of other small molecules.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
32
|
Felix FS, Baccaro ALB, Angnes L. Disposable Voltammetric Immunosensors Integrated with Microfluidic Platforms for Biomedical, Agricultural and Food Analyses: A Review. SENSORS 2018; 18:s18124124. [PMID: 30477240 PMCID: PMC6308430 DOI: 10.3390/s18124124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Disposable immunosensors are analytical devices used for the quantification of a broad variety of analytes in different areas such as clinical, environmental, agricultural and food quality management. They detect the analytes by means of the strong interactions between antibodies and antigens, which provide concentration-dependent signals. For the herein highlighted voltammetric immunosensors, the analytical measurements are due to changes in the electrical signals on the surface of the transducers. The possibility of using disposable and miniaturized immunoassays is a very interesting alternative for voltammetric analyses, mainly, when associated with screen-printing technologies (screen-printed electrodes, SPEs), and microfluidic platforms. The aim of this paper is to discuss a carefully selected literature about different examples of SPEs-based immunosensors associated with microfluidic technologies for diseases, food, agricultural and environmental analysis. Technological aspects of the development of the voltammetric immunoassays such as the signal amplification, construction of paper-based microfluidic platforms and the utilization of microfluidic devices for point-of-care testing will be presented as well.
Collapse
Affiliation(s)
- Fabiana S Felix
- Departamento de Química, Universidade Federal de Lavras (UFLA), CP 3037, Lavras, CEP 37200-000 MG, Brazil.
| | - Alexandre L B Baccaro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | - Lúcio Angnes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Pagkali V, Petrou PS, Makarona E, Peters J, Haasnoot W, Jobst G, Moser I, Gajos K, Budkowski A, Economou A, Misiakos K, Raptis I, Kakabakos SE. Simultaneous determination of aflatoxin B 1, fumonisin B 1 and deoxynivalenol in beer samples with a label-free monolithically integrated optoelectronic biosensor. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:445-453. [PMID: 30059886 DOI: 10.1016/j.jhazmat.2018.07.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
A label-free optical biosensor for the fast simultaneous determination of three mycotoxins, aflatoxin B1 (AFB1), fumonisin B1 (FB1) and deoxynivalenol (DON), in beer samples is presented. The biosensor is based on an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources onto a single chip. Multi-analyte determination is accomplished by functionalizing the sensing arms of individual MZIs with mycotoxin-protein conjugates. Assay is performed by pumping over the chip mixtures of calibrators or samples with a mixture of specific monoclonal antibodies, followed by reaction with a secondary anti-mouse IgG antibody. Reactions are monitored in real-time by continuously recording the MZI output spectra, which are then subjected to Discrete Fourier Transform to convert spectrum shifts to phase shifts. The detection limits achieved for AFB1, FB1 and DON were 0.8, 5.6 and 24 ng/ml, respectively, while the assay duration was 12 min. Recovery values ranging from 85 to 115% were determined in beer samples spiked with known concentrations of the three mycotoxins. In addition, beers of different types and origin were analysed with the biosensor developed and the results were compared with those provided by established laboratory methods, further supporting the accuracy of the proposed device.
Collapse
Affiliation(s)
- Varvara Pagkali
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece; Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Panagiota S Petrou
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece.
| | - Eleni Makarona
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Jeroen Peters
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Willem Haasnoot
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | | | | | - Katarzyna Gajos
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Budkowski
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anastasios Economou
- Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Konstantinos Misiakos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Ioannis Raptis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Sotirios E Kakabakos
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece.
| |
Collapse
|
34
|
Bianchi F, Giannetto M, Careri M. Analytical systems and metrological traceability of measurement data in food control assessment. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Horky P, Skalickova S, Baholet D, Skladanka J. Nanoparticles as a Solution for Eliminating the Risk of Mycotoxins. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E727. [PMID: 30223519 PMCID: PMC6164963 DOI: 10.3390/nano8090727] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi. The occurrence of mycotoxins in food and feed causes negative health impacts on both humans and animals. Clay binders, yeast cell walls, or antioxidant additives are the most widely used products for mycotoxin elimination to reduce their impact. Although conventional methods are constantly improving, current research trends are looking for innovative solutions. Nanotechnology approaches seem to be a promising, effective, and low-cost way to minimize the health effects of mycotoxins. This review aims to shed light on the critical knowledge gap in mycotoxin elimination by nanotechnology. There are three main strategies: mold inhibition, mycotoxin adsorption, and reducing the toxic effect via nanoparticles. One of the most promising methods is the use of carbon-based nanomaterials. Graphene has been shown to have a huge surface and high binding capacity for mycotoxins. Attention has also been drawn to polymeric nanoparticles; they could substitute adsorbents or enclose any substance, which would improve the health status of the organism. In light of these findings, this review gives new insights into possible future research that might overcome challenges associated with nanotechnology utilization for mycotoxin elimination from agricultural products.
Collapse
Affiliation(s)
- Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic.
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic.
| | - Daria Baholet
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic.
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic.
| |
Collapse
|
36
|
Udovicki B, Audenaert K, De Saeger S, Rajkovic A. Overview on the Mycotoxins Incidence in Serbia in the Period 2004⁻2016. Toxins (Basel) 2018; 10:E279. [PMID: 29976881 PMCID: PMC6070786 DOI: 10.3390/toxins10070279] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
With an average annual production of 6.9 M tonnes and 2.5 M tonnes of maize and wheat respectively, Serbia is one of the main grain producers and exporters in Europe. Cereals are also the major staple food in Serbian diet. In view of the high cereal consumption, for human and animal nutrition, the presence of mycotoxins entails a high public health risk of chronic exposure to mycotoxins. This study provides an overview of the incidence of predominant mycotoxins, mainly in cereal and dairy products, in Serbia, in the 2004⁻2016, using data reported in the scientific literature. The study demonstrated that the total prevalence of aflatoxins was 62.9% (n = 12,517) with 26.2% of the samples exceeding the EU limits during this period. Results obtained for T-2/HT-2 (n = 523), deoxynivalenol (n = 2907), fumonisins (n = 998), zearalenone (n = 689) and ochratoxin A (n = 740) indicated the prevalence of 45.5%, 42.9%, 63.3%, 39.3% and 28.1%, respectively. For these mycotoxins, the EU limits were less frequently exceeded. Comprehensive collection and analysis of all accessible information reviewed in this paper showed moderate incidence and prevalence of mycotoxins in Serbia, with an exception of the 2012 drought year and the 2014 flood year.
Collapse
Affiliation(s)
- Bozidar Udovicki
- Faculty of Agriculture, Department of Food Safety and Food Quality Management, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia.
| | - Kris Audenaert
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University Campus Schoonmeersen, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Andreja Rajkovic
- Faculty of Agriculture, Department of Food Safety and Food Quality Management, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia.
- Faculty of Bioscience Engineering, Department of Food Technology, Food Safety and Health, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
37
|
|
38
|
Soares RRG, Santos DR, Pinto IF, Azevedo AM, Aires-Barros MR, Chu V, Conde JP. Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. LAB ON A CHIP 2018; 18:1569-1580. [PMID: 29736505 DOI: 10.1039/c8lc00259b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Portable, rapid, cost effective and simple analytical tools are in increasing demand to facilitate the routine monitoring of target chemical/biological compounds at the point-of-need. Such devices are highly relevant within the context of food safety, particularly concerning the screening of highly toxic and strictly regulated mycotoxins. To achieve ultrarapid detection of mycotoxins, namely aflatoxin B1, ochratoxin A and deoxynivalenol, at the point-of-need, a novel multiplexed bead-based microfluidic competitive immunosensor, coupled with an array of a-Si:H thin-film photodiodes for integrated fluorescence signal acquisition, is reported. Simultaneously measuring the initial binding rate for each analyte of the sample under analysis against an internal reference, this device provided limits of detection below 1 ng mL-1 for all mycotoxins in a single-step assay and within 1 minute after mixing the sample under analysis with a fluorescent conjugate. The compatibility of the device with the analysis of mycotoxins spiked in corn samples was further demonstrated after performing a sample preparation procedure based on aqueous two-phase extraction. The short times of analysis and sensitivities in the low ng mL-1 range make these devices potentially competitive with the lateral flow devices that are currently the standard for this application. Furthermore, this device architecture and concept is amenable of being expanded to other analytes in food safety, biomedical and other applications.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abbasian F, Ghafar-Zadeh E, Magierowski S. Microbiological Sensing Technologies: A Review. Bioengineering (Basel) 2018; 5:E20. [PMID: 29498670 PMCID: PMC5874886 DOI: 10.3390/bioengineering5010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications.
Collapse
Affiliation(s)
- Firouz Abbasian
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Sebastian Magierowski
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
40
|
Liu A, Anfossi L, Shen L, Li C, Wang X. Non-competitive immunoassay for low-molecular-weight contaminant detection in food, feed and agricultural products: A mini-review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: current uses and future applications in the food industry. 3 Biotech 2018; 8:74. [PMID: 29354385 DOI: 10.1007/s13205-018-1104-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022] Open
Abstract
Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.
Collapse
|
42
|
Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens Bioelectron 2018; 99:40-46. [DOI: 10.1016/j.bios.2017.07.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
|
43
|
SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Zhou Y. The recent development and applications of fluidic channels by 3D printing. J Biomed Sci 2017; 24:80. [PMID: 29047370 PMCID: PMC5646158 DOI: 10.1186/s12929-017-0384-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/17/2017] [Indexed: 01/09/2023] Open
Abstract
The technology of “Lab-on-a-Chip” allows the synthesis and analysis of chemicals and biological substance within a portable or handheld device. The 3D printed structures enable precise control of various geometries. The combination of these two technologies in recent years makes a significant progress. The current approaches of 3D printing, such as stereolithography, polyjet, and fused deposition modeling, are introduced. Their manufacture specifications, such as surface roughness, resolution, replication fidelity, cost, and fabrication time, are compared with each other. Finally, novel application of 3D printed channel in biology are reviewed, including pathogenic bacteria detection using magnetic nanoparticle clusters in a helical microchannel, cell stimulation by 3D chemical gradients, perfused functional vascular channels, 3D tissue construct, organ-on-a-chip, and miniaturized fluidic “reactionware” devices for chemical syntheses. Overall, the 3D printed fluidic chip is becoming a powerful tool in the both medical and chemical industries.
Collapse
Affiliation(s)
- Yufeng Zhou
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
| |
Collapse
|
45
|
Ghasemi A, Amiri H, Zare H, Masroor M, Hasanzadeh A, Beyzavi A, Aref AR, Karimi M, Hamblin MR. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:151. [PMID: 30881265 PMCID: PMC6415915 DOI: 10.1007/s10404-017-1989-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Advanced nanomaterials such as carbon nano-tubes (CNTs) display unprecedented properties such as strength, electrical conductance, thermal stability, and intriguing optical properties. These properties of CNT allow construction of small microfluidic devices leading to miniaturization of analyses previously conducted on a laboratory bench. With dimensions of only millimeters to a few square centimeters, these devices are called lab-on-a-chip (LOC). A LOC device requires a multidisciplinary contribution from different fields and offers automation, portability, and high-throughput screening along with a significant reduction in reagent consumption. Today, CNT can play a vital role in many parts of a LOC such as membrane channels, sensors and channel walls. This review paper provides an overview of recent trends in the use of CNT in LOC devices and covers challenges and recent advances in the field. CNTs are also reviewed in terms of synthesis, integration techniques, functionalization and superhydrophobicity. In addition, the toxicity of these nanomaterials is reviewed as a major challenge and recent approaches addressing this issue are discussed.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran 14588, Iran
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran 14588, Iran
| | - Hossein Zare
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Science and Engineering Department, Iran University of Science and Technology, P.O. Box 1684613114, Tehran, Iran
| | - Maryam Masroor
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Amir R. Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Center, Teheran Medical Sciences Branch, Isclamic Azad University, Teheran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Weng X, Neethirajan S. Ensuring food safety: Quality monitoring using microfluidics. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Dragone R, Grasso G, Muccini M, Toffanin S. Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics. Front Public Health 2017; 5:80. [PMID: 28529937 PMCID: PMC5418341 DOI: 10.3389/fpubh.2017.00080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/29/2017] [Indexed: 11/16/2022] Open
Abstract
This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an “holistic approach” that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices.
Collapse
Affiliation(s)
- Roberto Dragone
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Gerardo Grasso
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Michele Muccini
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Stefano Toffanin
- Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| |
Collapse
|
48
|
Chen Y, Fang Z, Merritt B, Strack D, Xu J, Lee S. Onset of particle trapping and release via acoustic bubbles. LAB ON A CHIP 2016; 16:3024-32. [PMID: 26805706 DOI: 10.1039/c5lc01420d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Trapping and sorting of micro-sized objects is one important application of lab on a chip devices, with the use of acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force (FSR) on micro-particles and stabilize them on the bubble surface, when this radiation force exceeds the external hydrodynamic forces that act to keep the particles in motion. While the theoretical expression of FSR has been derived by Nyborg decades ago, no direct experimental validation of this force has been performed, and the relationship between FSR and the bubble's ability to trap particles in a given lab on a chip device remains largely empirical. In order to quantify the connection between the bubble oscillation and the resultant FSR, we experimentally measure the amplitude of bubble oscillations that give rise to FSR and observe the trapping and release of a single microsphere in the presence of the mean flow at the corresponding acoustic parameters using an acoustofluidic device. By combining well-developed theories that connect bubble oscillations to the acoustic actuation, we derive the expression for the critical input voltage that leads to particle release into the flow, in good agreement with the experiments.
Collapse
Affiliation(s)
- Yun Chen
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| | - Zecong Fang
- Department of Mechanical Engineering, Washington State University, Vancouver, WA 98686, USA
| | - Brett Merritt
- Department of Mechanical Engineering, Washington State University, Vancouver, WA 98686, USA
| | - Dillon Strack
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL 60607, USA.
| | - Sungyon Lee
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| |
Collapse
|
49
|
Kim G, Lim J, Mo C. Applications of Microfluidics in the Agro-Food Sector: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.5307/jbe.2016.41.2.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Tian J(J, Bryksa BC, Yada RY. Feeding the world into the future – food and nutrition security: the role of food science and technology. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1174958] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jenny (Jingxin) Tian
- Department of Food Science, Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Brian C. Bryksa
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Rickey Y. Yada
- Department of Food Science, Land and Food Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|