1
|
Li H, Zhong L, Wang L, Geng N, Xing W, Wang Z, Shi L, Sun S. Legacy and novel brominated flame retardants in outdoor settled dusts and pine needles in a megacity of Eastern China: Interpretation of plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175488. [PMID: 39147053 DOI: 10.1016/j.scitotenv.2024.175488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Brominated flame retardants, considered emerging contaminants, are widespread and persist in the environment. This study investigated the contamination of legacy and novel brominated flame retardants in paired outdoor settled dusts and pine needles sampled from a megacity in the Eastern China. The measured total concentrations of PBDEs (∑27PBDEs) in outdoor settled dusts and pine needles were in the range of 77.4-345.2 ng/g dw and 20.7-120.0 ng/g dw, respectively, and equivalent ranges for novel brominated flame retardants (∑11NBFRs) were 25.7-1917.2 ng/g dw and 9.4-38.7 ng/g dw, respectively. BDE-209 and DBDPE dominated PBDEs and NBFRs profiles, respectively, in both dusts and pine needles. Outdoor settled dusts exhibited greater potentials to accumulate high-brominated PBDE homologues and EH-TBB while pine needles tended to accumulate low-brominated PBDE homologues, BTBPE and TBC. The plant uptake of BFRs was interpreted by McLachlan's framework on the assumption that the levels of BFRs in outdoor settled dusts and particle phase of air were positively correlated. The accumulation of PBDEs in pine needles was dominated by equilibrium partitioning between the vegetation and the gas phase when log KOA values <10 and by particle-bound deposition when log KOA values >13. However, NBFRs exhibited more complicated accumulation behavior. The predicted 50th percentile of the estimated daily intakes of ∑27PBDEs via outdoor settled dusts exposure for adults and children were 3.5 × 10-2 and 1.4 × 10-1 ng/kg body weight (bw)/day, respectively, and equivalent values for ∑11NBFRs were 1.6 × 10-2 ng/kg bw/day and 6.3 × 10-2 ng/kg bw/day, respectively. The calculated hazard index (HI) values were far <1, indicating exposure of BFRs via outdoor settled dust intake would not pose potential non-carcinogenic health risks to both adults and children.
Collapse
Affiliation(s)
- He Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Liangchen Zhong
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lei Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weilong Xing
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhen Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
2
|
Manuguerra S, Carli F, Scoditti E, Santulli A, Gastaldelli A, Messina CM. Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer. Metabolites 2024; 14:559. [PMID: 39452940 PMCID: PMC11509268 DOI: 10.3390/metabo14100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to pollutants causes oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which can affect signaling pathways that regulate the cell cycle, apoptosis, energy balance, and cellular metabolism. The aim of this study was to investigate the effects of sub-lethal concentrations of mixtures of emerging pollutants and pharmaceuticals on the modulation of biomarkers related to toxicity, oxidative stress, and cancer. Methods: In this study, the hepatoma cell line HepG2 was exposed to increasing concentrations of polybrominated diphenyl ether 47 (BDE-47), cadmium chloride (CdCl2), and carbamazepine (CBZ), both individually and in mixtures, for 72 h to assess cytotoxicity using the MTT assay. The subsequent step, following the identification of the sub-lethal concentration, was to investigate the effects of exposure at the gene expression level, through the evaluation of molecular markers related to cell cycle and apoptosis (p53), oxidative stress (NRF2), conjugation and detoxification of xenobiotics (CYP2C9 and GST), DNA damage (RAD51 and γH2AFX), and SUMOylation processes (SUMO1 and UBC9) in order to identify any potential alterations in pathways that are normally activated at the cellular level. Results: The results showed that contaminants tend to affect the enzymatic detoxification and antioxidant system, influencing DNA repair defense mechanisms involved in resistance to oxidative stress. The combined effect of the compounds at sub-lethal doses results in a greater activation of these pathways compared to exposure to each compound alone, thereby exacerbating their cytotoxicity. Conclusions: The biomarkers analyzed could contribute to the definition of early warning markers useful for environmental monitoring, while simultaneously providing insight into the toxicity and hazard levels of these substances in the environment and associated health risks.
Collapse
Affiliation(s)
- Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| |
Collapse
|
3
|
Zhang H, Zhou H, Chen X, Guo H, Lin Q, Chen X. Phthalate exposure as a hidden risk factor for uterine leiomyoma in adult women: Accumulated evidence from observational studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117069. [PMID: 39299212 DOI: 10.1016/j.ecoenv.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND There is evidence that exposure to phthalate in women may increase the risk of uterine leiomyomas. Whereas, the association between exposure to phthalate and the incidence of uterine leiomyoma remained inconclusive. METHODS A meta-analysis was performed to evaluate their relationship. Literature eligible for inclusion was found in PubMed, EMBASE, Web of Science, and WanFang Medical Database. Pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated to assess the risk for effect estimate for each phthalate. RESULTS A total of fourteen observational studies with 5777 subjects of adult women were included in this study. In the pooled analysis, we found an elevated risk of uterine leiomyoma among women who were exposed to higher levels of di-2-ethylhexyl phthalate (DEHP) (OR 1.61, 95 % CI: 1.18-2.20), as estimated indirectly from the molar summation of its urinary metabolite concentrations. In addition, a positive association was observed between the occurrence of uterine leiomyoma and exposure to low molecular weight phthalate mixture (OR 1.08, 95 % CI: 1.00-1.15), as well as high molecular weight phthalate mixture (OR 1.08, 95 % CI: 1.01-1.15), as quantified by integrating the effect estimates of individual metabolite from each study. Urinary levels of DEHP metabolites, monobenzyl phthalate, mono-(3-carboxypropyl) phthalate, mono-isobutyl phthalate, mono-n-butyl phthalate, monoethyl phthalate, and monomethyl phthalate were not appreciably correlated with the risk of uterine leiomyoma. CONCLUSION Our results indicated that exposure to DEHP, and co-exposure to high or low molecular weight phthalate mixture might be potential risk factors for uterine leiomyoma in adult women. Owing to the indirect estimation of association, when interpreting these findings, cautions should be taken.
Collapse
Affiliation(s)
- Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hanlin Zhou
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinwang Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Hangting Guo
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiong Lin
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiangqi Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
4
|
Oh Y, Hong SJ, Park YJ, Baek IH. Association between phthalate exposure and risk of allergic rhinitis in children: A systematic review and meta-analysis. Pediatr Allergy Immunol 2024; 35:e14230. [PMID: 39229646 DOI: 10.1111/pai.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Phthalates are ubiquitous in diverse environments and have been linked to a myriad of detrimental health outcomes. However, the association between phthalate exposure and allergic rhinitis (AR) remains unclear. To address this knowledge gap, we conducted a systematic review and meta-analysis to comprehensively evaluate the relationship between phthalate exposure and childhood AR risk. We searched the Cumulative Index to Nursing and Allied Health Literature, Excerpta Medica Database, and PubMed to collect relevant studies and estimated pooled odds ratios (OR) and 95% confidence intervals (CI) for risk estimation. Ultimately, 18 articles, including seven cross-sectional, seven case-control, and four prospective cohort studies, were selected for our systematic review and meta-analysis. Our pooled data revealed a significant association between di-2-ethylhexyl phthalate (DEHP) exposure in children's urine and AR risk (OR = 1.188; 95% CI = 1.016-1.389). Additionally, prenatal exposure to combined phthalates and their metabolites in maternal urine was significantly associated with the risk of childhood AR (OR = 1.041; 95% CI = 1.003-1.081), although specific types of phthalates and their metabolites were not significant. Furthermore, we examined environmental phthalate exposure in household dust and found no significant association with AR risk (OR = 1.021; 95% CI = 0.980-1.065). Our findings underscore the potential hazardous effects of phthalates on childhood AR and offer valuable insights into its pathogenesis and prevention.
Collapse
Affiliation(s)
- Yeonghun Oh
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory and Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, Busan, Korea
- Functional Food & Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, Busan, Korea
| |
Collapse
|
5
|
Takaguchi K, Nakaoka H, Tsumura K, Eguchi A, Shimatani K, Nakayama Y, Matsushita T, Ishizaka T, Kawashima A, Mori C, Suzuki N. The association between clustering based on composition of volatile organic compound in indoor air and building-related symptoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170197. [PMID: 38253092 DOI: 10.1016/j.scitotenv.2024.170197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Volatile organic compounds (VOCs) have been suspected to cause building-related symptoms (BRSs). Although some studies investigated the association between BRSs and VOCs in indoor air, those results were inconsistent. This study investigated the contamination status of VOCs in the indoor air of 154 houses in Japan. Additionally, these samples were grouped by hierarchical clustering analysis based on the VOC composition, and the relationship between a VOC cluster and the BRSs was investigated. The median concentration of the sum of VOCs (ΣVOCs) was 140 μg m-3 (range: 18-3500 μg m-3). The levels of acetaldehyde in four samples and p-dichlorobenzene in one sample exceeded the guideline value. As a result of the hierarchical clustering analysis, the samples in this study were divided into six characteristic clusters based on the VOC composition. The ΣVOCs in cluster 1 were significantly lower than those in other clusters. In cluster 2, acyclic and aromatic hydrocarbons were dominant. Cluster 3 had a relatively high proportion of limonene. In cluster 4, the concentrations and composition ratios of α-pinene were higher than those of other clusters. In cluster 5, p-dichlorobenzene accounted for 42 %-72 % of the total VOCs. Cluster 6 had a relatively high proportion of decamethyl cyclopentasiloxane. This clustering likely depended on the construction of houses and lifestyles. As a result of logistic regression analysis, cluster 5 was associated with the cough symptoms of the BRSs. The results of the present study suggest that investigating the association between VOCs and BRSs is necessary to consider not only total concentrations such as TVOC and ΣVOCs but also VOC composition.
Collapse
Affiliation(s)
- Kohki Takaguchi
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Hiroko Nakaoka
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kayo Tsumura
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keiichi Shimatani
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yoshitake Nakayama
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takafumi Matsushita
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Takahiro Ishizaka
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Ayato Kawashima
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856, Japan
| | - Norimichi Suzuki
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Muir T, Michalek JE, Palmer RF. Determination of safe levels of persistent organic pollutants in toxicology and epidemiology. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:401-408. [PMID: 35506713 DOI: 10.1515/reveh-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
We reviewed published manuscripts from toxicology and epidemiology reporting harmful health effects and doses of persistent organic pollutants (POPs), published between 2000 and 2021. We found 42 in vitro, 32 in vivo, and 74 epidemiological studies and abstracted the dose associated with harm in a common Molar unit. We hypothesized that the dose associated with harm would vary between animal and human studies. To test this hypothesis, for each of several POPs, we assessed the significance of variation in the dose associated with a harmful effect [categorized as non-thyroid endocrine (NTE), developmental neurotoxicity (DNT), and Thyroid] with study type (in vitro, in vivo, and Epidemiology) using a linear model after adjustment for basis (lipid weight, wet weight). We created a Calculated Safety Factor (CSF) defined as the toxicology dose divided by epidemiology dose needed to exhibit significant harm. Significant differences were found between study types ranging from <1 to 5.0 orders of magnitude in the dose associated with harm. Our CSFs in lipid weight varied from 12.4 (95% confidence interval (CI) 3.3, 47) for NTE effects in Epidemiology relative to in vivo studies to 6,244 (95% CI 2510, 15530) for DNT effects in Epidemiology relative to in vitro in wet weight representing 12.4 to 6.2 thousand-fold more sensitivity in people relative to animals, and mechanistic models, respectively. In lipid weight, all CSF 95% CI lower bounds across effect categories were less than 6.5. CIs for CSFs ranged from less than one to four orders of magnitude for in vivo, and two to five orders of magnitude for in vitro vs. Epidemiology. A global CSF for all Epidemiology vs. all Toxicology was 104.6 (95% CI 72 to 152), significant at p<0.001.
Collapse
Affiliation(s)
- Tom Muir
- Environment Canada, 70 Townsend Ave, Burlington, ON, Canada
| | - Joel E Michalek
- Department of Population Health Sciences, UT Health San Antonio, San Antonio TX, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, UT Health San Antonio, San Antonio TX, USA
| |
Collapse
|
7
|
Manz KE, Feerick A, Braun JM, Feng YL, Hall A, Koelmel J, Manzano C, Newton SR, Pennell KD, Place BJ, Godri Pollitt KJ, Prasse C, Young JA. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:524-536. [PMID: 37380877 PMCID: PMC10403360 DOI: 10.1038/s41370-023-00574-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).
Collapse
Affiliation(s)
- Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Anna Feerick
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amber Hall
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Carlos Manzano
- Department of Chemistry, Faculty of Science, University of Chile, Santiago, RM, Chile
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Seth R Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Place
- National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, 20899, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Carsten Prasse
- Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Risk Sciences and Public Policy Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joshua A Young
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
8
|
Zhang H, Chen S, Chen X, Zhang Y, Han Y, Li J, Chen X. Exposure to phthalate increases the risk of eczema in children: Findings from a systematic review and meta-analysis. CHEMOSPHERE 2023; 321:138139. [PMID: 36791818 DOI: 10.1016/j.chemosphere.2023.138139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence indicated phthalate exposure might raise the risk of eczema in children. However, these findings were inconsistent. The relation between phthalate exposure and childhood eczema remained debated. Therefore, we performed this meta-analysis to assess their association. PubMed, Web of Science, and Embase were searched for eligible studies. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated for risk estimate. Thirty studies involving 12,615 participants were included in this meta-analysis. For prenatal phthalate exposure assessed with maternal samples, the pooled results showed gestational exposure to monobenzyl phthalate (MBzP) (OR: 1.17, 95% CI: 1.00-1.36), but not the other phthalates, was correlated with increased risk of eczema in children. For childhood exposure assessed using children's urine sample, our pooled results indicated that postnatal exposure to MBzP (OR: 1.10, 95% CI: 1.02-1.19), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (OR: 1.32, 95% CI: 1.08-1.61), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) (OR: 1.24, 95% CI: 1.06-1.44), and molar summation of di-2-ethylhexyl phthalate (DEHP) (OR: 1.23, 95% CI: 1.06-1.42) were associated with higher risk of eczema. While for studies using household dust to estimate environmental phthalate exposure and eczema risk, the pooled results showed no significant association. Subgroup analyses indicated study country, diagnostic mode, and children's age contributed to the heterogeneity. The results of our meta-analysis demonstrated that phthalate exposure during both prenatal and postnatal periods was associated with elevated risk of eczema in children. However, such association was not strong as the pooled ORs were relatively small. Further studies are warranted to verify these findings and explore the underlying mechanism.
Collapse
Affiliation(s)
- Hong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Siyu Chen
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Xinwang Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Yong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yonghe Han
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| |
Collapse
|
9
|
Notifications on Pesticide Residues in the Rapid Alert System for Food and Feed (RASFF). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148525. [PMID: 35886374 PMCID: PMC9324178 DOI: 10.3390/ijerph19148525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Pesticides are commonly used to protect plants against various pests and to preserve crops, but their residues can be harmful for human health. They are the third most widely reported hazard category in the European Rapid Alert System for Food and Feed (RASFF). The purpose of the study was to identify the most frequently notified pesticides in the RASFF in 1981–2020, considering: year, notification type, product category, origin country, notifying country, notification basis, distribution status and action taken. The data from the RASFF database was processed using: filtering, transposition, pivot tables and then subjected to cluster analysis: joining (tree clustering) and two-way joining methods. Pesticides were most commonly reported in fruits and vegetables and herbs and spices following border controls and rejections. The products usually came from India or Turkey and were not placed on the market or were not distributed and then destroyed. The effectiveness of the European Union border posts in terms of hazards detection and mutual information is important from the point of view of protecting the internal market and ensuring public health. It is also necessary to increase the awareness of pesticide users through training and the activity of control authorities in the use of pesticides.
Collapse
|
10
|
Girame R, Shabeer TPA, Ghosh B, Hingmire S, Natarajan R, Dubey PN. Multi-residue method validation and safety evaluation of pesticide residues in seed spices cumin (Cuminum cyminum) and coriander (Coriandrum sativum) by gas chromatography tandem mass spectrometry (GC-MS/MS). Food Chem 2021; 374:131782. [PMID: 34920409 DOI: 10.1016/j.foodchem.2021.131782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/06/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
Abstract
The manuscript reports comprehensive multi-residue determination of 215 pesticides in two commercially important Indian spices, Cumin (Cuminum cyminum) and Coriander (Coriandrum sativum) by GC-MS/MS analysis. The proposed method involved liquid-liquid extraction with acetonitrile, d-SPE clean-up and final reconstitution of extract in ethyl acetate. d-SPE clean-up with PSA and C18 minimized the matrix effects by 40 and 16%, respectively. Reconstitution of final extract reduced the non-volatile matrix co-extractives by 36-40%. The method was validated as per SANTE/12682/2019 and recoveries at 10, 25 and 50 μg kg-1 were within 70-120% with RSD ≤ 20%. A fit for purpose method LOQ of 10 μgkg-1 was achieved for 85% of analytes. The method was successfully applied for comprehensive screening of cumin and coriander market samples. The calculated TMDI for acute and chronic exposure assessment were less than calculated MPI in respective matrices and therefore did not cause any adverse effect to consumers.
Collapse
Affiliation(s)
- Rushali Girame
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra 412307, India
| | - T P Ahammed Shabeer
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra 412307, India.
| | - Bappa Ghosh
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra 412307, India
| | - Sandip Hingmire
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra 412307, India
| | - Ramesh Natarajan
- Quality Evaluation Laboratory, Spice Board, Cochin, Kerala 682025, India
| | | |
Collapse
|
11
|
Simonnet-Laprade C, Bayen S, Le Bizec B, Dervilly G. Data analysis strategies for the characterization of chemical contaminant mixtures. Fish as a case study. ENVIRONMENT INTERNATIONAL 2021; 155:106610. [PMID: 33965766 DOI: 10.1016/j.envint.2021.106610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Thousands of chemicals are potentially contaminating the environment and food resources, covering a wide spectrum of molecular structures, physico-chemical properties, sources, environmental behavior and toxic profiles. Beyond the description of the individual chemicals, characterizing contaminant mixtures in related matrices has become a major challenge in ecological and human health risk assessments. Continuous analytical developments, in the fields of targeted (TA) and non-targeted analysis (NTA), have resulted in ever larger sets of data on associated chemical profiles. More than ever, the implementation of advanced data analysis strategies is essential to elucidate profiles and extract new knowledge from these large data sets. Specifically focusing on the data analysis step, this review summarizes the recent progress in integrating data analysis tools into TA and NTA workflows to address the challenging characterization of chemical mixtures in environmental and food matrices. As fish matrices are relevant in both aquatic pollution and consumer exposure perspectives, fish was chosen as the main theme to illustrate this review, although the present document is equally relevant to other food and environmental matrices. The key features of TA and NTA data sets were reviewed to illustrate the challenges associated with their analysis. Advanced filtering strategies to mine NTA data sets are presented, with a particular focus on chemical filters and discriminant analysis. Further, the applications of supervised and unsupervised multivariate analysis methods to characterize exposure to chemical mixtures, and their associated challenges, is discussed.
Collapse
Affiliation(s)
- Caroline Simonnet-Laprade
- Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Bruno Le Bizec
- Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France
| | - Gaud Dervilly
- Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France.
| |
Collapse
|
12
|
Mycotoxins, Pesticide Residues, and Heavy Metals Analysis of Croatian Cereals. Microorganisms 2021; 9:microorganisms9020216. [PMID: 33494292 PMCID: PMC7909767 DOI: 10.3390/microorganisms9020216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Cereals are still one of the most important food and feed sources, thus determining cereal’s safety, i.e., compliance with legislation, is extremely important. As systematic investigations of nowadays unavoidable secondary fungal metabolites and other common legally regulated contaminants occurrence in Croatian cereals are still lacking, this research aims to monitor the contamination levels of nation-wide crops by mycotoxins, pesticide residues, and heavy metals by employing UHPLC-MS/MS, GC-MS/MS, and atomic absorption spectrometer (AAS) validated analytical methods. The most common secondary fungal metabolites were found to be Fusarium mycotoxins, with DON being the most occurring present in 73.7% of the samples. At least one pesticide residue was found in 331.8% of the samples, and Hg and Cd were the most occurring heavy metals. A total of 8.5% of the samples was non-compliant to the European Union (EU) legislation for food regarding the found mycotoxins concentrations, 4.5% regarding pesticide residues and none regarding heavy metals. The unusual presence of certain pesticide residue and heavy metal indicates the importance of systematic control of the contaminant presence, in order to gather enough occurrence data for proper risk assessment that these contaminants represent for the consumer’s health.
Collapse
|
13
|
Camara MA, Fuster A, Oliva J. Determination of pesticide residues in edible snails with QuEChERS coupled to GC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1881-1887. [PMID: 32897807 DOI: 10.1080/19440049.2020.1809720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A QuEChERS multi-residue GC-MS/MS method was developed for determining 160 pesticides in fresh edible snails. The method was validated according to the EU guidance SANTE/12682/2019. Twenty-seven different pesticides were quantified in the 824 samples analysed. Of these, 22.09% contained pesticide residues; in one case six different pesticides. The most frequently quantified pesticides were chlorpyrifos (108 samples), cypermethrin (50), difenoconazole (24), oxyfluorfen (13), lambda-cyhalothrin (12), tetraconazole and azoxystrobin (7). Other pesticides were found in <5 samples. Of the samples containing residues, 154 exceeded the EU legal limit. However, the estimated daily intake of pesticide residues showed that snail consumption does not represent appreciable risks to consumer health.
Collapse
Affiliation(s)
- Miguel Angel Camara
- Research Group of Pesticide Chemistry, Agrofood Pollution, Ecoefficiency and Toxicology, Faculty of Chemistry, University of Murcia , Murcia, Spain
| | - Aurelio Fuster
- Research Group of Pesticide Chemistry, Agrofood Pollution, Ecoefficiency and Toxicology, Faculty of Chemistry, University of Murcia , Murcia, Spain
| | - José Oliva
- Research Group of Pesticide Chemistry, Agrofood Pollution, Ecoefficiency and Toxicology, Faculty of Chemistry, University of Murcia , Murcia, Spain
| |
Collapse
|
14
|
Veenaas C, Ripszam M, Glas B, Liljelind I, Claeson AS, Haglund P. Differences in chemical composition of indoor air in rooms associated/not associated with building related symptoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137444. [PMID: 32325564 DOI: 10.1016/j.scitotenv.2020.137444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Building related health effects or symptoms (BRS), known also as sick-building syndrome (SBS), are a phenomenon that is not well understood. In this study, air samples from 51 rooms associated with BRS and 34 control rooms were collected on multi-sorbent tubes and analyzed by a non-target approach using comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry techniques. The large amount of data gathered was analyzed using multivariate statistics (principle component analysis (PCA) and partial least squares (PLS)). This new analysis approach revealed that in rooms where people experienced BRS, petrochemicals and chemicals emitted from plastics were abundant, whereas in rooms where people did not experience BRS, flavor and fragrance compounds were abundant. Among the petrochemicals benzene and 2-butoxyethanol were found in higher levels in rooms where people experienced BRS. The levels of limonene were sometimes in the range of reported odor thresholds, and similarly 3-carene and beta-myrcene were found in higher concentrations in indoor air of rooms where people did not experience BRS. It cannot be ruled out that these compounds may have influenced the perceived air quality. However, the overall variability in air concentrations was large and it was not possible to accurately predict if the air in a particular room could cause BRS or not.
Collapse
Affiliation(s)
- Cathrin Veenaas
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Bo Glas
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Liljelind
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
15
|
Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115861] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Cámara MA, Cermeño S, Martínez G, Oliva J. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chem 2020; 325:126936. [PMID: 32387933 DOI: 10.1016/j.foodchem.2020.126936] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
The effects of the industrial processing are evaluated of the removal of 16 pesticide residues in canned apricots and peaches and in orange juice. A method of multi-residual extraction that uses QuEChERS and liquid chromatography in tandem with triple quadrupole mass spectrometry was used. The method shows good linearity for the 16 pesticides studied (R2 > 0.999); it is accurate and precise (recoveries of 87-115%, relative standard deviation <8.0%). The processing factors are <0.6, indicating that all the processes significantly reduce the residue levels (spinosad, thiacloprid, pyridaben, bupirimate, flusilazole, triflumizole, flonicamid, imidacloprid, lambda-cyhalothrin, cyproconazole, fludioxinil and cyprodinil, abamectin, chlorpyrifos-methyl, hexythiazox and metalaxyl) initially present in the raw fruits and very significantly during washing/cutting, squeezing and hot pack canning (>55% loss). The risk quotient (EDI/ADI ratio) for canned foods is below 100, indicating that the potential consumer risk for the pesticides studied is practically negligent for human health.
Collapse
Affiliation(s)
- M A Cámara
- Department of Agricultural Chemistry, Geology and Pedology. Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - S Cermeño
- Department of Agricultural Chemistry, Geology and Pedology. Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - G Martínez
- Department of Agricultural Chemistry, Geology and Pedology. Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - J Oliva
- Department of Agricultural Chemistry, Geology and Pedology. Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| |
Collapse
|
17
|
Identification of adjuvants in plant protection products applying a suspect screening workflow based on orthogonal techniques. Anal Bioanal Chem 2020; 412:4301-4311. [DOI: 10.1007/s00216-020-02662-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
|
18
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
19
|
Pigłowski M. Comparative analysis of notifications regarding mycotoxins in the Rapid Alert System for Food and Feed (RASFF). QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Pigłowski
- Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
| |
Collapse
|
20
|
Hu Z, Li J, Li B, Zhang Z. Annual changes in concentrations and health risks of PCDD/Fs, DL-PCBs and organochlorine pesticides in ambient air based on the Global Monitoring Plan in São Paulo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113310. [PMID: 31600699 DOI: 10.1016/j.envpol.2019.113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Ambient air contains a number of persistent organic pollutants (POPs), to which inhalation exposure has drawn worldwide concern. However, information regarding annual changes in the concentrations and health risks of POPs in the ambient air of São Paulo, Brazil, are limited. This study provides comprehensive information on annual changes in polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), and 10 groups of organochlorine pesticides (OCPs) in the ambient air of São Paulo between 2010 and 2015 based on the Global Monitoring Plan. The mass concentrations of the studied POPs (PCDD/Fs, DL-PCBs, and OCPs) showed declining trends from 2010 to 2015 (from 2.65 × 10-2 to 1.33 × 10-2 pg m-3, from 9.89 × 10-2 to 3.12 × 10-2 pg m-3, and from 0.313 to 0.100 ng m-3, respectively), which might be due to the decrease of non-intentional emissions. The carcinogenic risk (CR) and non-carcinogenic risk (Non-CR) of the studied POPs were 1.48 × 10-11 to 6.08 × 10-7 and 3.44 × 10-8 to 3.34 × 10-3, respectively, which are lower than the generally accepted threshold values (10-6/10-5 and 1 for CR and Non-CR, respectively), suggesting that the health risks posed by the studied POPs were acceptable. PCDD/Fs had the highest CR (6.08 × 10-8-4.81 × 10-7), whereas the 95th percentile CR of DL-PCBs and nine of the OCPs were lower than 10-7, suggesting that among the studied POPs, PCDD/Fs in the ambient air warrant special attention. The 95th percentile CRs of dichlorodiphenyltrichloroethane (2.30 × 10-8), dieldrin (1.30 × 10-8), hexachlorocyclohexanes (1.05 × 10-8), heptachlor (8.97 × 10-9), hexachlorobenzene (6.47 × 10-9), chlordane (5.89 × 10-9), heptachlor epoxide (1.42 × 10-9), aldrin (1.33 × 10-9), and mirex (2.71 × 10-10) in ambient air were relatively low, suggesting that their threats to human health were negligible. In general, PCDD/Fs, DL-PCBs, and OCPs in the ambient air of São Paulo did not pose serious threats to human health during 2010-2015.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China; Center of Disease Control and Prevention, Lishui, China
| | - Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bingyan Li
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of SoochowUniversity, Suzhou, China.
| |
Collapse
|
21
|
Sengling Cebin Coppa CF, Mousavi Khaneghah A, Alvito P, Assunção R, Martins C, Eş I, Gonçalves BL, Valganon de Neeff D, Sant'Ana AS, Corassin CH, Oliveira CAF. The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Ferreira VB, Estrella LF, Alves MGR, Gallistl C, Vetter W, Silva TTC, Malm O, Torres JPM, Abadio Finco FDB. Residues of legacy organochlorine pesticides and DDT metabolites in highly consumed fish from the polluted Guanabara Bay, Brazil: distribution and assessment of human health risk. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:30-41. [PMID: 31496395 DOI: 10.1080/03601234.2019.1654808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organochlorine (OCP) pesticides were determined in samples of sardine (Sardinella brasiliensis), whitemouth croaker (Micropogonias furnieri), and mullet (Mugil liza) from Guanabara Bay (state of Rio de Janeiro, Brazil). OCP concentrations and fish consumption were linked with acceptable daily intake values in order to assess the human health risk for the Brazilian population. The total concentrations of OCPs (Σ OCP) was 6.6 ng/g f.w., 7.5 ng/g f.w., and 2.8 ng/g f.w. for sardines, corvina, and mullet, respectively. There was a significant difference (P < 0.05) among the species related to o,p'-DDD and o,p'-DDT concentrations. Both DDT-related compounds were 5 and 76 times more abundant in sardines than in whitemouth croaker and mullet. Newly discovered DDT metabolite, o-Cl-DDMU, was frequently detected in the fish. None of the samples exceeded the maximum limits for acceptable levels of OCP residues. According to the data of average intake of Brazilian population, none of three species exceeded toxicological parameter. The investigated fishes are considered as safe for human consumption in regard to exposure of the studied OCPs. However, fish may be a intake source of OCP metabolites such as o-Cl-DDMU whose toxicity is still unknown.
Collapse
Affiliation(s)
- Verona Borges Ferreira
- Radioisotopes Laboratory Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Post-Graduation Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Leonardo Fontes Estrella
- Radioisotopes Laboratory Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Guzzon Rodrigues Alves
- Radioisotopes Laboratory Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Post-Graduation Program in Environmental Science and Technology, State University Centre of the Western Zone (UEZO), Rio de Janeiro, Brazil
| | - Christoph Gallistl
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Thadia Turon Costa Silva
- Department of Nutrition and Dietetics, Institute of Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Olaf Malm
- Radioisotopes Laboratory Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João Paulo Machado Torres
- Radioisotopes Laboratory Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernanda Dias Bartolomeu Abadio Finco
- Radioisotopes Laboratory Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Natural Products and Foods, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
López-García M, Romero-González R, Garrido Frenich A. Monitoring of organophosphate and pyrethroid metabolites in human urine samples by an automated method (TurboFlow™) coupled to ultra-high performance liquid chromatography-Orbitrap mass spectrometry. J Pharm Biomed Anal 2019; 173:31-39. [DOI: 10.1016/j.jpba.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
24
|
Cui L, Wang J. Persistent Halogenated Organic Pollutants in Surface Water in a Megacity: Distribution Characteristics and Ecological Risks in Wuhan, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:98-114. [PMID: 30953115 DOI: 10.1007/s00244-019-00622-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Surface water pollution in megacities is strongly linked to human and environmental health, and surface water quality has deteriorated sharply recently because of increasing persistent halogenated organic pollutant (HOP) concentrations. In the present study, we collected 112 water samples from 14 lakes and 11 drinking water sources in Wuhan, China, and analyzed them for two typical groups of HOPs: polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The mean values of the ΣPCB concentrations were 4.34 and 10.05 ng L-1 in winter and summer, respectively. For ΣPBDE concentrations, the mean values were 0.88 and 1.53 ng L-1 in winter and summer, respectively. The PCB and PBDE concentrations at most sites in summer were significantly higher than those in winter, probably because of heavy stormwater runoff in summer. The degree of urbanization predicted from the population density was positively correlated with ΣPCB concentrations in the drinking water sources in summer. PBDE and PCB composition analysis suggested the major sources were penta-BDE and Aroclor mixtures. Risk assessments showed the PBDEs in water from the Zhuankou site exceeded the threshold set by the European Union, which could result in adverse effects on aquatic organisms. Negligible noncarcinogenic risks were found for PCBs and PBDEs in the surface water with regard to drinking and bathing. However, the carcinogenic risks of PCBs for bathing in surface water were higher than the safe level of 1.00 × 10-6, implying that the surface water in Wuhan is not safe for bathing.
Collapse
Affiliation(s)
- Lili Cui
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
25
|
Assunção R, Pinhão M, Loureiro S, Alvito P, Silva MJ. A multi-endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicol Lett 2019; 313:120-129. [PMID: 31212007 DOI: 10.1016/j.toxlet.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Humans can be exposed to a complex and variable combination of mycotoxins. After ingestion, intestinal mucosa constitutes the first biological barrier that can be exposed to high concentrations of these toxins. The present study aimed to characterize the combined cytotoxicity, genotoxicity and impact on the gastrointestinal barrier integrity of patulin (PAT, 0.7 μM to 100 μM) and ochratoxin A (OTA, 1 μM to 200 μM) mixtures in Caco-2 cells. A dose-ratio deviation was verified for cytotoxicity, implying that OTA was mainly responsible for synergism when dominant in the mixture, while this pattern was changed to antagonism for the highest PAT concentrations. Genotoxicity (comet assay) results were compatible with an interactive DNA damaging effect at the highest PAT and OTA concentrations, not clearly mediated by the formation of oxidative DNA breaks. Regarding gastrointestinal barrier integrity, a potential synergism was attained at low levels of both mycotoxins, changing to antagonism at higher doses. The present results indicate that combined mycotoxins effects may arise at the intestinal level and should not be underestimated when evaluating their risk to human health.
Collapse
Affiliation(s)
- Ricardo Assunção
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal; IIFA, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, Apartado 94, 7002-554, Évora, Portugal; Centre for Environmental and Marine Studies, CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mariana Pinhão
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Susana Loureiro
- Department of Biology & CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Paula Alvito
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal; Centre for Environmental and Marine Studies, CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, FCM-UNL, Lisbon, Portugal.
| |
Collapse
|
26
|
Krystek P, Beeltje H, Noteboom M, van den Hoeven EM, Houtzager MM. Analytical human biomonitoring method for the identification and quantification of the metabolite BDCPP originated from the organophosphate flame retardant TDCPP in urine. J Pharm Biomed Anal 2019; 170:169-175. [DOI: 10.1016/j.jpba.2019.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
|
27
|
Fernandes AR, Lake IR, Dowding A, Rose M, Jones NR, Petch R, Smith F, Panton S. The potential of recycled materials used in agriculture to contaminate food through uptake by livestock. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:359-370. [PMID: 30831370 DOI: 10.1016/j.scitotenv.2019.02.211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The potential for contaminant uptake from recycled materials used in livestock farming, to animal tissues and organs, was investigated in three practical modular studies involving broiler chickens, laying chickens and pigs. Six types of commercially available recycled materials were used either as bedding material for chickens or as fertilizer for cropland that later housed outdoor reared pigs. The contaminants studied included regulated contaminants e.g. polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, dioxins) and polychlorinated biphenyls (PCBs), but related contaminants such as polybrominated diphenylethers (PBDEs), hexabrominated cyclododecane (HBCDD), polychlorinated naphthalenes (PCNs), polybrominated dioxins (PBDD/Fs) and perfluoroalkyl substances (PFAS) were also investigated. Contaminant occurrence in the recycled materials was verified prior to the studies and the relationship to tissue and egg concentrations in market ready animals was investigated using a weights of evidence approach. Contaminant uptake to animal tissues and eggs was observed in all the studies but the extent varied depending on the species and the recycled material. PCBs, PBDEs, PCDD/Fs, PCNs and PFAS showed the highest potential to transfer, with laying chickens showing the most pronounced effects. PBDD/Fs showed low concentrations in the recycled materials, making it difficult to evaluate potential transfer. Higher resulting occurrence levels in laying chickens relative to broilers suggests that period of contact with the materials may influence the extent of uptake in chickens. Bio-transfer factors (BTFs) estimated for PCDD/F and PCBs showed a greater magnitude for chicken muscle tissue relative to pigs with the highest values observed for PCBs in laying chickens. There were no significant differences between BTFs for the different chicken tissues which contrasted with the high BTF values for pigs liver relative to muscle. The study raises further questions which require investigation such as the effects of repeated or yearly application of recycled materials as fertilizers, and the batch homogeneity/consistency of available recycled materials.
Collapse
Affiliation(s)
- A R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK; Fera Science Ltd, Sand Hutton, York YO41 1LZ, UK.
| | - I R Lake
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - A Dowding
- Food Standards Agency, Clive House, 70 Petty France, London SW1H 9EX, UK
| | - M Rose
- Fera Science Ltd, Sand Hutton, York YO41 1LZ, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - N R Jones
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - R Petch
- Fera Science Ltd, Sand Hutton, York YO41 1LZ, UK
| | - F Smith
- Fera Science Ltd, Sand Hutton, York YO41 1LZ, UK
| | - S Panton
- Fera Science Ltd, Sand Hutton, York YO41 1LZ, UK
| |
Collapse
|
28
|
Receptor-based aggregate exposure assessment of phthalates based on individual's simultaneous use of multiple cosmetic products. Food Chem Toxicol 2019; 127:163-172. [PMID: 30904481 DOI: 10.1016/j.fct.2019.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022]
Abstract
To estimate realistic exposure to a chemical, the aggregate exposure from multiple consumer products should be considered. A receptor-based aggregate exposure assessment was conducted according to individuals' exposure factors and simultaneous use patterns including co-use and non-use. A product-based aggregate exposure assessment was conducted by product usage rates of population and users' exposure factors. Two aggregate exposure assessments were compared. Exposure factors for 31 cosmetic products were collected by face-to-face interviews with 1001 members of the Korean population through national representative sampling. The concentrations of phthalates in 214 cosmetic products were analyzed by GC-MS-MS. The average aggregate exposure dose (AED) determined by the receptor-based method for di(2-ethylhexyl)phthalate (DEHP), di-n-butyl phthalate (DnBP), and diethyl phthalate (DEP) were 0.68 ± 0.87, 1.08 ± 5.71, and 2.47 ± 9.05 μg/kg/day, respectively. The cosmetics that contributed most to the receptor-based AED were skin care and body care products for DEHP, nail care products for DnBP, and fragrance and hair care products for DEP. The young female group showed the highest exposure. The product-based aggregate exposure assessment method underestimated high exposure but overestimated average exposure for DnBP and DEP. The receptor-based aggregate exposure assessment method would be used to determine high exposure groups.
Collapse
|
29
|
Liu M, Tang F, Yang Z, Xu J, Yang X. Recent Progress on Gold-Nanocluster-Based Fluorescent Probe for Environmental Analysis and Biological Sensing. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1095148. [PMID: 30719370 PMCID: PMC6334364 DOI: 10.1155/2019/1095148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/18/2018] [Accepted: 12/02/2018] [Indexed: 05/07/2023]
Abstract
Gold nanoclusters (AuNCs) are one of metal nanoclusters, which play a pivotal role in the recent advances in the research of fluorescent probes for their fluorescence effect. They are favored by most researchers due to their strong stability in fluorescence and adjustability in fluorescence wavelength when compared to traditional organic fluorescent dyes. In this review, we introduce various synthesis strategies of gold-nanocluster-based fluorescent probes and summarize their application for environmental analysis and biological sensing. The use of gold-nanocluster-based fluorescent probes for the analysis of heavy metals and inorganic and organic pollutants is covered in the environmental analysis while biological labeling, imaging, and detection are presented in biological sensing.
Collapse
Affiliation(s)
- Mingxian Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Zhengli Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| |
Collapse
|
30
|
Szczepańska N, Marć M, Kudłak B, Simeonov V, Tsakovski S, Namieśnik J. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:282-289. [PMID: 29857233 DOI: 10.1016/j.ecoenv.2018.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the greatest amounts of contaminants are released are plastic containers (with emission rate falling down from 3273 to 2280 ng/g of material at 6 h of conditioning in elevated temperature).
Collapse
Affiliation(s)
- Natalia Szczepańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland; Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, pl. Kopernika 11a, 45-040 Opole, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Vasil Simeonov
- Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stefan Tsakovski
- Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|
31
|
Tadom D, Kamgang-Youbi G, Acayanka E, Njoyim-Tamungang E, Laminsi S. Reduction of sludge formed during a coagulation treatment of Ridomil Gold by means of non-thermal quenched plasma pre-treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:443. [PMID: 29959547 DOI: 10.1007/s10661-018-6824-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chemical coagulation and adsorption, despite many drawbacks, are actually the main techniques used for the removal of pollutants from aqueous solution; however, these techniques are becoming ineffective due to the exponential increase in the amount and complexity of discharged pollutants; thus, the sludge treatment process became a more complex challenge. The present study focuses on the way to reduce the quantity of sludge formed during the removal of Ridomil Gold, a widely used pesticide-fungicide in agriculture. Results revealed that pre-treatment of initial waste solution by the gliding arc (Glidarc), a source of non-thermal plasma, leads to a significant reduction of the sludge formed during the coagulation treatment. For a 20-min pre-treated effluent Glidarc followed by chemical coagulation, there was a reduction in the volume of sludge formed in the order of 90 and 80% for alum and ferric sulfate coagulants respectively without reducing the performance of pesticide removal. Therefore, there is a positive synergism between treatment by chemical coagulation and plasma treatment. These results suggest that the Glidarc can be an effective solution for the reduction of sludge obtained during treatment by coagulation.
Collapse
Affiliation(s)
- Doringar Tadom
- Inorganic Chemistry Department, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Department of Chemistry, Faculty of Science, University of Abéché, P.O. Box 130, Abéché, Chad
| | - Georges Kamgang-Youbi
- Inorganic Chemistry Department, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Elie Acayanka
- Inorganic Chemistry Department, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Estella Njoyim-Tamungang
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 96, Dschang, Cameroon
| | - Samuel Laminsi
- Inorganic Chemistry Department, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
32
|
González-Gómez X, Cambeiro-Pérez N, Martínez-Carballo E, Simal-Gándara J. Screening of organic pollutants in pet hair samples and the significance of environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:311-319. [PMID: 29289779 DOI: 10.1016/j.scitotenv.2017.12.270] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Organic pollutants (OPs) represent a wide range of chemicals that are potentially harmful for human and wildlife health. Many of these pollutants have been identified as endocrine disruptors that can alter hormonal balance producing adverse biological effects such as neurotoxicity, reproductive disorders, carcinogenicity and hepatotoxicity. For years, hair has been selected as a non-invasive source to assess levels of animal contamination. In the present study, a multiclass screening method for determining about 60 organic pollutants in pet hair was designed and validated for qualitative and quantitative purposes. Concentrations from different classes of organochlorine, and organophosphate pesticides (OCPs, and OPPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (NDL-PCBs and DL-PCBs), polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) were identified in the selected pet hair samples from Ourense (NW, Spain). We detected most of these pollutants in the selected hair pets. The mean concentrations found ranged from 89 to 6556ng/g for OPEs, from 8.6 to 1031ng/g for PAHs, from 8.6 to 256ng/g for PBDEs, from 29 to 184ng/g for OPPs, from 0.29 to 139 for OCPs, from 0.30 to 59ng/g for NDL-PCBs and from 1.2 to 14ng/g for DL-PCBs. To our knowledge, this is the first study to document the presence of OPs in pets from North-West Spain and it could provide baseline information for future monitoring of OPs in the area.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Noelia Cambeiro-Pérez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|
33
|
Pigłowski M. Heavy Metals in Notifications of Rapid Alert System for Food and Feed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E365. [PMID: 29461471 PMCID: PMC5858434 DOI: 10.3390/ijerph15020365] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/04/2023]
Abstract
Heavy metals represent the fourth most often notified hazard category in the Rapid Alert System for Food and Feed (RASFF) from 1980-2016. The goal of the study was to examine the similarities in notifications of particular heavy metals within the RASFF year, product category, notifying country, country of origin, notification basis, notification type, distribution status, risk decision, and action taken, taking into account the particular product type, such as food, food contact material, and feed. The data originated from the RASFF database. Cluster analysis on pivot tables was applied using joining and two-way joining methods. Most notifications concerned food, in which the highest number were related to mercury, cadmium, chromium, lead, arsenic, and nickel. Notifications were mainly related to fish and food contact materials, in addition to fruits and vegetables, seafood, and dietetic food. The number of notifications decreased in 2015 and 2016. The majority of products were notified by Italy, Spain, Germany, and France. The notified products originated mainly from China and Spain. The notification was usually based on official controls on the market, as well as border controls. The notification types were mainly information, alert, and border rejections. Products were not frequently distributed due to distribution restriction to the notifying country or the possibility of distribution to the market. A risk decision was not usually made. The taken actions included re-dispatch of products, withdrawal from the market, or destruction. The data on heavy metals from the RASFF database can help European and national authorities in shaping public health.
Collapse
Affiliation(s)
- Marcin Pigłowski
- Department of Commodity and Quality Management, Faculty of Entrepreneurship and Quality Science, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland.
| |
Collapse
|