1
|
Cui D, Ling M, Huang Y, Duan C, Lan Y. Micro‑oxygenation in red wines: Current status and future perspective. Food Chem 2025; 464:141678. [PMID: 39454438 DOI: 10.1016/j.foodchem.2024.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Micro‑oxygenation (MOX) is the technology providing a slow and continuous oxidation reaction in the whole winemaking process to improve wine quality. However, traditional methods of oxygen management struggle to achieve a precise control over oxygen at critical process points, failing to meet the personalized and diverse production demands of wine. In this paper, an overview of three application stages of MOX, and the detailed dosage and duration at each stage were summarized. In addition, the application prospect of the new MOX application facility in wine production was proposed. Compared to passive MOX, active MOX could allow a more precise control of oxygen. The innovation of MOX equipment based on active MOX technique will be an inspiring interest in the research of winemaking. The integration and development of precise MOX will achieve the targeted control of wine quality and the creation of distinctive characteristics of wine style.
Collapse
Affiliation(s)
- Dongsheng Cui
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Yongce Huang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Xue H, Zhao J, Wang Y, Shi Z, Xie K, Liao X, Tan J. Factors affecting the stability of anthocyanins and strategies for improving their stability: A review. Food Chem X 2024; 24:101883. [PMID: 39444439 PMCID: PMC11497485 DOI: 10.1016/j.fochx.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Anthocyanins, as the most common and widely distributed flavonoid compounds, are widely present in fruits and vegetables. Anthocyanins show various biological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, and immunomodulatory activities. Hence, anthocyanins are widely used in the fields of food and pharmaceuticals. However, anthocyanins are susceptible to environmental and processing factors due to their structural characteristics, which leads to poor storage and processing stability. Numerous studies have indicated that structural modification, co-pigmentation, and delivery systems could improve the stability and bioavailability of anthocyanins in the external environment. This article reviews the main factors affecting the stability of anthocyanins. Moreover, this review comprehensively introduces methods to improve the stability of anthocyanins. Finally, the current problems and future research advances of anthocyanins are also introduced. The findings can provide important references for deeper research on the stability, biological activities, and bioavailability of anthocyanins.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianduo Zhao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding, 071002, China
| |
Collapse
|
3
|
Wang G, Kumar Y. Mechanisms of the initial stage of non-enzymatic oxidation of wine: A mini review. J Food Sci 2024; 89:2530-2545. [PMID: 38563093 DOI: 10.1111/1750-3841.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Non-enzymatic oxidation is a primary factor affecting wine quality during bottling or aging. Although red and white wines exhibit distinct responses to oxidation over time, the fundamental mechanisms driving this transformation remain remarkably uniform. Non-enzymatic oxidation of wine commences with the intricate interplay between polyphenols and oxygen, orchestrating a delicate redox dance with iron and copper. Notably, copper emerges as an accelerant in this process. To safeguard wine integrity, sulfur dioxide (SO2) is routinely introduced to counteract the pernicious effects of oxidation by neutralizing hydrogen peroxide and quinone. In this comprehensive review, the initial stages of non-enzymatic wine oxidation are examined. The pivotal roles played by polyphenols, oxygen, iron, copper, and SO2 in this complex oxidative process are systematically explored. Additionally, the effect of quinone formation on wine characteristics and the intricate dynamics governing oxygen availability are elucidated. The potential synergistic or additive effects of iron and copper are probed, and the precise balance between SO2 and oxygen is scrutinized. This review summarizes the mechanisms involved in the initial stages of non-enzymatic oxidation of wine and anticipates the potential for further research.
Collapse
Affiliation(s)
- Guanghao Wang
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Yogesh Kumar
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| |
Collapse
|
4
|
Huang K, Hu J, Li X, Sun J, Bai W. Advancements in the promotion of pyranoanthocyanins formation in wine: A review of current research. Food Chem 2024; 438:137990. [PMID: 37989024 DOI: 10.1016/j.foodchem.2023.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Pyranoanthocyanin (PACN) is a class of anthocyanin (ACN)-derived pigments found in aged red wines, which has certain advantages over the prototype ACN in terms of stability, and biological activity. However, the efficiency and yield of PACNs in the natural fermentation system are low. This article summarizes five frequently employed physical processing techniques that can accelerate the formation of PACN. From a mechanistic standpoint, these techniques can produce large amounts of active substances, further promoting the extracellular release of phenolics and the formation of some cofactors and PACNs' pyran rings. Precursor substances and environmental factors affecting PACN yields are also pointed out. It mainly included the parent ring substitution in ACNs, the type and quantity of glycosides, the electron donating ability and concentration of cofactors, etc. Thus, this article aims to provide an overview of the advancements in processing techniques, thereby facilitating their wider utilization in the food and beverage industry.
Collapse
Affiliation(s)
- Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Li X, Yuan K, Zhang Y, Liu C, Cai D, Sun J, Lai C, Bai W. The promising stability of carboxylpyranocyanidin-3-O-glucoside during food processing and simulated digestion and its bioavailability research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2372-2382. [PMID: 37950695 DOI: 10.1002/jsfa.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Pyranoanthocyanins are stable anthocyanin derivatives. Carboxylpyranoanthocyanin is one of the simplest pyranoanthocyanin, among which the production of carboxylpyranocyanidin-3-O-glucoside (crboxyl-pycy-3-gluc) is most feasible as a result of the abundance of its reactant, cyanidin-3-O-glucoside (Cy-3-gluc). RESULTS In the present study, carboxyl-pycy-3-gluc was synthesized and its stability during processing and after ingestion as well as its bioavailability in vivo were comprehensively evaluated. Our results indicated that the color of carboxyl-pycy-3-gluc remained more stable compared to Cy-3-gluc when facing the large-span pH variation. The high retention of anthocyanin symbolized the superb stability under thermal processing, sulfur dioxide bleaching and ultrasonic treatment of carboxyl-pycy-3-gluc. Because of the stability under the alkaline condition, carboxyl-pycy-3-gluc is more stable after oral-gastrointestinal digestion. After in vitro gut microbiota fermentation, the retention of carboxyl-pycy-3-gluc was significantly higher than that of Cy-3-gluc. The larger molecular size made absorption of carboxyl-pycy-3-gluc into blood more difficult than its precursor. CONCLUSION The present study demonstrated the promising stability of carboxyl-pycy-3-gluc during food processing and after digestion, confirming the potential of carboxyl-pycy-3-gluc as a colorant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xusheng Li
- The First Affiliated Hospital of Jinan University and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Kailan Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Caiyong Lai
- The First Affiliated Hospital of Jinan University and The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhang HL, Xia NY, Yao XC, Duan CQ, Pan QH. Effects of Phenolic Evolution on Color Characteristics of Single-Cultivar Vitis vinifera L. Marselan and Merlot Wines during Vinification and Aging. Foods 2024; 13:494. [PMID: 38338629 PMCID: PMC10855242 DOI: 10.3390/foods13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The loss of red hue in dry red wine has been a persistent issue for wine enterprises in western China. We investigated the changes in anthocyanins and non-anthocyanin phenols during the industrial-scale fermentation and one-year bottle aging of Vitis vinifera L. Merlot and Vitis vinifera L. Marselan, respectively, using the grapes in the Ningxia region. We also examined their correlation with color characterization. The study found that both anthocyanins and non-anthocyanin phenolics were rapidly extracted from grapes during alcohol fermentation. However, their concentrations decreased rapidly during malolactic fermentation. On the other hand, Vitisin A and Vitisin B were formed during alcoholic fermentation and decreased slowly from malolactic fermentation to storage period. Directly polymerized pigments (F-A and A-F), bridged polymerized pigments (A-e-F), and flavanyl-pyranoanthocyanins (A-v-F) from the reactions of anthocyanins (A) and flavan-3-ols (F), as well as pinotins were generated during the later stages of alcoholic fermentation, and remained at a high level throughout malolactic fermentation and bottle storage. Partial least squares regression and Pearson correlation analyses revealed that the red hue (a* value) of 'Merlot' and 'Marselan' wines was closely associated with monomeric anthocyanins and F-A type pigments. Furthermore, four pinotin components were positively correlated with the red hue (a* value) of 'Merlot' wine. These primary red components of the two varieties had a positive correlation with the level of flavan-3-ols. The data suggest that elevating the flavan-3-ol concentration during fermentation aids in improving the color stability of red wine.
Collapse
Affiliation(s)
- Hua-Lin Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.-L.Z.); (N.-Y.X.); (X.-C.Y.); (C.-Q.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Nong-Yu Xia
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.-L.Z.); (N.-Y.X.); (X.-C.Y.); (C.-Q.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xue-Chen Yao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.-L.Z.); (N.-Y.X.); (X.-C.Y.); (C.-Q.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.-L.Z.); (N.-Y.X.); (X.-C.Y.); (C.-Q.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.-L.Z.); (N.-Y.X.); (X.-C.Y.); (C.-Q.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
7
|
Lu HC, Tian MB, Han X, Shi N, Li HQ, Cheng CF, Chen W, Li SD, He F, Duan CQ, Wang J. The key role of vineyard parcel in shaping flavonoid profiles and color characteristics of Cabernet Sauvignon wines combined with the influence of harvest ripeness, vintage and bottle aging. Food Chem X 2023; 19:100772. [PMID: 37780257 PMCID: PMC10534108 DOI: 10.1016/j.fochx.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/03/2023] Open
Abstract
Recently, revealing the terroir influence on wine chemical features has drawn increasing interest. This study aimed to explain how wine flavonoid signatures were altered by vineyard parcel, harvest ripeness, vintage and bottle aging. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to produce wines at three harvest ripeness in three seasons (2019-2021) and aged for three years. The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition. Results showed high vineyard pH (> 8.5) could accelerate grape ripening rate and increase wine flavonol concentration. Vineyards with moderate nutrition produced wines with abundant anthocyanin derivatives and maintained color characteristics during aging. The role of detailed anthocyanin derivatives in regulating wine color was clarified. As the harvest ripeness elevated, wine's flavonoid profiles were altered and gained a higher red color intensity. This work provides chemical mechanisms underlying single-vineyard wines and a theoretical basis for targeted wine production.
Collapse
Affiliation(s)
- Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Meng-Bo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Han
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chi-Fang Cheng
- CITIC Guoan Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Shu-De Li
- CITIC Guoan Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
8
|
Li X, Li Z, Cai D, Li Y, Zhu Y, Jiao R, Lai C, Sun J, Bai W. Vitisin A, as a Type of Pyranoanthocyanin, Suppresses Inflammation by Restricting Hematopoietic Stem Cell Differentiation toward Monocytes in Bone Marrow. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15048-15063. [PMID: 37811833 DOI: 10.1021/acs.jafc.3c03119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) could be differentiated into mature myeloid and lymphoid cells, maintaining the requirements of immune cells. Atherosclerosis and ulcerative colitis (UC) drive HSPC homeostasis destruction, which triggers expansive HSPC proliferation and Ly6Chi monocyte production, contributing to aggravated inflammation. Vitisin A belongs to the anthocyanin derivatives with excellent stability and bioactivity in vitro. However, there is no report about the anti-inflammation of Vitisin A via reprogramming HSPC differentiation toward monocytes. In this study, we found that Vitisin A presents anti-inflammatory ability during the development of atherosclerosis and UC by depressing Ly6Chi monocyte production from bone marrow. This performance depended on restricted HSPC differentiation, which suggested that Vitisin A participated in monocyte generation and carried out the immunomodulation. Together, Vitisin A ameliorates inflammation during atherosclerosis and UC via the suppressed differentiation of HSPCs toward monocytes, which could be considered an ideal functional component with immunomodulatory effects.
Collapse
Affiliation(s)
- Xusheng Li
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, P. R. China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Zhenhua Li
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, P. R. China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Yawen Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| | - Caiyong Lai
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, P. R. China
- Department of Urology, Institute of Kidney Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
9
|
Zeng Y, Li X, Yuan K, Chen B, Zhang W, Wang C, Sun J, Ramaswamy HS, Bai W. Formation of hydroxyphenyl-pyranoanthocyanins derived from cyanidin-3-O-glucoside and effects of high-pressure processing on the transformation efficiency. Food Chem 2023; 408:135247. [PMID: 36566539 DOI: 10.1016/j.foodchem.2022.135247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Hydroxyphenyl-pyranoanthocyanins (PACNs), derived from anthocyanins (ACNs) reacted with hydroxycinnamic acids, have higher practical application value because of better physicochemical stability than their precursors. However, the slow formation rate restricted their broader applications. In the present study, cyanidin-3-O-glucoside (C3G) was chosen to react with four kinds of hydroxycinnamic acids in a model solution. Changes of color and the production of hydroxyphenyl-PACNs were monitored. The formation of derivatives was time-dependent, and the orange-yellow changing trend was correlated with the formation of PACNs and the consumption of C3G. In addition, high-pressure processing (HPP) as a widely-used non-thermal processing method in the food industry was conducted to investigate its impact on hydroxyphenyl-PACNs formation. The results showed that HPP significantly improves the yield of two types of hydroxyphenyl-PACNs (C3G-4-vinylcatechol and C3G-4-vinylphenol) and the retention of total residual pigments during 56 days of storage. Therefore, HPP contributed to color-protecting and the transformation of hydroxyphenyl-PACNs.
Collapse
Affiliation(s)
- Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Kailan Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Bo Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Wenbao Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Chao Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Montr ́eal, QC, Canada
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
10
|
Lin Y, Li C, Shi L, Wang L. Anthocyanins: Modified New Technologies and Challenges. Foods 2023; 12:foods12071368. [PMID: 37048188 PMCID: PMC10093405 DOI: 10.3390/foods12071368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Anthocyanins are bioactive compounds belonging to the flavonoid class which are commonly applied in foods due to their attractive color and health-promoting benefits. However, the instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading in food processing, which limits their application and causes economic losses. Therefore, the objective of this review is to provide a systematic evaluation of the published research on modified methods of anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification (chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation, and physical modification (microencapsulation and preparation of pickering emulsion). Modification technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also can improve effects of anthocyanin on disease prevention and treatment. We also propose potential challenges and perspectives for diversification of anthocyanin-rich products for food application. Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting their further application in the food industry, medicine, and other fields.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312000, China
- Changshan Agriculture Development Center, Changshan 324200, China
| | - Cong Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lejuan Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixia Wang
- Changshan Agriculture Development Center, Changshan 324200, China
| |
Collapse
|
11
|
Carrasco-Quiroz M, del Alamo-Sanza M, Martínez-Gil AM, Sánchez-Gómez R, Martínez-Martínez V, Nevares I. Influence of Oxygen Management on Color and Phenolics of Red Wines. Molecules 2023; 28:459. [PMID: 36615650 PMCID: PMC9824722 DOI: 10.3390/molecules28010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Winemaking involves contact at different stages with atmospheric oxygen, the consumption of which determines its final properties. The chemical analysis of red wines subjected to consecutive cycles of air saturation has been extensively researched; however, the capacity to consume different doses of oxygen before bottling is an aspect that has been little studied. In this work, the effect of saturation of different levels of oxygen on the final characteristics of different wines made from Tempranillo and Garnacha grape extracts was studied. For this purpose, the wines were subjected to controlled oxygen saturation levels to simulate their possible oxygenation before bottling. The only difference was the phenolic composition of grape extracts that were reconstituted under the same conditions to avoid the interferences inherent to the fermentation process and the additives added in the winery. The kinetics of oxygen consumption was then evaluated and its effect on the color, antioxidant capacity, and phenols of three different wines was analyzed. This work shows the relationship between the oxidation state of wine and changes in its chemical composition. In addition, it provides insight into the effect of oxygen consumption before bottling on the properties of wines subjected to high and single doses of oxygen.
Collapse
Affiliation(s)
| | - Maria del Alamo-Sanza
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Ana María Martínez-Gil
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Rosario Sánchez-Gómez
- Department of Analytical Chemistry, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| | - Víctor Martínez-Martínez
- Department of Agroforestry Engineering, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
- Faculty of Science and Technology, Isabel I University, 09003 Burgos, Spain
| | - Ignacio Nevares
- Department of Agroforestry Engineering, UVaMOX—Universidad de Valladolid, 34004 Palencia, Spain
| |
Collapse
|
12
|
Dai L, Sun Y, Liu M, Cui X, Wang J, Li J, Han G. Influence of Oxygen Management during the Post-Fermentation Stage on Acetaldehyde, Color, and Phenolics of Vitis vinifera L. Cv. Cabernet Sauvignon Wine. Molecules 2022; 27:6692. [PMID: 36235228 PMCID: PMC9572646 DOI: 10.3390/molecules27196692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oxygen exposure is unavoidable and the impact of its management during the post-fermentation stage (PFS) on dry red wine is poorly investigated. This study was dedicated to the variation of acetaldehyde, color and phenolics of Cabernet Sauvignon dry red wine during five discontinuous oxidation cycles of four levels of controlled oxygen supply, which were carried out to simulate probable oxidation during the PFS. Free SO2 disappeared after the first, second and third oxidation cycles in wines with high, medium and low levels of oxygen exposure severally, but subsequent oxygen exposure below or equal to 2 mg O2/L per cycle had little effect while 3-3.9 mg O2/L per cycle dramatically facilitated acetaldehyde accumulation, which was accompanied by an enormous variation in color and pigments, especially when total oxygen consumption was above 10 mg/L. The utilization of clustered heatmap and partial least square regression demonstrated the feasibility of characterization of wine oxidation degree using the chemical parameters measured by UV-spectrophotometry. Oxygen exposure during the PFS should be emphatically controlled, and chemical indexes determined by the UV-spectrophotometric method can be used for a scientific and effective description of wine oxidation degree.
Collapse
Affiliation(s)
- Lingmin Dai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuhang Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Muqing Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiaqi Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiming Li
- Yantai Changyu Group Corporation Ltd., Yantai 264001, China
| | - Guomin Han
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
13
|
Wang Z, Zhang L, Li Y, Liu Q, Chunlong Y. Non-acylated and acylated anthocynins in red wines of different ages: Color contribution and Evaluation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zhang XK, Jeffery DW, Li DM, Lan YB, Zhao X, Duan CQ. Red wine coloration: A review of pigmented molecules, reactions, and applications. Compr Rev Food Sci Food Saf 2022; 21:3834-3866. [PMID: 35912664 DOI: 10.1111/1541-4337.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Color is one of the most distinctive qualities of red wine. Despite new knowledge in the field of pigment identification, copigmentation, and oxidation being forthcoming, there is still a large gap between the fundamental research and practical winemaking outcomes. A state-of-art review from these two aspects is, therefore, necessary. This review first introduces updated knowledge about the primary pigments in wine, with emphasis on their physicochemical properties. Then, the mechanisms of copigmentation and oxidation are elucidated in detail, along with their relative contributions to wine color. Finally, the practical effects of copigmentation and micro-oxygenation (MOX) in winemaking are summarized and discussed. In general, wine coloration is ultimately determined by the anthocyanin flavylium cation, which is greatly influenced by wine pH. In young red wine, grape-derived anthocyanins and nonanthocyanin polyphenols (as copigments) are the foundation for wine coloration. During aging and storage, anthocyanin derivatives are formed via various chemical reactions, where moderate oxidation plays a vital role, whereas copigmentation constantly decreases. The essence of wine color evolution relates to the changes of physicochemical properties of primary pigments in wine, where the hydration equilibrium gradually diminishes. In practice, the effects of copigment addition and MOX during real vinification can be viewed as somewhat controversial, considering that many studies showed different effects on wine color and pigment concentration. Universal features can be summarized but some phenomena still remain unclear and deserve further exploration.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing, China
| | - David W Jeffery
- Department of Wine Science and Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - De-Mei Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing, China
| | - Yi-Bin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
15
|
Wu Z, Li X, Zeng Y, Cai D, Teng Z, Wu Q, Sun J, Bai W. Color Stability Enhancement and Antioxidation Improvement of Sanhua Plum Wine under Circulating Ultrasound. Foods 2022; 11:foods11162435. [PMID: 36010435 PMCID: PMC9407089 DOI: 10.3390/foods11162435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Anthocyanins contribute to the attractive color of fruit wine, and their excessive degradation is deleterious to quality, especially for wine with an inherently low anthocyanin content, such as Sanhua plum wine. Ultrasonic treatment is well recognized for wine color maintenance. In the present study, fresh Sanhua plum wine was ultrasonic-treated and aged in barrels for three months. Our results demonstrate that ultrasonic treatment at 28 and 40 kHz improves color performance, as expressed by an increase in a*, b*, and C* values and color intensity, which is highly related to copigmentation. This successful conservation was attributed to the inactivation of polyphenol oxidase and the corresponding reduction in anthocyanin degradation. Finally, the increased antioxidative ability was verified due to the hydrogen donating ability of the surviving anthocyanins. This study indicates the reliability of ultrasonic treatment for providing superior colorfastness during Sanhua plum wine aging, which is also of great potential in processing different fruit wines.
Collapse
Affiliation(s)
- Zhiqian Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Zhaojun Teng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Qixia Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
- Correspondence: ; Tel.: +86-138-2228-3521 or +86-20-8522630
| |
Collapse
|
16
|
Zhang XK, Zhao X, Ying S, Duan CQ. The formation mechanism of pinotin A in model wine: Experimental and theoretical investigation. Food Chem 2022; 380:132196. [DOI: 10.1016/j.foodchem.2022.132196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 11/15/2022]
|
17
|
Li X, Teng Z, Luo Z, Yuan Y, Zeng Y, Hu J, Sun J, Bai W. Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation. Food Chem 2022; 372:131251. [PMID: 34624786 DOI: 10.1016/j.foodchem.2021.131251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/04/2022]
Abstract
Anthocyanin accounts for wine color performance, while it is susceptive to saccharomyces cerevisiae, causing threatened stability. Considering pyranoanthocyanin performed better color and stability, converting anthocyanins to pyranoanthocyanins in advance during fermentation was an ideal way for color improvement. Thus, pyruvic acid (PA) as the precursor of vitisin A was applied to fermentation with cyanidin-3-O-glucoside (C3G). Results showed that PA-stress leads to a color loss associated with a decrease in C3G and cyanidin. However, the content of pyranoanthocyanins under PA stress is unvaried. LC-MS-based non-target metabolomics revealed that superfluous PA can disturb the process of glycolysis and tricarboxylic acid cycle. Importantly, 1291 molecular features were increased and 1122 were decreased under PA-stress, in which several anthocyanins derivatization and isomerization were changed, contributing to color performance. This study indicated that extra PA is unfriendly to anthocyanins during fermentation, playing an adverse effect on color, which should be avoided in wine production.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Zhaojun Teng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Ziying Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangbing Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
18
|
Voss DM, Miyagusuku-Cruzado G, Giusti MM. Comparing the thermal stability of 10-carboxy-, 10-methyl-, and 10-catechyl-pyranocyanidin-3-glucosides and their precursor, cyanidin-3-glucoside. NPJ Sci Food 2022; 6:16. [PMID: 35181657 PMCID: PMC8857255 DOI: 10.1038/s41538-022-00131-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
Pyranoanthocyanins are vibrant, naturally derived pigments formed by the reaction of an anthocyanin with a cofactor containing a partially negatively charged carbon. This study compared the thermal stability and degradation products of 10-carboxy-pyranocyanidin-3-glucoside (pyruvic acid cofactor), 10-methyl-pyranocyanidin-3-glucoside (acetone cofactor), and 10-catechyl-pyranocyanidin-3-glucoside (caffeic acid cofactor) with their anthocyanin precursor to evaluate the role of the pyranoanthocyanin C10 substitution on stability. Pyranoanthocyanins exhibited absorbance half-lives ~2.1-8.6 times greater than cyanidin-3-glucoside, with ~15-52% of their original pigment remaining after 12 h of 90 °C heating at pH 3.0. 10-Methyl-pyranocyanidin-3-glucoside was the most stable (p < 0.01) based on UHPLC-PDA analysis, while 10-catechyl-pyranocyanidin-3-glucoside had the most stable color in part due to contribution from a colored degradation compound. Protocatechuic acid formed in all heated samples, which suggested a similar degradation mechanism among pigments. In conclusion, the C10 substitution impacted the extent of pyranoanthocyanin stability and the degradation compounds formed.
Collapse
Affiliation(s)
- Danielle M Voss
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH, 43210-1007, USA
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH, 43210-1007, USA
| | - M Mónica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH, 43210-1007, USA.
| |
Collapse
|
19
|
Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Catania A, Lerno L, Sari S, Fanzone M, Casassa F, Oberholster A. Impact of micro-oxygenation timing and rate of addition on color stabilization and chromatic characteristics of cabernet sauvignon wines. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Pfahl L, Catarino S, Fontes N, Graça A, Ricardo-da-Silva J. Effect of Barrel-to-Barrel Variation on Color and Phenolic Composition of a Red Wine. Foods 2021; 10:foods10071669. [PMID: 34359538 PMCID: PMC8303824 DOI: 10.3390/foods10071669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Tangible variation of sensory characteristics is often observed in wine aged in similar barrels. Barrel-to-barrel variation in barrel-aged wines was investigated in respect of the most important phenolic compounds of oenological interest. A red wine was aged in 49 medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months. The resulting wines were evaluated for chromatic characteristics, anthocyanin-related parameters, total phenols, flavonoids and non-flavonoids phenols, flavanol monomers, and oligomeric and polymeric proanthocyanidins. PCA and ANOVA were applied to investigate the relationships between barrels and to assess cooperage and individual barrel effect. Three cooperages influenced the wine similarly during aging. Anthocyanin-related parameters showed the highest variation, 25–37%, other phenolics varied 3–8.5%, and with two exceptions, chromatic characteristics changed 1.7–3%. The relationship between the number of barrels and the expected variation for each analytical parameter was calculated, as reference for future measurements involving barrel lots, either in wine production or experimental design.
Collapse
Affiliation(s)
- Leonard Pfahl
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (L.P.); (J.R.-d.-S.)
| | - Sofia Catarino
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (L.P.); (J.R.-d.-S.)
- CeFEMA—Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- Correspondence:
| | - Natacha Fontes
- Sogrape Vinhos S.A., 4430-809 Avintes, Portugal; (N.F.); (A.G.)
| | - António Graça
- Sogrape Vinhos S.A., 4430-809 Avintes, Portugal; (N.F.); (A.G.)
| | - Jorge Ricardo-da-Silva
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (L.P.); (J.R.-d.-S.)
| |
Collapse
|
22
|
A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem 2021; 366:130611. [PMID: 34388403 DOI: 10.1016/j.foodchem.2021.130611] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins are pigments abundant in fruits and vegetables, and commonly applied in foods due to attractive colour and health-promoting benefits. However, instability of anthocyanins leads to their easy degradation, reduced bioactivity, and colour fading in food processing, limiting their application and causing economic losses. Stability of anthocyanins depends on their own structures and environmental factors. For structural factors, modification including copigmentation, acylation and biosynthesis is a potential solution to increase anthocyanin stability due to forming stable structures. With regard to environmental factors, encapsulation such as microencapsulation, liposome and nanoparticles has been shown effectively to enhance the stability. We proposed the potential challenges and perspectives for the diversification of anthocyanin-rich products for food application, particularly, introduction of hazards, technical limitations, interaction with other ingredients in food system and exploration of pyranoanthocyanins. The integrated strategies are warranted for improving anthocyanin stabilization for promoting their further application in food industry.
Collapse
|
23
|
Zhang P, Ma W, Meng Y, Zhang Y, Jin G, Fang Z. Wine phenolic profile altered by yeast: Mechanisms and influences. Compr Rev Food Sci Food Saf 2021; 20:3579-3619. [PMID: 34146455 DOI: 10.1111/1541-4337.12788] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023]
Abstract
Grape phenolic compounds undergo various types of transformations during winemaking under the influences of yeasts, which further impacts the sensory attributes, thus the quality of wine. Understanding the roles of yeasts in phenolics transformation is important for controlling wine quality through fermentation culture selection. This literature review discusses the mechanisms of how yeasts alter the phenolic compounds during winemaking, summarizes the effects of Saccharomyces cerevisiae and non-Saccharomyces yeasts on the content and composition of phenolics in wine, and highlights the influences of mixed cultural fermentation on the phenolic profile of wine. Collectively, this paper aims to provide a deeper understanding on yeast-phenolics interactions and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yiqi Meng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yifan Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Garrido-Bañuelos G, Buica A, du Toit W. Relationship between anthocyanins, proanthocyanidins, and cell wall polysaccharides in grapes and red wines. A current state-of-art review. Crit Rev Food Sci Nutr 2021; 62:7743-7759. [PMID: 33951953 DOI: 10.1080/10408398.2021.1918056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous research studies have evaluated factors influencing the nature and levels of phenolics and polysaccharides in food matrices. However, in grape and wines most of these works have approach these classes of compounds individually. In recent years, the number of publications interconnecting classes have increased dramatically. The present review relates the last decade's findings on the relationship between phenolics and polysaccharides from grapes, throughout the entire winemaking process up to evaluating the impact of their relationship on the red wine sensory perception. The combination and interconnection of the most recent research studies, from single interactions in model wines to the investigation of the formation of complex macromolecules, brings the perfect story line to relate the relationship between phenolics and polysaccharides from the vineyard to the glass. Grape pectin is highly reactive toward grape and grape derived phenolics. Differences between grape cultivars or changes during grape ripeness will affect the extractability of these compounds into the wines. Therefore, the nature of the grape components will be crucial to understand the subsequent reactions occurring between phenolics and polysaccharide of the corresponding wines. It has been demonstrated that they can form very complex macromolecules which affect wine color, stability and sensory properties.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa.,Product Design - Agriculture and Food, Bioeconomy and Health, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Wessel du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
25
|
Prat-García S, Oliveira J, del Alamo-Sanza M, de Freitas V, Nevares I, Mateus N. Characterization of Anthocyanins and Anthocyanin-Derivatives in Red Wines during Ageing in Custom Oxygenation Oak Wood Barrels. Molecules 2020; 26:molecules26010064. [PMID: 33375614 PMCID: PMC7794814 DOI: 10.3390/molecules26010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
The ageing of wines in oak barrels is a key stage in the production of high-quality red wines, with the type of oak chosen and the amount of oxygen received by the wine being the determining factors of the process. This work analyses the effect of ageing the same red wine in barrels with different oxygenation rates for one year (OTR), specifically the effect on the evolution of anthocyanins, their derivatives and the appearance of new pigments according to the oxygen dosage in barrels. Results show that wines aged in High-Wood-OTR barrels have a large quantity of monomeric anthocyanins and wine aged in Low-Wood-OTR barrels presents a major intensity of colour. Moreover, using LC-MS analysis, it was possible to detect and identify different families of anthocyanin derivatives, including the tentative identification of two new aldehyde-flavanol-methylpyranoanthocyanin pigments.
Collapse
Affiliation(s)
- Samanta Prat-García
- UVaMOX Group, Universidad de Valladolid, Avda. Madrid, 50, 34001 Palencia, Spain; (S.P.-G.); (I.N.)
| | - Joana Oliveira
- REQUIMTE—LAQV, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (J.O.); (V.d.F.)
| | - Maria del Alamo-Sanza
- UVaMOX Group, Universidad de Valladolid, Avda. Madrid, 50, 34001 Palencia, Spain; (S.P.-G.); (I.N.)
- Correspondence: (M.d.A.-S.); (N.M.)
| | - Victor de Freitas
- REQUIMTE—LAQV, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (J.O.); (V.d.F.)
| | - Ignacio Nevares
- UVaMOX Group, Universidad de Valladolid, Avda. Madrid, 50, 34001 Palencia, Spain; (S.P.-G.); (I.N.)
| | - Nuno Mateus
- REQUIMTE—LAQV, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (J.O.); (V.d.F.)
- Correspondence: (M.d.A.-S.); (N.M.)
| |
Collapse
|
26
|
Lan H, Li S, Yang J, Li J, Yuan C, Guo A. Effects of light exposure on chemical and sensory properties of storing Meili Rosé wine in colored bottles. Food Chem 2020; 345:128854. [PMID: 33601661 DOI: 10.1016/j.foodchem.2020.128854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
The changes of chemical compositions and sensory characteristics of Meili rosé wine in flint, antique green and amber bottles were studied under continuous illumination for 160 days in two light sources (white fluorescent light, UV light). The results showed that light exposure caused significant changes in free sulfur dioxide content, Fe(III):Fe(II) ratio and Malvidin-3-O-glucoside content, responsible for the accelerated color evolution of Meili rosé wine during bottle storage. Some notable aroma-related changes were also observed for sensory characteristics, particularly for wines in flint bottles, boiled-like odor and oxidized odor appeared. Bottle color played a key role in preventing rosé wine from light exposure, following the order: amber bottle > green bottle > flint bottle. Besides UV light, white fluorescent light did have negative effects on rosé wine quality, considering its ubiquitous presence and long-term exposure in practice. The underlying mechanisms related to photochemical reactions in wine were further discussed.
Collapse
Affiliation(s)
- Huijing Lan
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shuai Li
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jie Yang
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jinliang Li
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chunlong Yuan
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Anque Guo
- College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
27
|
Ontañón I, Sánchez D, Sáez V, Mattivi F, Ferreira V, Arapitsas P. Liquid Chromatography-Mass Spectrometry-Based Metabolomics for Understanding the Compositional Changes Induced by Oxidative or Anoxic Storage of Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13367-13379. [PMID: 33063507 DOI: 10.1021/acs.jafc.0c04118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the physicochemical changes of eight red wines stored under conditions differing in O2 exposure and temperature and time under anoxia. The methods used to analyze the wines included the measurement of volatile sulfur compounds, color, tannin (T) polymerization, and liquid chromatography-mass spectrometry untargeted metabolomic fingerprint. After 3 months, the color of the oxidized samples evolved 4-5 times more intensively than in wines stored under anoxia. The major metabolomic differences between oxidative and anoxic conditions were linked to reactions of acetaldehyde (favored in oxidative) and SO2 (favored in anoxia). In the presence of oxygen, the C-4 carbocation of flavanols delivered ethyl-linked tannin-anthocyanin (T-A) and tannin-tannin (T-T) adducts, pyranoanthocyanins, and sulfonated indoles, while under reduction, the C-4 carbocation delivered direct linked T-A adducts, rearranged T-T adducts, and sulfonated tannins. Some of these last reactions could be related to the accumulation of reduced species, eventually ending with reductive off-odors.
Collapse
Affiliation(s)
- I Ontañón
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - D Sánchez
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - V Sáez
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
| | - F Mattivi
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
| | - V Ferreira
- Laboratorio de Análisis del Aroma y Enología, Departamento de Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - P Arapitsas
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
28
|
Polyphenols: Natural Antioxidants to Be Used as a Quality Tool in Wine Authenticity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyphenols are a diverse group of compounds possessing various health-promoting properties that are of utmost importance for many wine sensory attributes. Apart from genetic and environmental parameters, the implementation of specific oenological practices as well as the subsequent storage conditions deeply affect the content and nature of the polyphenols present in wine. However, polyphenols are effectively employed in authenticity studies. Provision of authentic wines to the market has always been a prerequisite meaning that the declarations on the wine label should mirror the composition and provenance of this intriguing product. Nonetheless, multiple cases of intentional or unintentional wine mislabeling have been recorded alarming wine consumers who demand for strict controls safeguarding wine authenticity. The emergence of novel platforms employing instrumentation of exceptional selectivity and sensitivity along with the use of advanced chemometrics such as NMR (nuclear magnetic resonance)- and MS (mass spectrometry)-based metabolomics is considered as a powerful asset towards wine authentication.
Collapse
|
29
|
Li X, Zhang L, Peng Z, Zhao Y, Wu K, Zhou N, Yan Y, Ramaswamy HS, Sun J, Bai W. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chem 2020; 333:127455. [PMID: 32653683 DOI: 10.1016/j.foodchem.2020.127455] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/09/2020] [Accepted: 06/28/2020] [Indexed: 01/31/2023]
Abstract
Ultrasound (US) has been recognized as a non-thermal technology for accelerating blueberry wine aging for flavor development. However, influence of US on anthocyanin and color characteristics is uncertain. In this study, US was applied to new blueberry wine, and changes in color characteristics, anthocyanin content and anti-oxidant capacity were evaluated at early stage of aging period. Low-frequency power US resulted in an improvement in color characteristics and lower chromatic aberration as compared to untreated samples, specially at condition of 180 W, 20 min and 2 cycles. Furthermore, this contribution was attributed to unattenuated anthocyanins protected from US stress. Importantly, the structural polarity dependence was mediated by the impact of US on anthocyanins. Additionally, anti-oxidant activity of blueberry wine was not adversely affected under a moderate US condition. US treatment of blueberry wine was therefore considered to significantly enhance the color presentation, hinting at the possibility of promoting blueberry wine aging.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Lei Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Ziyao Peng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yaqi Zhao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Kaiyun Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Nan Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yin Yan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | | | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
30
|
Zhang XK, Li SY, Zhao X, Pan QH, Shi Y, Duan CQ. HPLC-MS/MS-based targeted metabolomic method for profiling of malvidin derivatives in dry red wines. Food Res Int 2020; 134:109226. [PMID: 32517914 DOI: 10.1016/j.foodres.2020.109226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022]
Abstract
Anthocyanin derivatives are critical components that impart color to aging red wine. In this study, we developed a targeted metabolomic method for the simultaneously profiling of the primary thirty-seven malvidin-derived anthocyanin derivatives in red wine, including various pyranoanthocyanins and flavanols-related condensation products. First, high-performance liquid chromatography (HPLC) tandem ion trap and triple-quadrupole (QqQ) mass spectrometry were used to construct the mass spectral and chromatographic database of the anthocyanin derivatives that were formed in a model wine solution. Next, the targeted profiling analysis of these compounds was achieved on a QqQ mass spectrometer in the multiple reaction monitoring mode (MRM). The method displayed excellent linearity (R2 0.9391-0.9998), sensitivity (0.221-0.604 μg/L of limit of detection (LOD) and 0.274-1.157 μg/L of limit of quantification (LOQ) equivalent to malvidin-3-O-glucoside (Mv-glc)), and repeatability (less than 10% and 15% for intra-day and inter-day relative standard deviation (RSD) respectively). Partial least squares discriminant analysis (PLS-DA) based on this method showed great discrimination over different vintage wines, thereby promising to be an effective tool in wine anthocyanin and aging related study.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Si-Yu Li
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
31
|
Blending strategies for wine color modification Ⅰ: Color improvement by blending wines of different phenolic profiles testified under extreme oxygen exposures. Food Res Int 2020; 130:108885. [DOI: 10.1016/j.foodres.2019.108885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022]
|
32
|
Laitila JE, Salminen JP. Relevance of the Concentrations and Sizes of Oligomeric Red Wine Pigments to the Color Intensity of Commercial Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3576-3584. [PMID: 32064874 PMCID: PMC7145350 DOI: 10.1021/acs.jafc.9b07941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 06/07/2023]
Abstract
Color is a major sensorial characteristic of red wines. Numerous monomeric and some small oligomeric pigments have been characterized from red wines but the contribution of larger oligomeric pigments to the color intensity has not been established by direct measurements. We measured the color intensity of 317 commercial red wines and semiquantified the malvidin glycosides and eight different adduct groups derived from the malvidin glycosides by ultra-performance liquid chromatography-tandem mass spectrometry. Two of these groups were oligomeric pigments consisting of proanthocyanidins and malvidin glycosides with either direct or methylmethine linkages. The carboxypyranomalvidins and the oligomeric pigments were found to be major contributors to the color intensity. Besides the concentrations, the sizes of the oligomeric pigments had a positive and significant connection to the color intensity. The 1-year-old wines were studied separately and, even in the youngest of wines, the adducts of the malvidin glycosides were the major contributors to the color intensity.
Collapse
|
33
|
Morata A, Escott C, Bañuelos MA, Loira I, del Fresno JM, González C, Suárez-Lepe JA. Contribution of Non- Saccharomyces Yeasts to Wine Freshness. A Review. Biomolecules 2019; 10:E34. [PMID: 31881724 PMCID: PMC7022396 DOI: 10.3390/biom10010034] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
Freshness, although it is a concept difficult to define in wines, can be understood as a combination of different circumstances. Organolepticwise, bluish red, floral and fruity, more acidic and full-bodied wines, are perceived as younger and fresher by consumers. In traditional winemaking processes, these attributes are hard to boost if no other technology or biotechnology is involved. In this regard, the right selection of yeast strains plays an important role in meeting these parameters and obtaining wines with fresher profiles. Another approach in getting fresh wines is through the use of novel non-thermal technologies during winemaking. Herein, the contributions of non-Saccharomyces yeasts and emerging technologies to these parameters are reviewed and discussed.
Collapse
Affiliation(s)
- Antonio Morata
- enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (C.E.); (I.L.); (J.M.d.F.); (C.G.); (J.A.S.-L.)
| | - Carlos Escott
- enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (C.E.); (I.L.); (J.M.d.F.); (C.G.); (J.A.S.-L.)
| | - María Antonia Bañuelos
- enotecUPM, Department of Biotecnology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Iris Loira
- enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (C.E.); (I.L.); (J.M.d.F.); (C.G.); (J.A.S.-L.)
| | - Juan Manuel del Fresno
- enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (C.E.); (I.L.); (J.M.d.F.); (C.G.); (J.A.S.-L.)
| | - Carmen González
- enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (C.E.); (I.L.); (J.M.d.F.); (C.G.); (J.A.S.-L.)
| | - José Antonio Suárez-Lepe
- enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (C.E.); (I.L.); (J.M.d.F.); (C.G.); (J.A.S.-L.)
| |
Collapse
|
34
|
Martínez-Gil AM, Del Alamo-Sanza M, Nevares I, Sánchez-Gómez R, Gallego L. Effect of size, seasoning and toasting level of Quercus pyrenaica Willd. wood on wine phenolic composition during maturation process with micro-oxygenation. Food Res Int 2019; 128:108703. [PMID: 31955781 DOI: 10.1016/j.foodres.2019.108703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Seasoning and toasting treatments carried out in cooperage influence the chemical composition of the oak, and these treatments affect different oak species in different ways. For this reason, numerous studies have focused on the evaluation of both the oak wood materials and the resulting aged wines in order to optimize the different cooperage processes. Seasoning involves immobilizing the wood for long periods of time, leading to an increase in the price of the final product. When using alternative products instead of barrels, in addition to the seasoning and toasting of the wood, the size of the wood pieces is a determining factor in the characteristics of the final wine. Therefore, the objective of this work was to evaluate the polyphenolic composition of the same red wine aged with different alternative products and a small amount of oxygen for 120 days. Specifically, the effect of 2 types of seasoning and 3 types of toasting of chips and staves made from the wood of Q. pyrenaica Willd. was studied. The results showed that the size of the alternative product was the factor that determines the phenolic composition of the wines over the entire ageing process, independent of the seasoning or toasting method carried out on the wood.
Collapse
Affiliation(s)
- Ana M Martínez-Gil
- Department of Analytical Chemistry, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| | - Maria Del Alamo-Sanza
- Department of Analytical Chemistry, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain.
| | - Ignacio Nevares
- Department of Agroforestry Engineering, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| | - Rosario Sánchez-Gómez
- Department of Analytical Chemistry, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| | - Laura Gallego
- Department of Analytical Chemistry, UVaMOX - Universidad de Valladolid, 34004 Palencia, Spain
| |
Collapse
|
35
|
Berrueta LA, Rasines-Perea Z, Prieto-Perea N, Asensio-Regalado C, Alonso-Salces RM, Sánchez-Ilárduya MB, Gallo B. Formation and evolution profiles of anthocyanin derivatives and tannins during fermentations and aging of red wines. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03405-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Liu S, Laaksonen O, Yang W, Zhang B, Yang B. Pyranoanthocyanins in bilberry (Vaccinium myrtillus L.) wines fermented with Schizosaccharomyces pombe and their evolution during aging. Food Chem 2019; 305:125438. [PMID: 31494498 DOI: 10.1016/j.foodchem.2019.125438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Fifteen vitisin A-type pyranoanthocyanins (vAPs) were determined in bilberry wines fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe by HPLC-DAD and UPLC-DAD-ESI-MS/MS. The fermentation involving S. pombe enhanced the production of vAPs compared to the fermentation with pure S. cerevisiae. The formation of vAPs correlated significantly with the decrease in the content of monomeric anthocyanins and pyruvic acid during 12 months of aging. vAPs were more stable than their corresponding monomeric anthocyanins. Methylation in the B-ring and glycosylation with galactose and arabinose further improved the stability of vAPs. Aging for 12 months led to depletion of pyruvic acid and reduction of over 50% of monomeric anthocyanins. The content of vAPs increased by 26-54% during the first six months of aging, followed by a 2.2-10.2% reduction over the following six months. More residual pyruvic acid in S. pombe wines after fermentation consequently enhanced the generation of vAPs during aging.
Collapse
Affiliation(s)
- Shuxun Liu
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Bolin Zhang
- Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forestry Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
37
|
Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng 2019; 55:290-298. [PMID: 31125607 DOI: 10.1016/j.ymben.2019.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Hydroxyphenyl-pyranoanthocyanins are one of the pyranoanthocyanins found in red wines and some fruit juices. Since they have a fourth ring (pyran or ring D) which provides higher color intensity and exceptional stability toward pH variations in comparison to their anthocyanin precursors, these molecules are one of the most important candidates as natural colorants especially for low- and medium-acidic food and beverages. However, their isolation and characterization are difficult due to their very low concentration. In this study, we co-cultured recombinant E. coli strains to synthesize pyranoanthocyanins with improved titers and yields. To accomplish this task, firstly we engineered 4-vinylphenol and 4-vinylcatechol producer modules then we co-cultured each one of these strains with cyanidin-3-O-glucoside producer recombinant cells to obtain pyranocyanidin-3-O-glucoside-phenol (cyanidin-3-O-glucoside with vinylphenol adduct) and pyranocyanidin-3-O-glucoside-catechol (cyanidin-3-O-glucoside with vinylcatechol adduct). By optimizing the co-culture conditions, we were able to significantly increase final titers and yields, allowing our co-culture approach to easily outperform production of pyranoanthocyanins from red wine. Finally, we demonstrate that the produced pyranoanthocyanins are far more stable than the starting plant-produced cyanidin 3-O-glucoside.
Collapse
Affiliation(s)
- Hulya Akdemir
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Faculty of Science, Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Adilson Silva
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Chemical Engineering Department, Federal University of São Carlos, São Carlos, SP, Brazil; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Dmitri V Zagorevski
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
39
|
Pieczykolan E, Kurek MA. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Int J Biol Macromol 2019; 129:665-671. [PMID: 30771400 DOI: 10.1016/j.ijbiomac.2019.02.073] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
The aim of this study was to use micro-encapsulation technology to create microcapsules containing anthocyanins from chokeberry with guar gum, gum arabic, pectin, β-glucan and inulin as wall material. Aqueous extracts from chokeberry fruit were enclosed and spray dried using maltodextrin as a coating material with the addition of guar gum, gum arabic, pectin, beta-glucan, and inulin respectively. Physical properties of microcapsules were tested. The preparations also determined the total content of anthocyanins and vitamin C on the day of preparation and after 7 days of storage. In the executed research, the highest moisture content for gum arabic capsules was observed. The most different parameters of color were observed for capsules with beta-glucan. The biggest particles were observed for gum arabic and the smallest for guar gum. The differences were also noticed in chemical assays. The highest content of anthocyanins on the day of drying and after 7 days of storage was noticed for beta-glucan samples whereas the lowest content was observed for gum arabic samples. In case of vitamin C content, the sample, which stood out particularly, was pectin sample. The main conclusion is that the micro-encapsulation is an effective method to maintain the stability of sensitive compounds such as anthocyanins, but also ascorbic acid.
Collapse
Affiliation(s)
- Ewelina Pieczykolan
- Department of Technique and Food Development, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
40
|
Han F, Yang P, Wang H, Fernandes I, Mateus N, Liu Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Farr JE, Sigurdson GT, Giusti MM. Influence of cyanidin glycosylation patterns on carboxypyranoanthocyanin formation. Food Chem 2018; 259:261-269. [PMID: 29680053 DOI: 10.1016/j.foodchem.2018.03.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022]
Abstract
Anthocyanins can condense with compounds having enolizable groups to form pyranoanthocyanins. These pigments are less susceptible to degradation and color changes associated with nucleophilic addition common to anthocyanins. This study aimed to evaluate the impact of glycosylation patterns of anthocyanins on carboxypyranoanthocyanin formation. Nine cyanidin derivatives were isolated by semi-preparative HPLC. Pyruvic acid was added to induce pyranoanthocyanin formation. Composition (HPLC-MS/MS), spectra (absorbance 380-700 nm), and color (CIEL*c*h*) of solutions were monitored during 31 days storage at 25 °C. Cyanidin-3-glycosides with 1 → 6 disaccharides produced the highest pyranoanthocyanin yield (∼31%), followed by Cyanidin-3-monoglycosides (∼20%); 1 → 2 disaccharides produced the least proportions of pyranoanthocyanins (5-7%). Cyanidin-3-arabinoside converted to pyranoanthocyanins but degraded quickly (3% yield) under these conditions. No pyranoanthocyanins were formed from Cyanidin-3-sophoroside-5-glucoside. Glycosyl bonds were more critical than the size of the substitution alone, further supported by Cyanidin-3-(glucosyl)-(1 → 6)-(xylosyl-(1 → 2)-galactoside) yield (11%). Pyranoanthocyanins were hypsochromically shifted and had higher hue angles than their respective anthocyanins.
Collapse
Affiliation(s)
- Jacob E Farr
- The Ohio State University, Dept. of Food Science and Technology. 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| | - Gregory T Sigurdson
- The Ohio State University, Dept. of Food Science and Technology. 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| | - M Mónica Giusti
- The Ohio State University, Dept. of Food Science and Technology. 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| |
Collapse
|
43
|
Li SY, Duan CQ. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review. Crit Rev Food Sci Nutr 2018; 59:1840-1867. [PMID: 29381384 DOI: 10.1080/10408398.2018.1431762] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand effects of using oak barrels on the astringency, bitterness and color of dry red wines, phenolic reactions in wines before and after barrel aging are reviewed in this paper, which has been divided into three sections. The first section includes an introduction to chemical reactivities of grape-derived phenolic compounds, a summary of the phenolic reactions that occur in dry red wines before barrel aging, and a discussion of the effects of these reactions on wine astringency, bitterness and color. The second section introduces barrel types that determine the oak barrel constituents in wines (primarily oak aldehydes and ellagitannins) and presents reactions between the oak constituents and grape-derived phenolic compounds that may modulate wine astringency, bitterness and color. The final section illustrates the chemical differences between basic oxidation and over-oxidation in wines, discusses oxygen consumption kinetics in wines during barrel aging by comparing different oxygen consumption kinetics observed previously by others, and speculates on the possible preliminary phenolic reactions that occur in dry red wines during oak barrel aging that soften tannins and stabilize pigments via basic oxidation. Additionally, sulfur dioxide (SO2) addition during barrel aging and suitability of adopting oak barrels for aging wines are briefly discussed.
Collapse
Affiliation(s)
- Si-Yu Li
- a Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing , China.,b Key Laboratory of Viticulture and Enology, Ministry of Agriculture , Beijing , China
| | - Chang-Qing Duan
- a Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing , China.,b Key Laboratory of Viticulture and Enology, Ministry of Agriculture , Beijing , China
| |
Collapse
|
44
|
Yang P, Yuan C, Wang H, Han F, Liu Y, Wang L, Liu Y. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions. Molecules 2018; 23:E354. [PMID: 29414926 PMCID: PMC6017626 DOI: 10.3390/molecules23020354] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.
Collapse
Affiliation(s)
- Ping Yang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Yangjie Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
45
|
Zhang XK, He F, Zhang B, Reeves MJ, Liu Y, Zhao X, Duan CQ. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Res Int 2017; 106:568-579. [PMID: 29579962 DOI: 10.1016/j.foodres.2017.12.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
Though non-anthocyanin phenolics normally do not have red color, they affect the red color expression in the copigmentation of red wines. In this study, the influence of prefermentative addition of 300mg/L gallic acid and ellagic acid, as cofactors, on aging dry red wines had been systematically evaluated at the industrial scales from the perspectives of color, phenolic profiles and copigmentation effects of anthocyanins. Red wines made with these two compounds exhibited better color properties than the control, having better CIELAB chromatic parameters. Additionally, significantly higher levels of detectable anthocyanins and copigmented anthocyanin ratio had been observed. Wines with ellagic acid showed better chromatic properties and phenolic profiles than wines with gallic acid, as shown in previous theoretical results. Anti-copigmentation phenomenon was noticed and elucidated. These practical results confirmed that ellagic acid was the better cofactor, and would give more additional guidance for the production of high quality wine. CHEMICAL COMPOUNDS Malvidin-3-O-glucoside (PubChem CID: 443,652); Petunidin-3-O-glucoside (PubChem CID: 443,651); Delphinidin-3-O-glucoside (PubChem CID: 443,650); Peonidin-3-O-glucoside (PubChem CID: 443,654); Ellagic acid (PubChem CID: 5,281,855); Gallic acid (PubChem CID: 370); Quercetin (PubChem CID: 443,654); Caffeic acid (PubChem CID: 689,043); (+)-catechin (PubChem CID: 9064); Vanillic acid (PubChem CID: 8468).
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Bo Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Malcolm J Reeves
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Food, Nutrition and Human Health, Massey University, Palmerston North 4442, New Zealand
| | - Yue Liu
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
46
|
Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. BEVERAGES 2017. [DOI: 10.3390/beverages3040055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|