1
|
Hong X, Fan L, Li J. Edible nonaqueous foams: Recent advances in the formation, stabilization, characterization, and applications. Food Chem 2025; 466:142152. [PMID: 39608114 DOI: 10.1016/j.foodchem.2024.142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Edible nonaqueous foam has emerged as a novel direction for the development of fat-reducing products in recent years. This review critically summarizes the current progress of research on this foam mainly over the past decade. Initially, destabilization mechanisms that hinder its rational design are highlighted. Then, the preparation of nonaqueous foam is discussed, focusing on the types of stabilizers and foam properties. Additionally, the characterization methods of this foam and its applications are discussed. Finally, the gaps in the current research on edible nonaqueous foam and future perspectives are pointed out. Edible nonaqueous foam offers a novel avenue for developing fat replacers while preserving desirable sensory attributes. Moreover, this foam has demonstrated its potential in encapsulating flavor ingredients as well as developing responsive systems, thereby contributing to future advancements in personalized nutrition. This review has the potential to inspire innovative ideas for future research endeavors within the field of foam.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jadhav HB. Foaming of semi-solid gel - An emerging concept in the food lipid sector. Food Chem 2024; 469:142556. [PMID: 39708647 DOI: 10.1016/j.foodchem.2024.142556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The research on the foaming of semi-solid gel (oleogel) has recently attracted the attention of food scientists owing to its functional characteristics that make it a potential alternative to saturated fat and trans-fat used in food products. The oleofoams are prepared by heating the vegetable oil with an oleogelator followed by cooling to form a semi-solid gel and then incorporating air in the semi-solid gel to form an air-in-oil system having higher stability to deformation. Oleofoams provide new opportunities for the development of novel aerated food products free of saturated and trans fatty acids to meet the growing demand of consumers for healthy foods. The objective of the present review is to understand the development of new research area in food technology thereby focusing on the process of formulation of oleofoams covering the effect of process parameters on the stability of oleofoams, functional characteristics of oleofoam system, food application, and research gap.
Collapse
Affiliation(s)
- Harsh B Jadhav
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India.
| |
Collapse
|
3
|
Li J, Shi W, Sun Y, Qin Z, Zheng S, Liang S, Li Y, Ritzoulis C, Zhang H. Fabrication, characterization, and oxidation resistance of gelatin/egg white protein cryogel-templated oleogels through apple polyphenol crosslinking. Int J Biol Macromol 2024; 277:134077. [PMID: 39053829 DOI: 10.1016/j.ijbiomac.2024.134077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cryogel-templated oleogels (CTO) were fabricated via a facile polyphenol crosslinking strategy, where apple polyphenol was utilized to crosslink the gelatin/egg white protein conjugates without forming hydrogels. After freeze-drying, cryogel templates were obtained and used to construct CTO by oil absorption. Apple polyphenol crosslinking improved the emulsion-related properties with appearance changes on samples, and infrared spectroscopy further confirmed the interactions between proteins and apple polyphenol. The crosslinked cryogels presented porous microstructures (porosity of over 96 %), enhanced thermal/mechanical stabilities, and could absorb a high content of oil (14.41 g/g) with a considerable oil holding capacity (90.98 %). Apple polyphenol crosslinking also influenced the rheological performances of CTO, where the highly crosslinked samples owned the best thixotropic recovery of 85.88 %. Moreover, after the rapid oxidation of oleogels, the generation of oxidation products was effectively inhibited by crosslinking (POV: 0.48 nmol/g, and TBARS: 0.53 mg/L). The polyphenol crosslinking strategy successfully involved egg white protein and gelatin to fabricate CTO with desired physical/chemical properties. Apple polyphenol acted as both a crosslinker and an antioxidant, which provided a good reference for fabricating pure protein-based CTO.
Collapse
Affiliation(s)
- Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wangjue Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shijie Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siheng Liang
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, Greece; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Bai C, Wang L, Li B, McClements DJ, Liu S, Li Y. Impact of Air Bubbles on the Saltiness Perception of NaCl-Loaded Oleogel-Stabilized Water-in-Oil Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39024566 DOI: 10.1021/acs.jafc.4c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Reducing salt intake without affecting the saltiness perception remains a great challenge for the food industry. Herein, the demulsification of water droplets and air bubbles was controlled to modulate the release of sodium from oleogel-stabilized water-in-oil emulsions (OGEs) stabilized by monoglyceride crystals. The effect of monoglycerides with carbon chain length (glycerol monolaurate-GML, glyceryl monostearate-GMS, and glycerol monopalmitate-GMP) and homogenization methods (hand-shaking or high-speed blender) on sodium release and saltiness was investigated by in vitro and in vivo oral processing tests. Milky-white stable emulsions were formed with both water droplets and air bubbles dispersing in the oil phase, regardless of the selected homogenization methods. Air bubbles were more unstable than water droplets during oral digestion. GML OGEs with more and larger air bubbles and the lowest hardness exhibited the highest sodium release rate and the strongest saltiness, independent of homogenization methods. The balance between air bubbles and water droplets in the GMS and GMP OGEs caused slower sodium release and lower saltiness. Overall, the presence of air bubbles in NaCl-loaded W/O oleogel-based emulsions was shown to have important implications for tailoring their sodium release and saltiness.
Collapse
Affiliation(s)
- Chenmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
5
|
Alhasan FH, Tehrani MM, Varidi M. Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics. Food Chem X 2024; 21:101033. [PMID: 38205159 PMCID: PMC10776775 DOI: 10.1016/j.fochx.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
This study explores the impact of oil type, surfactant concentration, and production temperature on oleofoam properties. Oleofoams were prepared using different concentrations (5, 8, and 10 % w/w) of monoglyceride (MG) in olive, soybean, and sunflower oils at temperatures of 25 °C and 5 °C. The results indicate that higher surfactant concentrations and lower production temperatures enhance the stability, foamability, melting behavior, and hardness of the oleofoams, while minimizing oil drainage. Microscopic analysis reveals that lower production temperatures result in smaller bubble sizes in all oil blends which reduces oil loss and increases the hardness of the oleofoam. Also, oleofoams derived from different oils exhibit solid-like behavior. Among the oils studied, the oleofoam prepared with sunflower oil, at a concentration of 10 % MG and a production temperature of 5 °C, demonstrates superior properties. These findings provide valuable insights into optimizing oleofoam properties by controlling the oil type, surfactant concentration, and production temperature.
Collapse
Affiliation(s)
- Fayza Hussein Alhasan
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mehdi Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Ribourg-Birault L, Meynier A, Vergé S, Sallan E, Kermarrec A, Falourd X, Berton-Carabin C, Fameau AL. Oleofoams: The impact of formulating air-in-oil systems from a lipid oxidation perspective. Curr Res Food Sci 2024; 8:100690. [PMID: 38328464 PMCID: PMC10847802 DOI: 10.1016/j.crfs.2024.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Air-in-oil foams, or oleofoams, have a great potential for food applications as they can at least partially replace animal or hydrogenated fats, without compromising on textural properties. Yet, there are some challenges to tackle before they can largely be implemented for real-life applications. One of those is the lack of data regarding their oxidative stability. This is an important point to consider, as although using oils rich in polyunsaturated fatty acids (PUFAs) is highly desirable from a nutritional perspective, these fatty acids are particularly prone to oxidation, which leads to major degradations of food quality. This work thus aimed to investigate the oxidative stability of oleofoams prepared with omega-3 PUFA-rich vegetable oils (rapeseed or flaxseed oil) and various types of high melting point lipid-based oleogelators (stearic acid, glyceryl monostearate and stearyl alcohol) when incubated at room temperature. The physical structure and stability of the oleofoams was monitored by various techniques (visual observations, microscopy, DSC, NMR, SAXS and WAXS). Lipid oxidation was assessed by combined measurements of primary (conjugated diene hydroperoxides) and secondary (thiobarbituric acid reactive substances - TBARS) products. We found that the oxidative stability of oleofoams was higher compared to that of the corresponding bulk oil. This protective effect was also found when the oil was simply mixed with the oleogelator without incorporation of air bubbles (i.e., forming an oleogel), and was somewhat modulated depending on the type of oleogelator. These results suggest that oleogelators and the structural changes that they induce limit the cascaded propagation of lipid oxidation in oil-continuous matrices, which is promising in the perspective of future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xavier Falourd
- INRAE, UR BIA, F-44300, Nantes, France
- INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, F-44300, Nantes, France
| | - Claire Berton-Carabin
- INRAE, UR BIA, F-44300, Nantes, France
- Wageningen University & Research, Laboratory of Food Process Engineering, 6700 AA, Wageningen, the Netherlands
| | - Anne-Laure Fameau
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMET, F-59000, Lille, France
| |
Collapse
|
7
|
Hu X, Meng Z. An overview of edible foams in food and modern cuisine: Destabilization and stabilization mechanisms and applications. Compr Rev Food Sci Food Saf 2024; 23:e13284. [PMID: 38284578 DOI: 10.1111/1541-4337.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Foam, as a structured multi-scale colloidal system, is becoming increasingly popular in food because it gives a series of unique textures, structures, and appearances to foods while maintaining clean labels. Recently, developing green and healthy food-grade foaming agents, improving the stability of edible foams, and exploring the application of foam structures and new foaming agents have been the focus of foam systems. This review comprehensively introduces the destabilization mechanisms of foam and summarizes the main mechanisms controlling the foam stability and progress of different food-grade materials (small-molecular surfactants, biopolymers, and edible Pickering particles). Furthermore, the classic foam systems in food and modern cuisine, their applications, developments, and challenges are also underlined. Natural small-molecular surfactants, novel plant/microalgae proteins, and edible colloidal particles are the research hotspots of high-efficiency food-grade foam stabilizers. They have apparent differences in foam stability mechanisms, and each exerts its advantages. However, the development of foam stabilizers remains to be enriched compared with emulsions. Food foams are diverse and widely used, bringing unique enjoyment and benefit to consumers regarding sense, innovation, and health attributes. In addition to industrial inflatable foods, the foam foods in molecular gastronomy are also worthy of exploration. Moreover, edible foams may have greater potential in structured food design, 3D/4D printing, and controlled flavor release in the future. This review will provide a reference for the efficient development of functional inflatable foods and the advancement of foam technologies in modern cuisine.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Oleo-foams and emulsion-foams as lipid-based foam systems: a review of their formulation, characterization, and applications. Crit Rev Food Sci Nutr 2023; 65:787-810. [PMID: 38095599 DOI: 10.1080/10408398.2023.2281622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Lipid-based foam systems (LBFs) have grown in popularity recently because of their effectiveness and potential uses. As a result, in order to stabilize them, considerable work has been put into developing more biodegradable and environmentally friendly materials. However, the use of natural stabilizing agents has been constrained due to a lack of thorough knowledge of them. This review offers insightful data that will encourage more studies into the development and use of LBFs. Emulsifiers or gelling agents, as well as new preparation and characterization methods, can be used to increase or prolong the functional performance of LBFs. Special emphasis has been given on the connections between their structures and properties and expanding the range of industries in which they can be applied. In conclusion, it is crucial to gain a deeper understanding of the preparation mechanisms and influencing factors in order to improve the quality of foam products and create novel LBFs.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
9
|
Grossi M, Fang B, Rao J, Chen B. Oleofoams stabilized by monoacylglycerides: Impact of chain length and concentration. Food Res Int 2023; 169:112914. [PMID: 37254346 DOI: 10.1016/j.foodres.2023.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Oleofoams are plant oil based whipped systems which have drawn academic and industry attention in recent years. The aim of this study was to determine the effect of fatty acid chain length and monoacylglyceride (MAG) concentration on the performance and structural properties of MAG-based oleofoams. Four different MAGs (monolaurin, monomyrystin, monopalmitin, and monostearin) were studied at three concentration levels (5, 10, and 15 wt%). The fatty acid chain length had a statistically significant impact on the size and shape of crystals formed, while higher MAG concentrations led to higher numbers of crystals in the continuous oil phase. These differences affected the performance and physical properties of the oleofoams: compared to other MAGs, monostearin based oleofoams were harder and exhibited higher values of G' and G″, had higher overrun and showed better stability. Lastly, through microscopy techniques it was successfully proved that monostearin-based oleofoams are stabilized by both bulk and Pickering stabilization.
Collapse
Affiliation(s)
- Matteo Grossi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Baochen Fang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
10
|
Li Z, Ying Lee Y, Wang Y, Qiu C. Interfacial behavior, gelation and foaming properties of diacylglycerols with different acyl chain lengths and isomer ratios. Food Chem 2023; 427:136696. [PMID: 37392626 DOI: 10.1016/j.foodchem.2023.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Diacylglycerols (DAG) of varying chain lengths were synthesized and the acyl migrated samples with different 1,3-DAG/1,2-DAG ratios were obtained. The crystallization profile and surface adsorption differed depending on DAG structure. C12 and C14 DAGs formed small platelet- and needle-like crystals at the oil-air interface which can better reduce surface tension and pack in an ordered lamellar structure in oil. The acyl migrated DAGs with higher ratios of 1,2-DAG showed reduced crystal size and lower oil-air interfacial activity. C14 and C12 DAG oleogels exhibited higher elasticity and whipping ability with crystal shells surrounding bubbles, whereas C16 and C18 DAG oleogels had low elasticity and limited whipping ability due to the formation of aggregated needle-like crystals and loose gel network. Thus, acyl chain length dramatically influences the gelation and foaming behaviors of DAGs whereas the isomers exert little influence. This study provides basis for applying DAG of different structures in food products.
Collapse
Affiliation(s)
- Ziwei Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
11
|
Tirgarian B, Farmani J. A novel approach for the development of edible oleofoams using double network oleogelation systems. Food Chem 2023; 426:136634. [PMID: 37348400 DOI: 10.1016/j.foodchem.2023.136634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Whipped oleogels (oleofoams) are commonly stabilized by crystalline particles. Still, external factors like temperature fluctuations could change the state of the crystals (phase transitions), leading to the destabilization and disruption of oleofoams. Herein, a double network oleogelation system comprised of a primary crystalline network (using glycerol monostearate) and a secondary colloidal network (stabilized by soy protein isolate-anionic polysaccharides Mailard conjugates) is proposed as a novel strategy to overcome these challenges. It was observed that the incorporation of the secondary network resulted in a lower over-run, but a higher melting point, elasticity, foam stability, and more uniform bubble size distribution. This was explained by the strong interfacial stabilization provided by the colloidal network that can protect the crystalline particle against coarsening and oil drainage. These double network oleofoams, which could retain 41-48 % air (oleogel-based), display great potential for utilization in low-calorie lipid-based products.
Collapse
Affiliation(s)
- Behraad Tirgarian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| |
Collapse
|
12
|
Si Y, Royer JR, Li T, Clegg PS. Mixed aqueous-and-oil foams in bulk. J Colloid Interface Sci 2023; 646:671-678. [PMID: 37224681 DOI: 10.1016/j.jcis.2023.05.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
HYPOTHESIS Because particle-stabilised foams are extremely stable and have a yield stress, a particle-stabilised aqueous foam and a particle-stabilised oil foam can be mixed together to give a stable composite foam which brings together two immiscible liquids. EXPERIMENTS We have developed a mixed foam system comprised of an olive oil foam with bubbles stabilised using partially fluorinated particles and an aqueous foam with bubbles stabilised using hydrophobic silica particles. The aqueous phase is a mixture of water and propylene glycol. We have studied this system using bulk observations, confocal microscopy and rheology as we vary the proportions of the two foams, the silica particles and the propylene glycol, and the sample age. FINDINGS The composite foam resembles an emulsion of one foam within another and is stable for a week or more. The structure and flow properties depend on the proportions of the two phases and the quantities of both silica particles and propylene glycol. Inversion between water-in-oil and oil-in-water is observed, where both phases are foams, driven both by silica wettability and by adding increasing quantities of the dispersed foam. Composites formed at the inversion point are the least stable, showing significant phase separation in less than one week.
Collapse
Affiliation(s)
- Yuchen Si
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - John R Royer
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Tao Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China
| | - Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|
13
|
Abstract
Microbubbles are largely unused in the food industry yet have promising capabilities as environmentally friendly cleaning and supporting agents within products and production lines due to their unique physical behaviors. Their small diameters increase their dispersion throughout liquid materials, promote reactivity because of their high specific surface area, enhance dissolution of gases into the surrounding liquid phase, and promote the generation of reactive chemical species. This article reviews techniques to generate microbubbles, their modes of action to enhance cleaning and disinfection, their contributions to functional and mechanical properties of food materials, and their use in supporting the growth of living organisms in hydroponics or bioreactors. The utility and diverse applications of microbubbles, combined with their low intrinsic ingredient cost, strongly encourage their increased adoption within the food industry in coming years.
Collapse
Affiliation(s)
- Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Owen G Jones
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - Weixin Yan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Carlos M Corvalan
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
14
|
Effect of emulsifier HLB on aerated emulsions: Stability, interfacial behavior, and aeration properties. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
15
|
Pugh RJ, Hamlett CAE, Fairhurst DJ. A short overview of bubbles in foods and chocolate. Adv Colloid Interface Sci 2023; 314:102835. [PMID: 36958180 DOI: 10.1016/j.cis.2023.102835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/22/2023]
Abstract
The incorporation of bubbles in foods has created a positive market response from consumers since their first introduction over 70 years ago and has resulted in an expanding market over this period. However, although the physics and chemistry of most ingredients in commercial food products are reasonably well understood, the behaviour of bubbles in foods are much less established and their behaviour not fully appreciated. In fact, bubbles are perhaps the least studied of all food ingredients even though aeration is still one of the fastest growing unit operations in processing. Although many of these manufactured aerated food products are perceived as lighter with lower calorific values, problems in manufacturing remain even today and it is generally difficult to optimize the size, the size distribution, the deviation the from spherical shapes and the stability of the bubbles during the different stages of the processing. In this review, we discuss the dispersion of the various food ingredients and the different processes involved in introducing bubbles into the melt, producing well dispersed multiphase systems. The second part of this review focusses on aerated chocolate and the above aspects are particularly important and are discussed in some detail since it has been well established that the bubble size and size distribution can influence the texture, the mouthfeel, the crispness, the melting temperature, and the brittleness of the product. Understanding the science involved in the transformation from the liquid state containing dispersed bubbles to a solid chocolate foam, stabilization of the bubbles and the control of the bubble size are highlighted. Although CO2 is usually used to generate bubbles in chocolate, several different gases including N2O, Ar and N2 have also been evaluated. One of the research aims of food companies is to improve control over the stability of the systems. This has been investigated with respect to drainage, by carrying out experiments under zero gravity conditions.
Collapse
Affiliation(s)
- R J Pugh
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, UK.
| | - C A E Hamlett
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - D J Fairhurst
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, UK
| |
Collapse
|
16
|
Gu X, Du L, Meng Z. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability. Food Res Int 2023; 167:112650. [PMID: 37087239 DOI: 10.1016/j.foodres.2023.112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
In this study, the effect of the content of the lacquer wax and whipping time on the overrun was explored. It was found that an appropriate amount of wax content and whipping time could promote crystal dual stabilization through the Pickering mechanism and the close packing in the bulk phase. Otherwise, it would result in low overrun caused by high viscous and crystal bridging. The addition of polyglycerol polyricinoleate (PGPR) could effectively enhance the overrun by apace absorbing. At the same time, adding PGPR also improved the contact angle, which was beneficial to the adsorption at the A-O interface. The 8 wt% oleogel was partially substituted by high-melting fat palm stearin (POs) and oleofoams were prepared based on blended fat. POs increased the melting point, structural strength, and β'-form crystal of oleofoams, thus improving the storage and temperature stability. The oleofoam has a maximum overrun of 189% and could maintain the shape of the decorating over 15 d at the ambient temperature, showing great potential in low-fat food applications and other delivery systems.
Collapse
Affiliation(s)
- Xinya Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
17
|
Metilli L, Morris L, Lazidis A, Marty-Terrade S, Holmes M, Povey M, Simone E. Real-time monitoring of fat crystallization using pulsed acoustic spectroscopy and supervised machine learning. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Oleofoams and emulsion foams stabilized by sodium stearoyl lactylate: Insights into their relations based on microstructure, rheology and tribology. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
20
|
Tyowua AT, Echendu AM, Adejo SO, Binks BP. Influence of particle wettability on foam formation in honey. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:454003. [PMID: 36055236 DOI: 10.1088/1361-648x/ac8f0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The rising level of obesity is often attributed to high sugar and/or fat consumption. Therefore, the food industry is constantly searching for ways to reduce or eliminate sugar or fat in food products. Therefore, honey foam, which contains little sugar and no fat, can be used as cake, cracker or bread spread instead of butter or margarine which contains a substantial amount of fat or jam that contains a substantial amount of sugar. Small solid particles (nanometers to micrometers) of suitable wettability are now considered outstanding foam-stabilizing agents. However, while the degree of particle wettability necessary to obtain very stable aqueous and nonaqueous foams is well-known, that needed to obtain very stable honey foam is unknown. In this study, the influence of the degree of wettability of fumed silica particles, indicated by their % SiOH (14-100), was investigated in honey in relation to foam formation and foam stability. The honephilic particles (61%-100% SiOH) formed particle dispersion in honey, while foams were obtained with the honephobic particles (14%-50% SiOH). The thread-off between particle dispersion and foam formation occurs at 50% SiOH, meaning foam formation in honey is possible when the particles are at least 50% honephobic. At relatively low particle concentration <1 wt.%, foam volume decreases with increasing honephobicity, but increases with honephobicity at relatively high concentration >1 wt.%. Also, as particle concentration increases, the shape of the air bubbles in the foam changes from spherical to non-spherical. After a little drainage, the foams remain stable to drainage and did not coalesce substantially for more than six months. These findings will guide the formulation of edible Pickering honey foams.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Centre for Food Technology & Research, Department of Chemistry, Benue State University, PMB 102119 Makurdi, Nigeria
| | - Adebukola M Echendu
- Applied Colloid Science and Cosmeceutical Group, Centre for Food Technology & Research, Department of Chemistry, Benue State University, PMB 102119 Makurdi, Nigeria
| | - Sylvester O Adejo
- Applied Colloid Science and Cosmeceutical Group, Centre for Food Technology & Research, Department of Chemistry, Benue State University, PMB 102119 Makurdi, Nigeria
| | - Bernard P Binks
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
21
|
Qiu C, Wang S, Wang Y, Lee WJ, Fu J, Binks BP, Wang Y. Stabilisation of oleofoams by lauric acid and its glycerol esters. Food Chem 2022; 386:132776. [PMID: 35509162 DOI: 10.1016/j.foodchem.2022.132776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Four types of pure lipid, namely lauric acid (LA), glycerol monolaurate (MAG), diglycerol laurate (DAG) and triglyceride laurate (TAG) were used to prepare oleofoams. The relationship between crystal profiles and their performance in oleofoams was established. DAG formed small needle-like crystals while MAG formed large flake-like crystals in oleogels, and crystal shells around air bubbles were observed in LA-, MAG- and DAG-based oleofoams. LA and DAG displayed higher over-run whereas DAG-stabilised foam possessed smaller bubbles and higher physical stability due to the presence of small β and β' crystals. Upon heating, DAG and TAG-based foams showed varying extents of oil drainage indicating the crystals were distributed in a different manner. Therefore, DAG was shown to be an excellent gelator in the fabrication of ultra-stable oleofoams. This work extends the lipid varieties with nutritional features and allows a better understanding on the stabilization mechanisms of lauric acid lipids in oleofoams.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Shaolin Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ying Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Junning Fu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
22
|
Zheng R, Chen Y, Wang Y, Rogers MA, Cao Y, Lan Y. Microstructure and physical properties of novel bigel-based foamed emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Molecular Dynamics Simulation and Experiment on the Microscopic Mechanism of the Effect of Wax Crystals on the Burst and Drainage of Foams. SUSTAINABILITY 2022. [DOI: 10.3390/su14116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, with the goal of “carbon peaking and carbon neutralization”, the CO2 flooding technology in carbon capture, utilization, and storage (CCUs) has been paid great attention to the oil fields. However, the CO2 flooding of crude oil may produce foams in the oil and gas separation process. In addition, the precipitation of wax components in crude oil might enhance the stability characteristics of these foams and lower the separator’s efficiency. Based on a crude oil depressurization foaming device, the influence of wax crystals on the bursting of oil foam was studied using simulated oil, and the microstructure of the wax crystal and foam liquid film was observed using freeze-etching and microscopic observation. In addition, the gas–liquid interface model of the wax oil was established by a molecular dynamics (MD) simulation to analyze the influence mechanism of wax crystals on foam drainage and gas diffusion among foams in the microlayer. The results show that the precipitation of wax crystals overall reduces the rate of defoaming and drainage and increases the grain diameter of the foam. The formation and growth of the wax crystal-shaped network impede the flow of liquid in the drainage channel and stabilize the foam. Moreover, it impedes the diffusion of CO2 among foams, inhibiting the bursting of the foams. The results of the combined experiments and MD simulation verify the accuracy and applicability of the molecular model, which further clarifies the effect of wax crystals on foam stability and its mechanism of action on foam film. These findings are a benchmark for the enhancement of defoaming and separation efficiency and a theoretical framework for future study and modeling.
Collapse
|
24
|
Si Y, Li T, Clegg PS. Mixed Aqueous-and-Oil Foams via the Spinning Together of Separate Particle-Stabilized Aqueous and Oil Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4243-4249. [PMID: 35352955 PMCID: PMC9009175 DOI: 10.1021/acs.langmuir.1c03348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Indexed: 05/31/2023]
Abstract
We describe an experimental technique for the production of foams comprised of bubbles in a continuous phase of balanced quantities of aqueous and oil phases. Initially, two highly stable foams are fabricated: one typically made from olive oil with bubbles stabilized using partially fluorinated particles and the other made from a mixture of water and propylene glycol with bubbles stabilized using partially hydrophobic particles. After a rough mixture is prepared, the final mixed foam is fabricated via spinning the components together; the spinning leads to the final foam being well-mixed and dry. Here the final mixed foams are presented in thin-film form. We show the locations and roles of the various components.
Collapse
Affiliation(s)
- Yuchen Si
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Tao Li
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Paul S. Clegg
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
| |
Collapse
|
25
|
Metilli L, Storm M, Marathe S, Lazidis A, Marty-Terrade S, Simone E. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1638-1650. [PMID: 35050635 PMCID: PMC8812118 DOI: 10.1021/acs.langmuir.1c03318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Oleofoams are a novel, versatile, and biocompatible soft material that finds application in drug, cosmetic or nutraceuticals delivery. However, due to their temperature-sensitive and opaque nature, the characterization of oleofoams' microstructure is challenging. Here, synchrotron X-ray microcomputed tomography and radiography are applied to study the microstructure of a triglyceride-based oleofoam. These techniques enable non-destructive, quantitative, 3D measurements of native samples to determine the thermodynamic and kinetic behavior of oleofoams at different stages of their life cycle. During processing, a constant bubble size distribution is reached after few minutes of shearing, while the number of bubbles incorporated keeps increasing until saturation of the continuous phase. Low amounts of solid triglycerides in oleofoams allow faster aeration and a more homogeneous microstructure but lower thermodynamic stability, with bubble disproportionation and shape relaxation over time. Radiography shows that heating causes Ostwald ripening and coalescence of bubbles, with an increase of their diameter and sphericity.
Collapse
Affiliation(s)
- Lorenzo Metilli
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
| | - Malte Storm
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
- Helmholtz-Zentrum
hereon, Max-Planck-Str 1, 21502 Geesthacht, Germany
| | - Shashidhara Marathe
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
| | - Aris Lazidis
- Nestlé
Product Technology Centre Confectionery, Haxby Road, York YO31 8TA, U.K.
| | | | - Elena Simone
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
26
|
|
27
|
Saha S, Pagaud F, Binks BP, Garbin V. Buckling versus Crystal Expulsion Controlled by Deformation Rate of Particle-Coated Air Bubbles in Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1259-1265. [PMID: 35023336 PMCID: PMC8793140 DOI: 10.1021/acs.langmuir.1c03171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Oil foams stabilized by crystallizing agents exhibit outstanding stability and show promise for applications in consumer products. The stability and mechanics imparted by the interfacial layer of crystals underpin product shelf life, as well as optimal processing conditions and performance in applications. Shelf life is affected by the stability against bubble dissolution over a long time scale, which leads to slow compression of the interfacial layer. In processing flow conditions, the imposed deformation is characterized by much shorter time scales. In practical situations, the crystal layer is therefore subjected to deformation on extremely different time scales. Despite its importance, our understanding of the behavior of such interfacial layers at different time scales remains limited. To address this gap, here we investigate the dynamics of single, crystal-coated bubbles isolated from an oleofoam, at two extreme time scales: the diffusion-limited time scale characteristic of bubble dissolution, ∼104 s, and a fast time scale characteristic of processing flow conditions, ∼10-3 s. In our experiments, slow deformation is obtained by bubble dissolution, and fast deformation in controlled conditions with real-time imaging is obtained using ultrasound-induced bubble oscillations. The experiments reveal that the fate of the interfacial layer is dramatically affected by the dynamics of deformation: after complete bubble dissolution, a continuous solid layer remains; after fast, oscillatory deformation of the layer, small crystals are expelled from the layer. This observation shows promise toward developing stimuli-responsive systems, with sensitivity to deformation rate, in addition to the already known thermoresponsiveness and photoresponsiveness of oleofoams.
Collapse
Affiliation(s)
- Saikat Saha
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Francis Pagaud
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Bernard P. Binks
- Department
of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Valeria Garbin
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
Liascukiene I, Amselem G, Landoulsi J, Gunes DZ, Baroud CN. Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals. SOFT MATTER 2021; 17:10042-10052. [PMID: 34709287 DOI: 10.1039/d1sm00902h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Foams are inherently unstable objects, that age and disappear over time. The main cause of foam aging is Ostwald ripening: smaller air bubbles within the foam empty their gas content into larger ones. One strategy to counter Ostwald ripening consists in creating armored bubbles, where solid particles adsorbed at the air/liquid interface prevent bubbles from shrinking below a given size. Here, we study the efficiency of coating air bubbles with fat crystals to prevent bubble dissolution. A monoglyceride, monostearin, is directly crystallized at the air/oil interface. Experiments on single bubbles in a microfluidic device show that the presence of monostearin fat crystals slows down dissolution, with an efficiency that depends on the crystal size. Bubble ripening in the presence of crystals exhibits intermittent dissolution dynamics, with phases of arrest, when crystals jam at the interface, followed by phases of dissolution, when monostearin crystals are ejected from the interface. In the end, crystals do not confer enough mechanical strength to the bubbles to prevent them from fully dissolving.
Collapse
Affiliation(s)
- Irma Liascukiene
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France.
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France.
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 75005 Paris, France
| | - Deniz Z Gunes
- Nestlé Research Center, Food Science and Technology Department, Vers-Chez-Les Blanc, CH-1000, Lausanne 26, Switzerland
| | - Charles N Baroud
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France.
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
29
|
Carrera Sánchez C, Rodríguez Patino JM. Contribution of the engineering of tailored interfaces to the formulation of novel food colloids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Liu Y, Binks BP. A novel strategy to fabricate stable oil foams with sucrose ester surfactant. J Colloid Interface Sci 2021; 594:204-216. [PMID: 33761395 DOI: 10.1016/j.jcis.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Can a mixture of sucrose ester surfactant in vegetable oil be aerated to yield stable oleofoams? Is foaming achievable from one-phase molecular solutions and/or two-phase crystal dispersions? Does cooling a foam after formation induce surfactant crystallisation and enhance foam stability? EXPERIMENTS Concentrating on extra virgin olive oil, we first study the effect of aeration temperature and surfactant concentration on foamability and foam stability of mixtures cooled from a one-phase oil solution. Based on this, we introduce a strategy to increase foam stability by rapidly cooling foam prepared at high temperature which induces surfactant crystallisation in situ. Differential scanning calorimetry, X-ray diffraction, infra-red spectroscopy, surface tension and rheology are used to elucidate the mechanisms. FINDINGS Unlike previous reports, both foamability and foam stability decrease upon decreasing the aeration temperature into the two-phase region containing surfactant crystals. At high temperature in the one-phase region, substantial foaming is achieved (over-run 170%) within minutes of whipping but foams ultimately collapse within a week. We show that surfactant molecules are surface-active at high temperature and that hydrogen bonds form between surfactant and oil molecules. Cooling these foams substantially increases foam stability due to both interfacial and bulk surfactant crystallisation. The generic nature of our findings is demonstrated for a range of vegetable oil foams with a maximum over-run of 330% and the absence of drainage, coalescence and disproportionation being achievable.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
31
|
Li G, Wang K, Lu C. Wet-etched asymmetric spherical nanoparticles with controllable pit structures and application in non-aqueous foams. SOFT MATTER 2021; 17:4848-4856. [PMID: 33890595 DOI: 10.1039/d0sm01964j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structure of colloidal particles is one of the factors that significantly affect their properties. Asymmetrical spherical particles with pit structures were prepared by using NH4F to perform wet chemical etching on the designated positions of the partially masked particles. The depth and effectiveness of the pits were adjusted by varying the etching time. By changing the properties of the oil mixture, the oil repellency and foaming ability of the etched particles were characterized and compared. By controlling the wet etching time, the effective pit structures were etched on the particles. Within 10 d of being etched, the particles with pit geometry showed better foam properties than the original unetched particles. The pit structure on the particles improves the oil repellency of the particles in a series of oil mixtures with relatively lower surface tension. No significant difference was observed between the under-etched (18 h) particles and the non-etched particles. The ineffective geometry of the over-etched (15 d) particles results in insufficient robustness of the Cassie-Baxter state of the particles and reduces the volume of the generated foam.
Collapse
Affiliation(s)
- Gen Li
- Department of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China.
| | | | | |
Collapse
|
32
|
Binks BP, Vishal B. Particle-stabilized oil foams. Adv Colloid Interface Sci 2021; 291:102404. [PMID: 33839623 DOI: 10.1016/j.cis.2021.102404] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
The area of oil foams although important industrially has received little academic attention until the last decade. The early work using molecular surfactants for stabilisation was limited and as such it is difficult to obtain general rules of thumb. Recently however, interest has grown in the area partly fuelled by the understanding gained in the general area of colloidal particles at fluid interfaces. We review the use of solid particles as foaming agents for oil foams in cases where particles (inorganic or polymer) are prepared ex situ and in cases where crystals of surfactant or fat are prepared in situ. There is considerable activity in the latter area which is particularly relevant to the food industry. Discussion of crude oil/lubricating oil foams is excluded from this review.
Collapse
Affiliation(s)
- Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Badri Vishal
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
33
|
Ewens H, Metilli L, Simone E. Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Curr Res Food Sci 2021; 4:105-114. [PMID: 33748777 PMCID: PMC7957023 DOI: 10.1016/j.crfs.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Chocolate is a complex soft material characterized by solid particles (cocoa powder, milk solid particles and sugar crystals) dispersed in a crystallized fat matrix mostly composed of cocoa butter (CB). Important chocolate properties such as snap, and visual appearance are strongly dependent on the internal molecular arrangement (polymorph), size and shape, as well as the spatial distribution of CB crystals within the chocolate mix. In recent years confectionary companies have put increasing effort in developing novel chocolate recipes to improve the nutritional profile of chocolate products (e.g., by reducing the amount of high saturated fat and sugar content) and to counteract the increasing price of cocoa butter as well as sustainability issues related to some chocolate ingredients. Different reformulation strategies can dramatically affect the crystallization thermodynamic and kinetic behaviour of cocoa butter; therefore, affecting the structural and sensorial properties of chocolate. In this review we analyse how different reformulation strategies affect the crystallization behaviour of cocoa butter and, hence, the structural and sensorial properties of chocolate. In particular, this work discusses the effect of: (1) CB replacement with emulsions, hydrogels, oleogels and oleofoams; (2) CB dilution with limonene or cocoa butter equivalents; (3) replacement or reduction of the amount of sugar and milk in chocolate. We found that there is certainly potential for successful novel alternative chocolate products with controlled crystalline properties; however, further research is still needed to ensure sensory acceptance and reasonable shelf-life of these novel products.
Collapse
Affiliation(s)
- H. Ewens
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - L. Metilli
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - E. Simone
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
34
|
Microstructure evolution and partial coalescence in the whipping process of oleofoams stabilized by monoglycerides. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Qiu C, Lei M, Lee WJ, Zhang N, Wang Y. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. Food Chem 2021; 350:129275. [PMID: 33601090 DOI: 10.1016/j.foodchem.2021.129275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Oleofoams have emerged as attractive low-calorie aeration systems, but saturated lipids or large amount of surfactants are commonly required. Herein, an innovative strategy was proposed to create oleofoams using medium-long chain diacylglycerol (MLCD) and β-sitosterol (St). The oleofoams prepared using MLCD and St in ratios of 15:5 and 12:8 exhibited smaller bubble size and much higher stability. MLCD crystals formed rigid Pickering shell, whereby air bubbles acted as "active fillers" leading to enhanced rigidity. Both Pickering and network stabilization for the MLCD-St oleofoam provided a steric hindrance against coalescence. The gelators interacted via hydrogen bonding, causing a condensing effect in improving the gel elasticity. The oleofoams and foam-based emulsions exhibited a favorable capacity in controlling volatile release where the maximum headspace concentrations and partition coefficients showed a significantly decrease. Overall, the oleofoams have shown great potential for development of low-calorie foods and delivery systems with enhanced textural and nutritional features.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Mengting Lei
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Ning Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
36
|
Foams of vegetable oils containing long-chain triglycerides. J Colloid Interface Sci 2021; 583:522-534. [DOI: 10.1016/j.jcis.2020.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
|
37
|
Callau M, Sow-Kébé K, Jenkins N, Fameau AL. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chem 2020; 333:127403. [DOI: 10.1016/j.foodchem.2020.127403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
|
38
|
|
39
|
Sarkar A, Dickinson E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Fameau AL, Saint-Jalmes A. Recent Advances in Understanding and Use of Oleofoams. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
41
|
van der Sman RGM, Renzetti S. Understanding functionality of sucrose in cake for reformulation purposes. Crit Rev Food Sci Nutr 2020; 61:2756-2772. [PMID: 32643962 DOI: 10.1080/10408398.2020.1786003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We review the functionality of sucrose during the manufacture of cakes from the perspective of sugar replacement. Besides providing sweetness, sucrose has important functionalities concerning structure formation. These functionalities also need to be mimicked in reformulated cakes. First, we review the hypotheses, concerning the development of structure and texture of cakes during manufacturing, which are conveniently summarized in a qualitative way using the Complex Dispersed Systems methodology. Subsequently, we represent the changes of the state of the cake during manufacturing in a supplemented state diagram, which indicates the important phase transitions occurring during baking. From the analysis, we have learned that sucrose act both as a plasticizer and as a humectant, modifying the phase transitions of biopolymers, dough viscosity, and water activity. If sugar replacers exactly mimick this behavior of sucrose, similar textures in reformulated cakes can be obtained. Physical theories exist for characterizing the plasticizing and hygroscopic behavior of sugars and their replacers. We have shown that the starch gelatinization and egg white denaturation can be predicted by the volumetric density of hydrogen bonds present in the solvent, consisting of water, sugar or its replacers, such as polyols or amino-acids.
Collapse
Affiliation(s)
- R G M van der Sman
- Wageningen-Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - S Renzetti
- Wageningen-Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
42
|
Mishra K, Bergfreund J, Bertsch P, Fischer P, Windhab EJ. Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7566-7572. [PMID: 32520568 DOI: 10.1021/acs.langmuir.0c01195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline glycerides play an important role in the formation of multiphase systems such as emulsions and foams. The stabilization of oil/water interfaces by glyceride crystals has been extensively studied compared to only few studies which have been dedicated to oil/air interfaces. This study investigates the crystallization and network formation of tripalmitin (TP) and monopalmitin (MP) at the middle-chain triglyceride (MCT) oil/air interface. TP crystals were found to crystallize in the bulk before aggregating as large rectangular crystal conglomerates at the MCT oil/air interface. This leads to the slow formation of a plastic deformable, macroscopic crystal layer with high interfacial rheological moduli. MP crystals form directly at the MCT oil/air interface resulting in a comparatively fast formation of an elastic deformable network. Crystals with tentacle-like morphology were found to be responsible for the network elasticity. In this work, we show how interfacial crystallization dynamics and mechanical strength can be linked to the molecular structure and crystallization behavior of glyceride crystals.
Collapse
Affiliation(s)
- Kim Mishra
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Jotam Bergfreund
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Pascal Bertsch
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Erich J Windhab
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
43
|
Advances in food emulsions and foams: reflections on research in the neo-Pickering era. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel. Food Chem 2020; 312:126047. [DOI: 10.1016/j.foodchem.2019.126047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
|
45
|
Guo Y, Cai Z, Xie Y, Ma A, Zhang H, Rao P, Wang Q. Synthesis, physicochemical properties, and health aspects of structured lipids: A review. Compr Rev Food Sci Food Saf 2020; 19:759-800. [PMID: 33325163 DOI: 10.1111/1541-4337.12537] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.
Collapse
Affiliation(s)
- Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanping Xie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aiqin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, P. R. China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
46
|
Grizopoulou S, Karagiorgou M, Karageorgiou V, Shao P, Petridis D, Ritzoulis C. Spontaneous Oleofoams from Water‐in‐Oil Emulsions. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sofia Grizopoulou
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Maria Karagiorgou
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Vassilis Karageorgiou
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Ping Shao
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Dimitrios Petridis
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Christos Ritzoulis
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
- School of Food Science and BiotechnologyZhejiang Gongshang University Xiasha Hangzhou Zhejiang 310016 China
| |
Collapse
|
47
|
Tsykhanovska I, Evlash V, Alexandrov A, Gontar T, Shmatkov D. The Study of the Interaction Mechanism of Linoleic Acid and 1-Linoleyl-2-Oleoyl-3-Linolenoyl-Glycerol with Fe3O4 Nanoparticles. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.03.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
|
49
|
Heymans R, Tavernier I, Danthine S, Rimaux T, Van der Meeren P, Dewettinck K. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties. Food Funct 2018; 9:3143-3154. [DOI: 10.1039/c8fo00536b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The time-temperature history of monoglyceride-oleogels has a large influence on the foamability and foam stability of the corresponding oil foams.
Collapse
Affiliation(s)
- Robbe Heymans
- Laboratory of Food Technology & Engineering
- Department of Food Technology
- Safety and Health
- Ghent University
- 9000 Gent
| | - Iris Tavernier
- Laboratory of Food Technology & Engineering
- Department of Food Technology
- Safety and Health
- Ghent University
- 9000 Gent
| | - Sabine Danthine
- Department of Food Science
- University of Liège
- 5030 Gembloux
- Belgium
| | - Tom Rimaux
- Vandemoortele R&D Centre
- 8870 Izegem
- Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group
- Department of Applied Analytical and Physical Chemistry
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
| | - Koen Dewettinck
- Laboratory of Food Technology & Engineering
- Department of Food Technology
- Safety and Health
- Ghent University
- 9000 Gent
| |
Collapse
|