1
|
Jeong SH, Lee HB, Lee DU. Effects of Pulsed Electric Field on Meat Tenderization and Microbial Decontamination: A Review. Food Sci Anim Resour 2024; 44:239-254. [PMID: 38764506 PMCID: PMC11097037 DOI: 10.5851/kosfa.2023.e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 05/21/2024] Open
Abstract
This review sought to categorize studies on meat tenderization and safety through pulsed electric field (PEF) treatment, with a particular focus on reconciling conflicting findings regarding the tenderization effect (i.e., the primary outcome of PEF treatment) and to discuss the underlying mechanisms of these effects. While the tenderization effect may vary depending on the homogeneity of PEF treatment and variations in the conditions of texture measurements, the protein associated with tenderization was degraded by PEF treatment in most studies. PEF technology enables the delivery of a high voltage for a brief duration, typically in the microsecond range, making it a non-thermal technology. One of the distinct advantages of PEF is its ability to preserve the freshness of meat due to its exceptionally short treatment time. While PEF studies have traditionally centered on pasteurizing liquid foods, research on its application to meat is steadily expanding. Therefore, this review aims to elucidate the mechanisms of PEF and provide current insights into the applications of this technology for meat tenderization and microbial inactivation.
Collapse
Affiliation(s)
- Se-Ho Jeong
- Department of Food Science and
Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| | - Han-Beak Lee
- Department of Food Science and
Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| | - Dong-Un Lee
- Department of Food Science and
Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
2
|
Negi A, Nimbkar S, Thirukumaran R, Moses JA, Sinija VR. Impact of thermal and nonthermal process intensification techniques on yield and quality of virgin coconut oil. Food Chem 2024; 434:137415. [PMID: 37774639 DOI: 10.1016/j.foodchem.2023.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Virgin coconut oil (VCO) is valued for its nutraceutical potential. The focus of this research was to assess the effect of selected thermal and nonthermal pre-treatments on the yield and quality of subsequently wet-extracted VCO. The fresh coconut cream was subjected to microwave heating (450 W, 2 min), ohmic heating (180 V, 5 min), ultrasonication (350 W, 10 min), or a pulsed electric field (40 kV cm-1, 12.32 min). The thick cream was separated, and VCO was obtained after a freeze-thaw process. The highest VCO yields (>93%) were observed in the cases of ultrasonicated and pulsed electric field-treated samples. A range of oil quality parameters, total phenolic content, and antioxidants were evaluated. Further, the fatty acid composition of all oils was studied. Observations from this research indicate that ultrasonication pre-treatment resulted in the best VCO yield and quality.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - R Thirukumaran
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India.
| | - V R Sinija
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| |
Collapse
|
3
|
Li D, Fu J, Ren S, Jiang X. Efficient extraction based on a polydimethylsiloxane/bimetallic ZnCo-MOF carbonization sponge coupled with GC-MS for the rapid analysis of volatile compounds in cumin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:524-536. [PMID: 38168938 DOI: 10.1039/d3ay01889j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A novel porous polydimethylsiloxane/bimetallic ZnCo-MOF carbonization (PDMS/ZnCo-MOF@C) sponge was successfully fabricated, followed by its utilization in GC-MS for the high efficiency extraction and determination of volatile compounds in cumin. The PDMS/ZnCo-MOF@C sponge exhibits outstanding properties with a considerable adsorption capacity, high surface area, and large pore volume and has shown potential as an ideal adsorbent for the separation and preconcentration of trace volatile compounds. The effect of different parameters on the extraction efficiency were investigated. Excellent analytical performances were achieved for the representative compounds (β-pinene, p-cymene, γ-terpinene, cuminaldehyde, and linalyl acetate), including wide linearity (2.31-440.1 ng) with high correlation coefficients (R2 ≥ 0.9979), low LODs (1.02-3.11 ng) and LOQs (2.45-7.08 ng), and satisfactory precision (intra-day RSDs ≤ 2.89% and inter-day RSDs ≤ 4.14%). The optimal method was applied for the analysis of cumin from different regions and 44 volatile compounds were identified. The correlation between the different regions of cumin and volatile compounds was explored using multivariate statistical analysis. These results demonstrated that PDMS/ZnCo-MOF@C is an efficient, simple and sensitive material for use in the pretreatment technique for the determination of the volatile compounds in aromatic plants.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Jihong Fu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Shuxian Ren
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Xinxing Jiang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
4
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Abdel Samad R, El Darra N, Al Khatib A, Chacra HA, Jammoul A, Raafat K. Novel dual-function GC/MS aided ultrasound-assisted hydrodistillation for the valorization of Citrus sinensis by-products: phytochemical analysis and anti-bacterial activities. Sci Rep 2023; 13:12547. [PMID: 37532740 PMCID: PMC10397203 DOI: 10.1038/s41598-023-38130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
A huge-amount of citrus by-products is being wasted every-year. There is a high-need to utilize these by-products with high-efficiency. This study focuses on the essential oil (EO) isolation from the zest of Citrus sinensis (CS) by-products, using a novel dual-function gas-chromatography mass-spectrometry optimized ultrasound-assisted hydrodistillation-prototype (DF-GC/MS-HUS). The CS-EO was GC-analyzed by MS-detector (GC/MS) and optimized by flame-ionization detector (GC/FID). Ultrasound-assisted hydrodistillation (HUS) had a dual-function in CS-EO isolation by utilizing an adequate-energy to break-open the oil-containing glands, and by functioning-as a dispersing-agent to emulsify the organic-phase. The most effective DF-GC/MS-HUS optimized-conditions were isolation under 38 °C and 10 min of 28.9 Hz sonication. The main-components of CS-EO were limonene, β-myrcene, and α-pinene (81.32%, 7.55%, and 4.20%) in prototype, compared to (60.23%, 5.33%, and 2.10%) in the conventional-method, respectively. The prototype CS-EO showed natural antibacterial-potentials, and inhibited the bio-film formation by Staphylococcus aureus, Listeria monocytogenes, and E. coli more-potent than the conventional-method. Compared to conventional-method, the prototype-method decreased the isolation-time by 83.3%, lowered energy-consumption, without carbon-dioxide production, by reducing isolation-temperatures by more-than half, which protected the thermolabile-components, and increased the quantity by 2514-folds, and improved the quality of CE-EO composition and its antibacterial-potentials. Therefore, the DF-GC/MS-HUS prototype method is considered a novel green-technique that minimized the energy-utilization with higher-efficiency.
Collapse
Affiliation(s)
- Roudaina Abdel Samad
- Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box: 115020, Beirut, 1107 2809, Lebanon
| | - Nada El Darra
- Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box: 115020, Beirut, 1107 2809, Lebanon
| | - Alissar Al Khatib
- Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box: 115020, Beirut, 1107 2809, Lebanon
| | - Hadi Abou Chacra
- Department of Industrial Engineering and Engineering Management, Faculty of Engineering, Beirut Arab University, Riad El Solh, P.O. Box 11-5020, Beirut, Lebanon
| | - Adla Jammoul
- Food Department, Lebanese Agricultural Research Institute, P.O. Box 2611, Fanar, Beirut, 1107 2809, Lebanon
- Phytopharmacy Laboratory, Ministry of Agriculture of Lebanon, Kfarchima, Lebanon
| | - Karim Raafat
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
6
|
Duarte PF, do Nascimento LH, Fischer B, Lohmann AM, Bandiera VJ, Fernandes IA, Magro JD, Valduga E, Cansian RL, Paroul N, Junges A. Effect of Extraction Time on the Yield, Chemical Composition, and Antibacterial Activity of Hop Essential Oil Against Lactic Acid Bacteria (Lactobacillus brevis and Lactobacillus casei) Beer Spoilage. Curr Microbiol 2023; 80:237. [PMID: 37289261 DOI: 10.1007/s00284-023-03359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Hop essential oil (EO) generates interest for its antioxidant and antimicrobial properties, in addition to the volatile compounds that are responsible for the hop aroma in beer. Thus, the objective of this study was to evaluate the chemical composition, EO yield, and antibacterial activity of hop essential oil from hops of the Chinook variety against lactic acid bacteria (Lactobacillus brevis and Lactobacillus casei) at different times of extraction. EO extraction was performed by hydrodistillation at different times. By analyzing the chemical composition by gas chromatography and mass spectrometry, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. The major compounds of hop EO were α-humulene, β-myrcene, and β-caryophyllene, and the extraction yields were 0.67, 0.78, and 0.85% mass of EO per mass of hops pelletized hops (m/m), for extractions of 90, 180, and 300 min, respectively. The EO obtained in 90 min was efficient against L. casei at 2.5 mg/mL (MIC) and 5.0 mg/mL (MBC), and the 300 min one against L. brevis at 2.5 mg/mL (MIC) and 25 mg/mL (MBC). The antibacterial activity was affected by the chemical makeup of the oil, revealing that the hop EO extracted in 300 min was the most efficient among the other extraction times.
Collapse
Affiliation(s)
- Patrícia Fonseca Duarte
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Lucas Henrique do Nascimento
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Bruno Fischer
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Andreia Menin Lohmann
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Valmor José Bandiera
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Ilizandra Aparecida Fernandes
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Jacir Dal Magro
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Eunice Valduga
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Rogério Luis Cansian
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Natalia Paroul
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil
| | - Alexander Junges
- Food and Chemical Engineering Department, URI Campus de Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
7
|
Antunes Filho S, dos Santos MS, dos Santos OAL, Backx BP, Soran ML, Opriş O, Lung I, Stegarescu A, Bououdina M. Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils. Molecules 2023; 28:molecules28073060. [PMID: 37049821 PMCID: PMC10095647 DOI: 10.3390/molecules28073060] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Plant extracts and essential oils have a wide variety of molecules with potential application in different fields such as medicine, the food industry, and cosmetics. Furthermore, these plant derivatives are widely interested in human and animal health, including potent antitumor, antifungal, anti-inflammatory, and bactericidal activity. Given this diversity, different methodologies were needed to optimize the extraction, purification, and characterization of each class of biomolecules. In addition, these plant products can still be used in the synthesis of nanomaterials to reduce the undesirable effects of conventional synthesis routes based on hazardous/toxic chemical reagents and associate the properties of nanomaterials with those present in extracts and essential oils. Vegetable oils and extracts are chemically complex, and although they are already used in the synthesis of nanomaterials, limited studies have examined which molecules are effectively acting in the synthesis and stabilization of these nanostructures. Similarly, few studies have investigated whether the molecules coating the nanomaterials derived from these extracts and essential oils would bring benefits or somehow reduce their potential activity. This synergistic effect presents a promising field to be further explored. Thus, in this review article, we conducted a comprehensive review addressing the main groups of molecules present in plant extracts and essential oils, their extraction capacity, and available methodologies for their characterization. Moreover, we highlighted the potential of these plant products in the synthesis of different metallic nanomaterials and their antimicrobial capacity. Furthermore, we correlated the extract’s role in antimicrobial activity, considering the potential synergy between molecules from the plant product and the different metallic forms associated with nanomaterials.
Collapse
|
8
|
Hamzah MH, Ibrahim SK, Nor MZM, Hamzah AFA, Shamsudin R, Ali AHM. Optimization of electrochemical pre-treatment for essential oil extraction from lemon myrtle (B. citriodora) leaves by response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Kumar R, Chopra S, Choudhary AK, Mani I, Yadav S, Barua S. Cleaner production of essential oils from Indian basil, lemongrass and coriander leaves using ultrasonic and ohmic heating pre-treatment systems. Sci Rep 2023; 13:4434. [PMID: 36932116 PMCID: PMC10023810 DOI: 10.1038/s41598-023-31090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Indian basil (Ocimum basillicum), lemongrass (Cymbopogon flexuosus) and coriander (Coriandrum sativum) leaves are a good source of aromatic oils; however, their extraction volume is low. Hence, two pre-treatment systems (ohmic-heating and ultrasonic) were devised for extraction of essential oils (EO) from the leaves of these three plant spp., which consequently enhanced the EO yield and saved the time and energy. First of all, an experimental set-up was developed for ohmic-heating pre-treatment which was subjected to the optimization of electric conductivity of lemongrass and coriander leaves at 26.25 V/cm and for Indian basil at 22.5 V/cm voltage gradient. An Experimental setup was also developed for ohmic heating-assisted hydro-distillation (OHD). Finally, conventional Clevenger hydro-distillation (CHD), OHD, ultrasonic-assisted conventional hydro-distillation (UACHD) and ultrasonic-assisted ohmic-heating hydro-distillation (UAOHD) methods were evaluated for their effectiveness in the extraction of the EOs. The OHD took 3.5 h time with 410 W power consumption compared to 5 h time and 500 W power consumption in CHD of sleeted leaves. Likewise, a saving of ~ 86% in time and 74% in energy consumption was observed for EO extraction through UAOHD over CHD. Quantity of EOs extracted from all three aromatic plant spp. leaves followed the trend of UAOHD > UACHD > OHD > CHD methods, respectively. Overall, ultrasonic pre-treatment coupled with ohmic-heating assisted hydro-distillation (UAOHD) proved as an innovative and effective clean EO extraction technology which took shorter extraction time and lesser energy consumption with better EO yield over the UACHD, OHD and CHD methods from the leaves of Indian basil, lemongrass and coriander.
Collapse
Affiliation(s)
- Rajeev Kumar
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sangeeta Chopra
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil K Choudhary
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, 171001, India.
| | - Indra Mani
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shruti Yadav
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sukanya Barua
- Division of Agricultural Extension, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
10
|
Li D, Jiang X, Zhang Y, Xue W, Fu J. Determination of volatile components in cumin by microwave-assisted PDMS/GO/DES headspace solid phase extraction combined with GC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:849-858. [PMID: 36722988 DOI: 10.1039/d2ay01995g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel approach based on polydimethylsiloxane/graphene oxide/deep eutectic solvent (PDMS/GO/DES) sponge headspace solid phase extraction followed by GC-MS was successfully developed to determine the volatile components in cumin. The PDMS/GO/DES exhibits outstanding properties with high adsorption capacity and good chemical stability, and has shown its potentiality as an ideal adsorbent for the extraction of volatile compounds. The influence factors of the extraction process were investigated. Excellent analytical performances were achieved, including wide linearity (0.60-107.72 ng) with high correlation coefficients (R2 ≥ 0.9951), low LODs (0.23-9.23 ng) and LOQs (0.54-18.47 ng), satisfactory precision (intra-day RSDs ≤ 2.85% and inter-day RSDs ≤ 3.92%). Under the optimal extraction conditions, the volatile components in 17 cumin samples from four origins in Xinjiang were analyzed and 31 compounds were identified. PCA was used to establish the relationship between the origins and the volatile compounds for further discriminant analysis. The results showed that the PDMS/GO/DES method was a rapid, simple and sensitive technique for the analysis of volatile components in spices.
Collapse
Affiliation(s)
- Dandan Li
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Xinxing Jiang
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Yaxue Zhang
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Wenxia Xue
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Jihong Fu
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| |
Collapse
|
11
|
Moderate electric field-assisted hydro-distillation of thyme essential oil: Characterization of microstructural changes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Cheng KC, Hou CY, Hsieh CW. Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr Rev Food Sci Food Saf 2022; 21:5109-5130. [PMID: 36199192 DOI: 10.1111/1541-4337.13052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Drying is a key processing step for plant-based foods. The quality of dried products, including the physical, nutritional, microbiological, and sensory attributes, is influenced by the drying method used. Conventional drying technologies have low efficiency and can negatively affect product quality. Recently, pulsed electric field (PEF)-assisted techniques are being explored as a novel pretreatment for drying. This review focuses on the application of PEF as pretreatment for drying plant-based products, the preservation effects of this pretreatment, and its underlying mechanisms. A literature search revealed that PEF-assisted drying is beneficial for maintaining the physicochemical properties of the dried products and preserving their color and constituent chemical compounds. PEF-assisted drying promotes rehydration and improves the kinetics of drying. Unlike conventional technologies, PEF-assisted drying enables selective cell disintegration while maintaining product quality. Before the drying process, PEF pretreatment inactivates microbes and enzymes and controls respiratory activity, which may further contribute to preservation. Despite numerous advantages, the efficiency and applicably of PEF-assisted drying can be improved in the future.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.,Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan, Republic of China.,Department of Optometry, Asia University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
14
|
Kumar S, Nirmal Thirunavookarasu S, Sunil C, Vignesh S, Venkatachalapathy N, Rawson A. Mass transfer kinetics and quality evaluation of tomato seed oil extracted using emerging technologies. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
16
|
Al-Hilphy AR, Al-Mtury AAA, Al-Shatty SM, Hussain QN, Gavahian M. Ohmic Heating as a By-Product Valorization Platform to Extract Oil from Carp (Cyprinus carpio) Viscera. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Almeida-Couto JMFDE, Ressutte JB, Cardozo-Filho L, Cabral VF. Current extraction methods and potential use of essential oils for quality and safety assurance of foods. AN ACAD BRAS CIENC 2022; 94:e20191270. [PMID: 35544845 DOI: 10.1590/0001-3765202220191270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Essential oils (EOs) or vegetable oils have become the focus of several studies because of their interesting bioactive properties. Their application has been successfully explored in active packaging, edible coatings, and as natural flavoring to extend the shelf life of various types of food products. In addition, alternative methods of extraction of EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction and supercritical fluid extraction) have been shown to be more attractive than traditional methods since they present better efficiency, shorter extraction times and do not use toxic solvents. This review paper provides a concise and critical view of extraction methods of EOs and their application in food products. The researchers involved in the studies approached in this review were motivated mainly by concern about food quality. Here, we recognize and discuss the major advances and technologies recently used to enable shelf life extension of food products.
Collapse
Affiliation(s)
- Jéssica M F DE Almeida-Couto
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Jéssica B Ressutte
- Universidade Estadual de Londrina/UEL, Departamento de Ciência e Tecnologia de Alimentos/UEL, Rodovia Celso Garcia Cid, 86057970 Londrina, PR, Brazil
| | - Lúcio Cardozo-Filho
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Vladimir F Cabral
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia de Alimentos, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
18
|
Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals (Basel) 2022; 15:ph15050567. [PMID: 35631393 PMCID: PMC9145560 DOI: 10.3390/ph15050567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for more suitable eco-friendly extraction processes has grown over the last few decades and driven research to develop efficient extraction processes with low energy consumption and low costs, but always assuring the quality of the volatile oils (VOs). The present study estimated the kinetic extraction and energy consumption of simultaneous hydro- and steam-distillation (SHSD), and SHSD assisted by carbon dioxide (SHSDACD), using an adopted modelling approach. The two isolation methods influenced the VOs yield, chemical composition and biological activities, namely, antioxidant, anti-glucosidase, anti-acetylcholinesterase and anti-inflammatory properties. SHSDACD provided higher VOs yields than the SHSD at a shorter extraction time: 2.8% at 30 min vs. 2.0% at 120 min, respectively, for Rosmarinus officinalis, 1.5% at 28 min vs. 1.2% at 100 min, respectively, for Lavandula angustifolia, and 1.7% at 20 min vs. 1.6% at 60 min, respectively, for Origanum compactum. The first order and sigmoid model fitted to SHSD and SHSDACD, respectively, with R2 value at 96% and with mean square error (MSE) < 5%, where the k distillation rate constant of SHSDACD was fivefold higher and the energy consumption 10 times lower than the SHSD. The rosemary SHSD and SHSDACD VOs chemical composition were similar and dominated by 1,8-cineole (50% and 48%, respectively), and camphor (15% and 12%, respectively). However, the lavender and oregano SHSDACD VOs were richer in linalyl acetate and carvacrol, respectively, than the SHSD VOs. The SHSDACD VOs generally showed better capacity for scavenging the nitric oxide and superoxide anions free radicals as well as for inhibiting α-glucosidase, acetylcholinesterase, and lipoxygenase.
Collapse
|
19
|
Roobab U, Khan AW, Irfan M, Madni GM, Zeng X, Nawaz A, Walayat N, Manzoor MF, Aadil RM. Recent developments in ohmic technology for clean label fruit and vegetable processing: An overview. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Abdul Waheed Khan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Muhammad Irfan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan Guangdong China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University Shenzhen China
| | - Noman Walayat
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
| | - Muhammad Faisal Manzoor
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu Province China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
20
|
Valorisation of plant seed as natural bioactive compounds by various extraction methods: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Alkanan ZT, Altemimi AB, Al-Hilphy ARS, Cacciola F, Ibrahim SA. Application and Effects of Ohmic-Vacuum Combination Heating on the Quality Factors of Tomato Paste. Foods 2021; 10:2920. [PMID: 34945470 PMCID: PMC8700374 DOI: 10.3390/foods10122920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Ohmic-vacuum combination heating is a common method used in the food industry as a concentration process. In the present study, an OH-VC combination heating system was developed for producing tomato paste at temperatures of 70, 80, and 90 °C and pressure of 0.3, 0.5, and 0.7 bar and electric field of 1.82, 2.73, and 3.64 V/cm using a central composite design. The effects of heating conditions on the quality and sensory evaluation of tomato paste were also evaluated. Each combination of temperature, pressure, and the electric field was quantified for specific energy consumption, energy efficiency, and productivity. A decrease of 35.08% in the amount of acid ascorbic and lycopene content 19.01%, using conventional heating compared to ohmic-vacuum heating under optimized conditions, was attained. The results also highlighted an increase in the amount of HMF (69.79%) and PME (24.33%) using conventional heating compared to ohmic-vacuum heating under optimized conditions. Ascorbic acid, lycopene, titratable acidity, productivity, energy efficiency was higher than conventional heating; on the other hand, HMF, PME, pH, SEC were lower than conventional heating at the applied OH-VC process. No significant effects between OH-VC and conventional heating on the TSS were observed. In addition, OH-VC heating was highly efficient in the inhibition of bacterial growth. Further, a minor effect on the sensory properties of tomato paste with OH-VC heating compared to the conventional treatment. The obtained results indicate a strong potential for an OH-VC combination heating system as a rapid-heating, high-efficiency alternative for saving electrical energy consumption and preserving nutritional value.
Collapse
Affiliation(s)
- Zina T. Alkanan
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (Z.T.A.); (A.R.S.A.-H.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (Z.T.A.); (A.R.S.A.-H.)
| | - Asaad R. S. Al-Hilphy
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; (Z.T.A.); (A.R.S.A.-H.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
22
|
Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Ferreira-Santos P, Miranda SM, Belo I, Spigno G, Teixeira JA, Rocha CM. Sequential multi-stage extraction of biocompounds from Spirulina platensis: Combined effect of ohmic heating and enzymatic treatment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Mahanta BP, Bora PK, Kemprai P, Borah G, Lal M, Haldar S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res Int 2021; 145:110404. [PMID: 34112407 DOI: 10.1016/j.foodres.2021.110404] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Plant-based aroma chemicals, constituting the essential oils play a great role as the natural flavours and preservatives in the food industries. Many of these metabolites are susceptible to degradation under heat (i.e. thermolabile aroma chemicals) which may influence the organoleptic properties of the end-products e.g. essential oil, oleoresin, dry herb, tea and packaged juice. The current review identified in total 42 thermolabile aroma and/or flavour molecules belonging to monoterpenoids, sesquiterpenoids and phenolics. The probable pathway of their degradation and its promoting conditions were also described. Degradation pathways were categorized into five major classes including oxidation, C-C bond cleavage, elimination, hydrolysis and rearrangement. Numerous evidences were cited in support of the thermosensitivity of these phytochemicals under pyrolytic, thermal heating or gas chromatographic conditions. Various post-harvest processes involved in the manufacturing such as drying and distillation of the crops or thermal treatment of the food-products for storage were highlighted as the root cause of degradation. The influence of thermolabile aroma chemicals to maintain the sensory quality of the end-products such as citrus juices, floral oils and thermally cooked foods was discussed in detail. In the present article, detailed insight into the chemical and sensory aspects of thermosensitive aromas and flavours was provided, covering the period from 1990 up to 2020.
Collapse
Affiliation(s)
- Bhaskar Protim Mahanta
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Gitasree Borah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohan Lal
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
25
|
Accelerated Solvent Extraction and Pulsed Electric Fields for Valorization of Rainbow Trout ( Oncorhynchus mykiss) and Sole ( Dover sole) By-Products: Protein Content, Molecular Weight Distribution and Antioxidant Potential of the Extracts. Mar Drugs 2021; 19:md19040207. [PMID: 33916965 PMCID: PMC8067536 DOI: 10.3390/md19040207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Fishery by-products are rich in biologically active substances and the use of green and efficient extraction methods to recover these high-added-value compounds is of particular importance. In this study, head, skin and viscera of rainbow trout and sole were used as the target matrices and accelerated solvent extraction (ASE) (45–55 °C, 15 min, pH 5.2–6.8, 103.4 bars) and pulsed electric fields (PEF) (1–3 kV/cm, 123–300 kJ/kg, 15–24 h) were applied as extraction technologies. The results showed that ASE and PEF significantly increased the protein extract efficiency of the fish by-products (p < 0.05) by up to 80%. SDS-PAGE results showed that ASE and PEF treatments changed the molecular size distribution of the protein in the extracts, which was specifically expressed as the change in the area or number of bands between 5 and 250 kDa. The antioxidant capacity of the extracts was evaluated by oxygen radical absorbance capacity (ORAC) and total antioxidant capacity (ABTS) assays. The results showed that both ASE and PEF treatments significantly increased the antioxidant capacity of rainbow trout and sole skin and head extracts (p < 0.05). ASE and PEF extraction processes can be used as new technologies to extract high-added-value compounds from fish by-products.
Collapse
|
26
|
Naik M, Natarajan V, Rawson A, Rangarajan J, Manickam L. Extraction kinetics and quality evaluation of oil extracted from bitter gourd (Momardica charantia L.) seeds using emergent technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Comparative transcriptomic study of Escherichia coli O157:H7 in response to ohmic heating and conventional heating. Food Res Int 2021; 140:109989. [PMID: 33648224 DOI: 10.1016/j.foodres.2020.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/29/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
In this study, the high-throughput Illumina HiSeq 2000 mRNA sequencing technique was used to investigate the transcriptome response of Escherichia coli O157:H7 exposed to ohmic heating (OH) and water bath heating (WB). Compared to untreated samples, a total of 293, 516, and 498 genes showed differential expression after HVOH (high voltage short time ohmic heating), LVOH (low voltage long time ohmic heating), and WB, respectively. Therefore, LVOH had the potential to cause comparable effects on the transcriptome of E. coli O157:H7 as compared to WB, but not HVOH. These results indicated that additional non-thermal effects were not reflected on transcriptome of E. coli O157:H7 using both HVOH and LVOH, in particular the HVOH. Most of differentially expressed genes involved in information storage and processing, and cellular processes and signaling showed up-regulation whereas most of genes related to the metabolism were down-regulated after HVOH, LVOH, and WB. In addition, more attention needs to be paid to the up-regulation of a large number of virulence genes, which might increase the ability of surviving E. coli O157:H7 to infect host cells after HVOH, LVOH, and WB. This transcriptomic study on the response of E. coli O157:H7 to OH protomes the understanding of inactivation mechanism of OH on the molecular level and opens the door to future studies for OH.
Collapse
|
28
|
Sur S, Dave V, Prakesh A, Sharma P. Expansion and scale up of technology for ethanol production based on the concept of biorefinery. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Srija Sur
- Department of Pharmacy Banasthali Vidyapith Banasthali Rajasthan India
| | - Vivek Dave
- Department of Pharmacy, School of Health Science Central University of South Bihar Gaya India
| | - Anand Prakesh
- Department of Bio‐science and Biotechnology Banasthali Vidyapith Banasthali Rajasthan India
| | - Prashansa Sharma
- Department of Clothing & Textile, Faculty of Home Science Banasthali Vidyapith Banasthali Rajasthan India
| |
Collapse
|
29
|
Gavahian M, Mathad GN, Oliveira CAF, Mousavi Khaneghah A. Combinations of emerging technologies with fermentation: Interaction effects for detoxification of mycotoxins? Food Res Int 2021; 141:110104. [PMID: 33641971 DOI: 10.1016/j.foodres.2021.110104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Consumption of foods containing mycotoxins, as crucial groups of naturally occurring toxic agents, could pose significant health risks. While the extensive scientific literature indicates that prevention of contamination by toxigenic fungi is one of the best ways to reduce mycotoxins, detoxifying strategies are useful for improving the safety of food products. Nowadays, the food and pharmaceutical industries are using the concept of combined technologies to enhance the product yield by implementing emerging techniques, such as ultrasound, ohmic heating, moderate electric field (MEF), pulsed electric field (PEF) and high-pressure processing, during the fermentation process. While the application of emerging technologies in improving the fermentation process is well explained in this literature, there is a lack of scientific texts discussing the possibility of mycotoxin degradation through the interaction effects of emerging technologies and fermentation. Therefore, this study was undertaken to provide deep insight into applying emerging processing technologies in fermentation, mechanisms and the prospects of innovative combinations of physical and biological techniques for mycotoxins' detoxification. Among various emerging technologies, ultrasound, ohmic heating, MEF, PEF, and cold plasma have shown significant positive effects on fermentation and mycotoxins detoxification, highlighting the possibility of interactions from such combinations to degrade mycotoxins in foods.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Neipu 91201, Pingtung, Taiwan, ROC.
| | - Girish N Mathad
- Department of Tropical Agriculture and International Co-operation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, SP, Brazil.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
30
|
Tunç MT, Koca İ. Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Merve Tuğçe Tunç
- Gümüşhane University Faculty of Engineering and Natural Sciences, Department of Food Engineering Gümüşhane Turkey
- Ondokuz Mayıs University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| | - İlkay Koca
- Ondokuz Mayıs University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| |
Collapse
|
31
|
Nasiri L, Gavahian M, Majzoobi M, Farahnaky A. Rheological Behavior of Glycyrrhiza glabra (Licorice) Extract as a Function of Concentration and Temperature: A Critical Reappraisal. Foods 2020; 9:foods9121872. [PMID: 33334008 PMCID: PMC7765465 DOI: 10.3390/foods9121872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
In the present study, rheological properties of twelve different licorice root extracts were evaluated using a rotational viscometer as a function of soluble solids content (15–45 °Bx) and temperature (30–70 °C). Response Surface Methodology was used to understand the relationships between the parameters. The experimental data were then fit into mathematical models. The results, for the first time, revealed that the licorice solutions had non-Newtonian shear-thinning behaviors with flow behavior indexes of 0.24 to 0.91, depending on the licorice extract samples, temperature, and °Bx. These observations were different from those reported in the literature and the present study elaborated on reasons for such observations. Further, the shear-thinning behavior generally increased by increasing the °Bx and decreasing the temperature. In addition, the power-law model was found to be suitable for predicting the experimental data. The newly revealed information can be particularly important in designing the unit operations for licorice extract processing.
Collapse
Affiliation(s)
- Laleh Nasiri
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz 71444-65186, Iran;
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-7703202
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Bundoora West Campus, Melbourne, VIC 3083, Australia; (M.M.); (A.F.)
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Bundoora West Campus, Melbourne, VIC 3083, Australia; (M.M.); (A.F.)
| |
Collapse
|
32
|
Ohmic-assisted peeling of fruits: Understanding the mechanisms involved, effective parameters, and prospective applications in the food industry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J, Alañón M, Arráez-Román D, Segura-Carretero A. Pressurized GRAS solvents for the green extraction of phenolic compounds from hibiscus sabdariffa calyces. Food Res Int 2020; 137:109466. [DOI: 10.1016/j.foodres.2020.109466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022]
|
34
|
Nadar SS, Patil PD, Rohra NM. Magnetic nanobiocatalyst for extraction of bioactive ingredients: A novel approach. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Al-Hilphy AR, Al-Musafer AM, Gavahian M. Pilot-scale ohmic heating-assisted extraction of wheat bran bioactive compounds: Effects of the extract on corn oil stability. Food Res Int 2020; 137:109649. [PMID: 33233228 DOI: 10.1016/j.foodres.2020.109649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Recent studies introduced ohmic heating-assisted extraction (OHAE) as a promising emerging technology at laboratory-scales. The objectives of the present study were, first, to investigate the applicability of OHAE at pilot-scale for extraction of bioactive compounds from wheat bran immersed in a polar solvent (salted water containing 0.1% NaCl) at the electric field strengths (EFS) of 4.28, 7.90, and 15.71 V/cm and, second, to evaluate the effects of the wheat extracts on the corn oil stability during 30 days of storage at 45 °C. The results showed that OHAE saved 63% of energy consumption compared with the conventional extraction method. Also, the scaled-up OHAE unit yielded extracts with high quantities of bioactive compounds (110-460 ppm total phenolics) and higher antioxidant activities (antioxidant effectiveness of 56-84%) than those of the extract obtained through the conventional extraction method, i.e., 95 ppm total phenolics with antioxidant effectiveness of 51%. Increasing the EFS increased total phenolics and antioxidant effectiveness of extracts. The incorporation of 250 ppm of the extract obtained at the highest EFS effectively postponed the oxidation of corn oil during one month of storage (peroxide value of 7 vs. 19 meq/kg compared with the control sample) and extended the half-life of oil from 11 to 26 days. Besides, mathematical models proposed in this study well-predicted the oxidation stability of the oil samples mixed with the extract.
Collapse
Affiliation(s)
| | - Alaa M Al-Musafer
- Quality Control Department, General Company for Grain Processing, Baghdad, Iraq
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
36
|
Gavahian M, Tiwari BK. Moderate electric fields and ohmic heating as promising fermentation tools. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Makroo H, Rastogi N, Srivastava B. Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Fierascu RC, Fierascu I, Ortan A, Georgiev MI, Sieniawska E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020; 25:E309. [PMID: 31940923 PMCID: PMC7024203 DOI: 10.3390/molecules25020309] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Continuously growing demand for plant derived therapeutic molecules obtained in a sustainable and eco-friendly manner favors biotechnological production and development of innovative extraction techniques to obtain phytoconstituents. What is more, improving and optimization of alternative techniques for the isolation of high value natural compounds are issues having both social and economic importance. In this critical review, the aspects regarding plant biotechnology and green downstream processing, leading to the production and extraction of increased levels of fine chemicals from both plant cell, tissue, and organ culture or fresh plant materials and the remaining by-products, are discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Alina Ortan
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
| | - Milen I. Georgiev
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- Group of Plant Cell Biotechnology and Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland;
| |
Collapse
|
40
|
Ait Amer Meziane I, Maizi N, Abatzoglou N, Benyoussef EH. Modelling and optimization of energy consumption in essential oil extraction processes. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Gavahian M, Sastry S, Farhoosh R, Farahnaky A. Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:227-273. [PMID: 32035597 DOI: 10.1016/bs.afnr.2019.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applicability of ohmic heating, as a volumetric heating technique, has been explored in various sectors of the food industry. The use of ohmic heating for essential oil extraction is among its emerging applications. This chapter overviews the recent progress in this area of research, discusses the mechanisms involved in ohmic-based essential oil extraction processes, explains the effective process parameters, highlights their benefits, and explains the considerations to address the obstacles to industrial implementation. Ohmic-assisted hydrodistillation (OAHD) and ohmic-accelerated steam distillation (OASD) systems were proposed as alternatives to conventional hydrodistillation and steam distillation, respectively. These techniques have successfully extracted essential oils from several aromatic plants (e.g., thyme, peppermint, citronella, and lavender). Both OAHD and OASD possess a number of benefits, such as reducing the extraction time and energy consumption, compared to classical extraction methods. However, these techniques are in their infancy and further economic and upscaling studies are required for their industrial adaptation.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China.
| | - Sudhir Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Reza Farhoosh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Toxicological effects ofMentha x piperita(peppermint): a review. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1647545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
43
|
Gavahian M, Cullen P. Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1630638] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - P.J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
44
|
Gavahian M, Chu Y, Jo C. Prospective Applications of Cold Plasma for Processing Poultry Products: Benefits, Effects on Quality Attributes, and Limitations. Compr Rev Food Sci Food Saf 2019; 18:1292-1309. [DOI: 10.1111/1541-4337.12460] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research CenterFood Industry Research and Development Inst. No. 331 Shih‐Pin Rd. Hsinchu 30062 Taiwan Republic of China
| | - Yan‐Hwa Chu
- Product and Process Research CenterFood Industry Research and Development Inst. No. 331 Shih‐Pin Rd. Hsinchu 30062 Taiwan Republic of China
| | - Cheorun Jo
- Dept. of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Inst. of Agriculture and Life ScienceSeoul National Univ. Seoul 08826 South Korea
| |
Collapse
|
45
|
Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res Int 2019; 123:95-105. [PMID: 31285034 DOI: 10.1016/j.foodres.2019.04.047] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
The market demand for new meat and fish products with enhanced physicochemical and nutritional properties attracted the interest of the food industry and academia to investigate innovative processing approaches such as pulsed electric fields (PEF). PEF is an emerging technology based on the application of electrical currents between two electrodes thus inducing electroporation phenomena and enabling a non-invasive modification of the tissues' structure. This review provides an overview of the current knowledge on the use of PEF processing in meat and fish to enhance the physicochemical and nutritional changes, as a preservation method, as well as for improving the extraction of high added-value compounds. PEF treatment had the ability to improve several processes such as preservation, tenderization, and aging. Besides, PEF treatment could be used as a useful strategy to increase water holding properties of fish products as well as for fish drying. Finally, PEF could be also used in both meat and fish foods for by-products valorization, due to its potential to enhance the extraction of high added-value compounds. However, more studies are warranted to completely define specific treatments that can be consistently applied in the industry. This review provides the directions for this purpose in the near future.
Collapse
|
46
|
Gavahian M, Tiwari BK, Chu YH, Ting Y, Farahnaky A. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Adnan N, Nordin SM, Bahruddin MA, Tareq AH. A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: Assessing farmers behavior. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Gavahian M, Khaneghah AM. Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit Rev Food Sci Nutr 2019; 60:1581-1592. [DOI: 10.1080/10408398.2019.1584600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
49
|
Gavahian M, Chu YH, Farahnaky A. Effects of ohmic and microwave cooking on textural softening and physical properties of rice. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Dias-Martins AM, Cappato LP, da Costa Mattos M, Rodrigues FN, Pacheco S, Carvalho CW. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|